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collision method or the random walk approach.

Under the assumption that the scattering of neutrons is
spherically symmetric in the L system, the vector flux or the
angular-space distribution of neutrons is obtained in a form of an
infinite series of the spherical Bessel functions, from which the
scalar flux and the net current are easily derived. This gives
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definitely the discontinuity of the angular distribution at the
boundary of the slab. Further, this infinite series converges fast and
hence the accurate result can be obtained readily by truncating the
sum at the first few terms, especially for the thinner slabs.

In the course of the formulation, the critical condition is also
derived and shows that it coincides with the one obtained in the
previous work. Finally, the numerical examples are given and
discussed.

In Appendixes, it is shown how to correspond our formulation
to the usual transport equation. According to this correspondence,
for a bare sphere, the critical condition and the scalar flux are
derived in similar forms to those for the slab, respectively. And
the value of C, the mean number of secondaries per collision, is
given within an error less than 0.01 % for every critical sphere
whether the radius is large or small.
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NEUTRON DISTRIBUTION IN A CRITICAL SLAB BY THE
MULTIPLE COLLISION METHOD

SUMMARY

The detailed distribution of monoenergetic neutrons, in
a critical slab with finite thickness, is dealt with analy-
tically by the multiple collision method or the random walk
approach.

Under the assumption that the scattering of neutrons is
spherically symmetric in the L system, the vector flux or
the angular-space distribution of neutrons is obtained in a
form of an infinite series of the spherical Bessel functions,
from which the scalar flux and the net current are easily
derived. This gives definitely the discontinuity of the an-
gular distribution at the boundary of the slab. Further,
this infinite series converges fast and hence the accurate
result can be obtained readily by truncating the sum at the
first few terms, especially for the thinner slabs.

In the course of the formulation, the critical condi-
tion is also derived and shows that it coincides with the
one obtained in the previous work. Finally, the numerical
examples are given and discussed.

In Appendixes, it is shown how to correspond our formu-
lation to the usual transport eqﬁation. According to this
correspondence, for a bare sphere, the critical condition
and the scalar flux are derived in similar forms to those
for the slab, respectively. And the value of , the mean
number of secondaries per collision, is given within an error
less than 0.01% for every critical sphere whether the radius
is large or small.



1.

Introduction

The neutron transport problems have been generally
treated according to the Boltzmann equation. In spite of
much recent progress, however, only the simplest problems
can be dealt with analytically by means of this. There-
fore, we are forced to depend on the elementary diffusion
theory or the numerical method relying on high-speed di-
gital computers.

The multiple collision method is an effective analy-
tical method, which is based on a viewpoint different from
that of the Boltzmann equation, that is, the life-~cycle
viewpoint in contrast to the neutron-balance one.

By using this method, the one-group critical condi-
tion has already been derived accurately in a concise
form, for a homogeneous slab in which the scattering of
neutrons is spherically symmetric in the L system (Asaoka,
1961). It has been also shown that the two-group criti-
cal condition for the same system can be obtained analy-
tically under some assumptions on the slowing down pro-
cess, Furthermore, the reflection and the transmission
of neutrons for the slab have been treated by this teche
nique, and the accurate and plentiful informations about
t1i3 neutron behaviour have been easily obtained (Asaoka,
1963).

The present work is concerned with a further deve;
lopment of the multiple coliision method for obtaining
the detailed distribution of neutrons in a critical slab.
In the text, the formulation is made by following the
elementary processes of the neutron statistically in
order of its spatial movement. This formulation is com~
pared with another one in Appendix 1, where the eleménta-~
ry processes are followed in order of time. TIn Appendix
2, it is shown how to correspond the present trormulations



to the transport equation expressing the conservation of neu-

trons. From this correspondence, the critical condition
and the flux distribution for a bare sphere are obtained
in Appendix 3.

.Formulation

The discussion will be concerred with monoenergetic
neutrons in an infinite homogeneous slab of finite thick-
ness 4 in which scattering is spherically symmetric in
the L system, as in the previous work upon the one-group
critical condition.

In this previous work, the elementary processas of
the neutron were followed statistically in order of time
and then the critical condition wvas derived from the con-
vergence of the total number of neutrons in the system as
time proceeds indefinitely. Here, the elementary proces—
ses will be followed statistically in order of the spatial
movement, as in the previous work on the reflection and
transmission of neutrons, because this is an easier way to
deal with the present problem (see Appendix 1).

Let X be the space coordinate, M the directional
cosine of the neutron velocity, 3, the macroscoplic total
cross section and C the mean number of secondary neutrons
per collision.

Now consider an incident neutron with a directional
cosine M, , upon the surface of the slab at X = 0. It
vill travel for a certain distance Y, 1in the direction
with U=M, before it collides with a nucleus, The pro-
bahility that neutrons will travel for a distance Y,
without collision is £ =V and the collision probability
in dv, at Y, is X4y, . Hence, as a result of the

first collision of the neutron, the number of neutrons



with directional cosines between M, and M,+4H; will be
(cx/2)¢="dYid4; . They will then travel for a certain
distance Y, in the direction M2 until they meet another
nuclei . As a result of this second collision, the num-
ber of neutrons in d{; at M; will amount to azvbf[xm"”hun4m4%‘
This process of movement will continue until the neutrons
leak out of the slab,

Thus the number of neutrons having travelled for a
distance ¥ in the directions between M and ‘#+¢M as a
result of the N-th collision after following a typical
path shown in Fig. 1, is given by

(G lomplzuwesmerdLdn-dvg bt Nzl (1)

Before performing integrations over all allowable
paths for obtaining the number of neutrons travelling in
the direction/ﬁ which cross an area normal to this di-
rection at ¥ , that is, the vector flux at X which comes
from the neutrons having undergona the N-th collision, we
must take into account some restrictions imposed upon the
range of integration variables. First of all, in order
to exclude the neutrons which have left the slab after the
(j-1)- th collision, the following restrictions must. be
imposed :

O<é i< a, j=LaeN, (2)

Besides these, another condition must be taken into
consideration to get the vector flux at L ., This reads
as follows :

A TRAES )



This condition is rewritten in a form of the Fourier
representation of the Dirac delta function

RN T R (4

and the conditions (2) are taken into account through
Dirichlett's disgontinuity factors

5"‘1 P ”'{ |, when 1%i<I, =12 N
0, when \Qd\>‘;

Introducing these conditions into Eq. (1), replacing

} by gJ Zafﬂu where Xy stands for (42)f , and
performlng the mrpgratlons over all values of /M, (J"

5 N) , Y (J l,>>,N) and Yy , as in the previous work
(Asaoka, 1963), the vector flux at X coming from the neu-
trons undergone the N-th collision, is obtained as follows:

. —_ t ‘1
CR (1'/"/">’317E}:} MP{ ‘Z(}“;/‘Dﬂ Gmu('f‘/“')

(5)

where the independent variable ‘f,,ﬂ is replaced by j .
The functions GP,(yi/,)/s are expanded in the spherical
Bessel functions

Gjﬂ(5"/"):1;2;1:0“/”’?'(/‘)};11(2-2&7): J‘zl"m’N) (6)

of which the coefficients 150’”'}“9“')/ s are to be determined
by the following recurrence relation derived by using the
Gegenbauer's addition theorem, ‘f(j )= fb(Mﬂ)/n(?)me)' and the
orthogonality relation for the spherical Bessel functions



- 10 =

M

9“')= a‘?_::o '&nl(/“l) I(ﬂ/m): J‘=N’N-L““’2)

MHM=even

T p= ) S0 (LB mp - 3R

(MHDC ‘#

(7)

where
J )= %?-5027 IRETHIMETY ﬁ“;i (8)

of which the concrete expressions have been shown in the
previous report (Asaoka, 1963).

For a critical system, this component of the vector
flux, ¢%(Z¢U/ﬁ) , Should tend to a constant value indepen-
dently of N as the value. of N proceedsindefinitely., In
other words, the value of J&ﬁkﬁ) should bend to a cons-
tant one, Jhgm) , as seen from Eqs. (5) and (6). The equa-
tion by which these values of fm(#)’ s are to be determi-
ned, is easily obtained from Eq. (7)

) ' )
(2”+')C“£ﬂ(/"l>= 'mZ=0 wim‘:“l)](%m‘l)) N=0,1,2,+ . (9)

NtMm=evyen

According to this infinite set of linear equations,
it is seen that the values of —ﬂHQM)'s are independent of
the value of u, , as expected, and hence hereafter we will
use the notation 4ﬁn instead of .im/u, . And further,
4&n’s and 4&nﬂ s are independent of each other because
the former are coupled only with one another but not with
the latter, and vice versa. Thus the condition that Eq.
(9) should have a nontrivial solution is that the determi-
nant of the coefficients shall vanish :

Sam

e Tam | =0, mm=024 op 135, 1O



il

This characteristic equation with even values for
both . and M is nothing but the one-group critical con-
dition that was derived in the previous work (Asaoka,
1961). The other equation with 4dd values for both 7 and
M does not give the smallest eigenvalue ( as easiyy
seen numerically (see the discussion following Eq.l(ﬂ.35)
in Appendix 3) and hence the value of the determinant
must differ from zero for the critical system. It is thus
seen that all values of fmy’ s are identiaally zero. And
the ratios among the values of -{”{s are given as follows:

UEY NI JERe
=J2) -J04) -T(06)--| [FetT0O) ~J(o4) | |-T(02) -YetT@.0) -J(0.4)
S TR -T2 T8 1] TR0 -Jet) [[BcTRD T@0) -4 {io .

1)

~T74.2) Xc-T41) -T46) 7(40) Me-J44) -I_m) T40) -J44)

The vector flux in the critical system is thus
written in the following form according to Bqs. (5) and

(6)

)
3

b= dn S bafty AEZ | 1y

(12)

From this, it is easily seen that

Pap=Paz,H, (13)

$io.u)=0, MZ0, (14)

because, in the case of X = 0, the integrand has only one
pole at j:—Qﬂl in the half-plane below the real axis and
besides we can take the path of integration in the upper
half-plane. The integration in Eq. (12) can be easily
performed to give :
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PLoACO Sk

Cb(i,/l):éo#m[‘}fﬁ(_'?ﬁ_; (_1%7))#;-&6{(%;;/):(2}7)%:0

Hln (DT poo, (15)

where
},n(9)=};,:(9)x"’ +};(9>i‘£ ( }',,',(2): &2('5))
and @(fW’),:o_.stands for the residue of ‘f(}) at 7: 0.

The total or scalar flux is then obtained in the
form from By. (12) :

4>(z>=5"¢u4>a¢¢)= i-g-l,,,fguff-izu%1]—‘*“-?—'?-};1(%0, (16)

from which it is easily seen that ?ﬂ)=4¥w1)o Pepforming
the integration, this gives:

b= L bl R (P B ) ~R(FEL B ET)
o B (BT R B ]
Bt )t O

This is composed of two parts, as well known; the .
asymptotic one resulting from the pole 7: 0" and the tran-
sient one from the cuts along the imaginary axis from g=i
to 1=im) and from ?=—i to 3=—una

Moreover, the net current is given as follows :

Jo=fypboprmdd A Yo EbL@pit,

from which the well-known relation, JA)=-J(42) , is easily
seen, This becomes :
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J= w% —ﬁ,ﬂgﬁ H‘()- Aii) fm‘ (&) (1."117_ (T} )] 4eo

f o (1B) (7000 ) | (19)

3. Results and Discussions

The vector flux, the scalar flux and the net current
have been written in forms of an infinite series, respec-
tively, and hence we are forced to truncate the sum for
obtaining .the numerical results. That is, neglecting all
terms beyond }"(@0 on the right dide of Ey. (6), th
coefficients -fm’ s (2n=<M ) are determined approximately.
We shall call this approximation the " }n-approximtion',
as in the previous work (Asaoka, 1963). The results in
the }M,—approximation are the same as those in the j,,,—
_approximation for the present problem. The ratios among

J.n' s in the '}; and A-— approximation are given in tlLe
following forms, respectively, according to Bq. (11) and
the critical condition :

(a) The }; approximation;

4, Ve-T00) J.2) -
27 J0) T VEoTe), (20)

(b) The }?— approximation;

4. _ T02)TOD+TROPE-T00))
4, TeDTeH+TOD0TeY) ,

_ UET0o) sy TN -(Te) _ 104+T7eDEH,
e JODT+TeMse-TR)  Yo-Tur)

(21)

The value of C , the mean number of secondariaes p-r
collision, required to keep the slab of thickness A=
to be critical, has been already obtained by solving the
critical equation, IBq. (10) with even values for both 71
and M (Asaoka, 1961). These values for small (¥ and for
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large { have been given in the forms, respectively (Y is
the Euler-Mascheroni constant) :

(a) The }, ~approximation;

-A-N;(a-f%)alnzo( and l-:}a— i

(b) The fz-approximation;

| -'C—N—(l-%}(ﬁ%?)qﬁzo( and 1-2%(-,4—475&,)
(c) The }T-approximation;
b B kR D

The leading terms of Eqs. (20) and (21) for small
are thus given by

(22)

(a) The }'z ~approximation;

A - aE e (25

(b) The }1 -approximation;

~Ar—- W Y -] IX/& +
é,’ Foan ("r%ﬂ 1:1/?}22;? 2t )

J (- gt i)

On the other hand, for large values of (X ,

(24)

(a) The }2 -approximation;

frdr (25



(b) The J}—approximation;
N Sy133-13¢8
%M_ﬂ_(ﬁ_,’)(,_ 233‘3,413;030(13 1 >)
!
b gy 2 )

The vector flux (15), the scalar flux (17) and the
net. current (19) up to in the j}-approximation are

(26)

written in the following forms, respectively :

%%«p(;,/)= FE3g- 20+ B 0- )+ Lo Y K007 é—
+[0gi- S+ B E- R B 0-B- P -3 )
ﬂosﬁ;(n--});lﬁég—(Hloﬁ-ﬂsﬁ;_ﬁvsﬁ';ﬂw‘;)i %] ff 0, (27)

Rbs)=2-E-ltfo-Friordu- 5] & |
+[2‘2D§'(l'ﬁ)+35(§)‘("}0('){?%«Qa(l“'}%("ﬁ))'f‘%%. (28)
“ErQERE-RE-E ]

LI (- Er R+ B 1 % + (B0 BB B
+§;(:—§)+E{+§-E{+ggg+%§g‘/+%§ﬁ;]% ) (29)
vhere §=X4/2 , 5=ZX , E=EpQiSHELY), E=LWS)-E()and
| Ency>=5'2t£#f"‘,
As a special case, the vector flux for u<( at the

boundary of the slab is given in the form according to
Eqs. (13) and (27) :

poprm e[ Bt e BT
H{IHOY +15%a +hs S+ 1052 - (Ho 155105 s Hos 22 )2 ] ? (30)
. )
M0
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Upon substituting Eq. (23) or (24) into Eqs. (27),
(28) and (29), respectively, we get the leading terms for
small O/M as follows :

(a) The }o -approximation;

%4“5/‘)"-’7;((!-%) , /470)
g an ‘("éd)}n(ldf)-%},lgay -
%;'j(g)’\’ "2“§" ﬁ"f (m.}-) %j’ls'}

(b) The }2 —-approximation;

2“4:(5/%%5:-25”(»—5—)(;-%)%5‘—} H>0, ]

%4"”“2“ f (20 I (2T)- 3 S +1-Y (32)
+§a('-&>0—ﬁ)h(¥-:)f’—
Z6) {1+ s~ Fhs-Fo- - 3p) i%}

(¢) The h -approximation;

2905 on R[0T F R )2}, poo,

2}45(5)'\/2« (r§a)A(W “5)- mlﬂ)"” Y
HRDERER AR D]

By -2{ -+ LA - Fe
“FPERH R T ‘

and the leading terms of %ﬁ¢(3}/‘) for m<(0 are obtained
immediately according to By. (13) by replacing ¥ and M by
20-% and M , respectively, in the first equation in

Eq. (31),(32) or (33).

) (31)

(33)

For large & , Eq. (27), (28) or (29) gives the follow-
ing expressions according to Eq. (25) or (26) :
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(a) The }o -approximation;
L1, p<o )
Fdam~,

> (34)
Bds)~1-50h3+1-1), 3%,
- HIe~-k0m), 3« ,
(b) The iz-approximation;
2_%?(0,}4)«/%((;--}/)) M=<0, )
MCP(o{,,M)N-i(:— ), :
R | -

L sy~ -f3th-, 3=,

B~ TR+ HF), 3<,

(c) The ff'ﬁPPrOXimation;
Hdopongm-1)(- ELT 2L )

%T(E)N-}%(H’Jiﬁ)(l—ﬁ@g‘;ﬂsl L), )

As seen from BEqs. (31), (32) and (33), the results
converge fast for thinner slabs as going to the higher
order approximation and hence even the results in the h—
approximation may give the accurate ones., On the other
hand, the results for thicker slabs do not converge so
fast but the ones in the }f-approximation may be regar-
ded to be accurate, as seen from Bgs. (34), (35) and (36).

((36)

It may be worth while to review the results on the
so-called extrapolation distance d, the distance between
the boundary of the medium and the point at which the
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asymtotic neutron flux in a form of4n[Bredlwould go
through zero. This has been given in the form

(Asaoka, 1961):

zd=Ea 1, (37)

in acdordance with the critical condition in the
diffusion theory. Substituting the leading terms
of V¢ for large  shown in Eq. (22) into Eq. (37),

we have

(a) The &Z—approximation;

DY
({;’,%0.7@472)

(b) The }%—approximation;

(30

>l G _ ,> 75/2 157)3-523V133

H-Y133 VET33 13680

/5713~ 523J)33
( B >

As seen from these expressions, roughly speaking, 7L
is replaced by yjo in the Jh—approximation and by
YH-IB3 =3/4/4l6 1in the j;r -approximation.

o

The extrapolated end-point 5; ,the distance
beyond the boundary of the medium at which the
asymptotic flux vanishes, is obtained from the
following equation according to Eq. (17) together
with Eq. (28):

=135+ 35+ ] '%

SOne B SR B i) 0, O
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For large (x , this'gives
(a) The jh -approximation; 1

51/, (40)

(b) The &r—approximation;

5~ (1143 )45 =0. 67850,

J

Moreover, the accuracy of the results for large (¥
in the L,-approximation will be shown by comparing
some results in Eq. (36) with the exact ones. The
exact results for the infinite half-space with ¢ =1
has been given as follows (Case et al., 1953):

P (0-1)/P00)=219018,

/',1"—_-5)(%,,(/“(}3(0,/0/ S(;u f}‘—'(o,/d) =-0.517

)= [E5hE 0], 31,

Our results corresponding to these are

P (0,-1)/P(0,-0)= 24139
/L( — ]'(0>/4> 0) =~ I2$_L57\/l33 —0. 5707
$)= P51 5 hE+0()], 3|

Even in the extreme case, for which our jﬁ—approximation
becomes to be rather poor as mentioned already, it is
shown that the coincidence of our results with the

exact ones is not so bad, and hence it is believed

that the f+-approximation gives an accurate result

for every system whether thin or thick.
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Some numerical examples are shown in Figs. 2-5. )

In Pig. 2, (K/4,)P(H) in the slab with X=0.005 is
shown for the values of 5=0 and 0.005, that is, the
vector flux at the boundary and at the center of the
slab, respectively. As -expected, the results in the

ﬁ -approximation differ only a little from those
in the il-approximation and the difference between
the results in the |} - and the [,-approximation
is hardly recognized in this figure. And it is seen,
as a matter of course, that the vector flux at the
center takes a sharper maximum at M=0, the direction
in parallel with the boundary, than that at the boundary.

Fig. 3 shows the vector flux for the values of

£ =0,0.1 and 0.5 in the slab with {=0.5. From
this figure, it is seen how to be created the
gyumetric distribution at the center of the slab, from
the unsymmetric one with a discontinuity at 4=0 at
the boundary. The difference between the results in
the J,- and the jf—approximation is scarcely
- recognized also in this figure.

In Fig. 4 are shown the results of the vector
flux in the slab with (=10, for the values of ¥=0,1,4
and 10. Here it is seen much difference between
the results in the &— and the Zz—approximation,
especially for those at §=0, but a little difference
between those in the A—-and the j+—approximation.

In the last figure, Fig. 5, are shown the results
01 the scalar flux within the slabs with ((=0.005, 0.5
and 10, respectively. The value of it at the center of
the slab is normalized to unity, and the results
obtained by Indnii are also shown for comparison
(Indnii, 1959). He calculated, by applying a
variational method directly to an integral equation
governing the balance of neutrons, the first-flight
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nonescape probability for the persisting neutron
distribution within the slab. Since the inverse

of this nonescape probability should be equal to
the value of C regquired to keep the system to be
critical, comparison of this value with our result
has been made already in the previous work (Asaoka,
1961). This comparison has shown that these vilues
coincide nearly completely with our results in

the jh—approximation and are slightly larger than

those in the J4—approximatioh.

Similarly, his persisting distribution obtained
in a form of that |~U,@)(-3/x)* , coincides with our
result in the Jz—approximation nearly completely
as seen from Fig. 5. And it behaves slightly
higher than that in the jf-approximation near the
boundary, as indicated by him, and slightly lower
halfway between the center and the boundary, for
the slabs with the smaller (¥ . For the slabs with
the larger values of (X, on the contrary, his
distribution behaves slightly higher than that
in the Jf—approximation, halfway between the
center and the boundary.

4. Conclusions

The detailed distribution of neutrons in the
critical slab with finite thickness, has been
obtained accurately in the random walk approach.

One of the guestions remaining to be solved
in the reactor theory is how to deal with the neutron
transport in a finite system through a simple method,
whether the system is large or small.
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It may be believed that the multiple collision
method is a way to solve this gquestion. The essential
point of this method lies in the introduction of the
discontinuity factors, by which we can easily take
into account the finiteness of the system and fix
the observing point (see also Appendixes 2 and 3),
as well aq&he adoption of a viewpoint different
from the usual transport equation. As a result of
this, the neutron transport problems for a finite
system can be dealt with in a similar way as those for
an infinite system. Further, it may be mentioned
that the expansion in the spherical Bessel functions
is a useful way to obtain the results easily.

Although our works so far have been performed
under the assumption that the scattering of neutrons
is spterically symmetric in the L system, the method
will be extended to the case without this asgumption,
even with other geometries than the homogeneous slab
(regarding a spherical geometry, see Appendix 3).
Moreover. it is hopéd to extend this technigue to

more general problems.
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Appendix 1. Another'Formulatipn

. Here it will be shown another formulation for
obtaining the vector flux, Eq. (12), where the elementary
processes of the neutron are followed in order of time.

Now consider an ancestor neutron with a directional
cosine M,at Y=0, for example, at time t=0; it will
travel for a time 1, in the direction with U=H, before
it collides with a nucleus. Since this probability
is ¢Z"i, 4» being the constant speed of neutrons, and
the collision probability in;ﬁ,at t, is .ZWdL y the
number of neutrons with directional cosines between
M, and /ﬁ+¢g as a result of this collision becomes
to anvb)iﬂwwmng. They will then travel tor a
certain time 1, in the direction M, until they meet
another nuclei. The number of neutrons indﬂ;at 3
after the second collision will amount to (CZWRYZ™M Mt gt dudu, .

Thus the number of neutrons with directional
cosines between M and/Hiu at time t as a result of
the N-th collision after following a typical path
shown in Fig. A.1, is given by

(_Q%_’K)N‘E—ZVTd«t;"'#N A/()...éunéu) N= | , .(A. 1)

In order to obtain the vector flux at X within
the slab of finite thickness @ , the following
conditions must be taken into account:

}Z}w%dzwu(t-fétd- )=1,

(A.2)

0<:§§1’ﬁfg<1a , j=h2 N
=Y ¢ ' (4.3)
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These are written in the forms of the Fourier
representation of the § function and Dirichlet’s

discontinuity factor, respectively:

27[ df‘“f{lf( 'Vu ‘HH( f)"I)] ‘ (A.4)

P23

Jﬁi”‘fﬁ JD(IJ')-W]"W (71—{_\/‘4&' l)] () 2N, (4.5)

Then, introducing these conditions into Eg. (A.1),
replacing ¥ by %.ﬂ.l 1ﬁ where 2y stands for (42)f, and
integratinr over m{é z3 -, N) from -1 to 1 and over
ti(j=L2.N) from O to T-/ g , the number of neutrons
with # at X at time { db d result of the N-th collision,

is obtained as follows:

WUy (Lt )= ( "’"“’ %SMN*‘ ~Z-92)
ﬁ< } L Jf WD ) (A.6)

where HNT)”&HIUVH”’T[ S (Avwfa fvﬁmAFNQ) (A.T7)

Now take the laplace transform of WN07UEMZVT , then
by applying the convolution theorem to Hy{t) we have :

2

- -(Z.(ZT-‘}J)}
LN(I'/N,,A)=> IIH Qut)e

vvf =
? ATERT W(d.4), (4.8)

ih which the independent variable qu is replaced by
? . The functions ﬁ(ﬂ,A) 's satisfy the following
recurrence relation:
_C =
01,0)=58) 8125 [ [ p] Fy 2,

=N KL, 2, (4.9)
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CZA ,e"i%s i (Zp.
R4 )= G b s (B p).
For N=0, Eq. (A.8) is simplified to be

Loy 4)= 5, 29 (- 51X 5 i), (4.10)

Let [[(XM4) be the Laplace transform of the
nusber of neutrons with ¥ at X at time t coming
from the ancestor neutron, multiplied by @ZVf ,

W(1}%T)£Zvr , then according to Eq. (A.8)

’ {/ = N, ‘1; ,,A
Lapd) NZ;DLN( MA)
wo - UZ(-92)Y (A.11)
= Z
Lo 4)+ zajﬂ TZW‘ Fiia,
where FWA)=§%5M#~A) obeys the following integral
equation derived from Eq. (A.9):

Hz,A>=E(y,A>+Cmf I ERFEPIFEeD . (4.12)

Upon integrating Eq. (A.11) with respect to # ,
the Laplace transform of ﬂ(x%}fﬂf, l.(x4) » is obtained
in the form:

) (1 Fi»jﬁ,’”f(' %J‘I)a-7—%@5:4?’.@;[;[-(2(1*%)3]/ﬁl;i(%ﬁ)ﬁy,d).( A.13)

And the Laplace transform of the total number of
neutrons in the medium at time t multiplied by fzvf’
W)™, is derived by integrauting Eq. (4.13)

over X from O to Q4 :

%L??Jo(%”%){;m(%i)rufﬁ). (4.14)

Ltay= B gy

This equation together with Eq. (A.12) is nothing
but that derived in the previous work (Asaoka, 1961).



Now ’n(r,/u,‘l’) is reproduced by an inversion
formula:

(OJ

RO ;J,agw“‘w,ﬂ a) | (A.15)

B0

Let ZW, be the pole of LWM4) , having the largest
real part among those, and (}3(77“) the residue at
A==, » then the asymptotic behaviour of NMAMt) as
1500 can be written as follows:

AW )~ QRO 1p [ 1EVE] (4.16)

For the critical system, 4, should be equal to unity
and ﬁ)d@()(,/u) is no other than the vector flux.

Expanding F({,.4) in the spherical Bessel functions:

FU4= 2, Ant) fu(£1), (4.17)

Eq. (A.15) is written in the following form according
to Eq. (A.11):

%(1,/; 't)lz'vr =9 (j_ry/u’ -‘-)S(ﬂ_/u')
+ > A4 ey [(}"(1—‘}/2)‘1]1 ED= :fd" {p’:-"»ﬂi IJ
S i R (4.18)

Consequently, it is seen that 4=Z14, must be the
pole of A4m4) . Upon substituting/Eq. (A.17) into
Eq. (A.12), we arrive at an infinite set of linear
equations obeyed by qu, JM(A) with J4=2v4,(4=]) :

Gty ’",”f %“n)}ﬂ M;)* oﬁﬂmj(""“),

IHn=even (A.19)
7‘:0’ ”2‘..“
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Thus the condition that—%lshould diverge beyond all

bounds ig that

(%‘%—C_—j(nm) =0, MM = 0,2,4, - or 1,3,5,°**" & (A'2O)

This coincides with Eg. (10) in the text, and hence
following the same consideration as in the text it is
concluded that only the determinant with even values
for both . M and ¢ shall vunish and this gives the

critical condition.

From Eq. (A.18), the residue at g=7v, ﬁﬂpﬁ),

thus given by
- ,- -9
Ropo=sbi Aoy AT sy, (4.21)

of which the coefficients 4ﬂm's are to be determined by
Eq. (11) in the text, as easily seen from Eq. (A.19)
together with Eq. (4.20) with even values for both 7
and /M . This is nothing but Egq. (12).

Appendix 2. Formulation Based on the Neutron-Balance
Viewpoint

Here we shall consider the correspondence between

our formulation based on the life-cycle viewpoint and
the transport equation governing the balance of neutrons.

In order to derive the transport equation from the
conservation of neutrons, consideration will be given
to 7U1¢L1)d1¢u , the number of neutrons in dAxat 2 ,
with directional cosines between.}(and /+¢u at time t ,
within a critical slab into the surface of which, X =0,
one neutron with X has been shot at time +t=0.
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The number of neutrons irl¢4at/u produced as a result
of collisions in 41/ at %/, in 4t/ at time t-t’ , is

given by
SEV(flpemce )iy,

The probability that the neutrons travel for a time t/

-zt and the space coordinate

without further collision is £
after the travel is I+@Mf' . Since we are interested
in 7u1¢@1)d1¢u y the following condition must be
taken into account in order to fix the observing point

in dX at X :

X-Hdr< Vayut’< 1+4541

This condition is rewritten in the form:

—}z_ﬁf din g £2p (P (T EX )]

(A.22)
= ;(:(-—ﬁs mfftzza’muf—x )1, '
and hence 01U¢LT) is given as follows:
namt)= s ot spom) e
(A.23)

va it ol
+ G i [ aglimercipto0] e fmapt ),

Now we shall derive Eq. (A.11) from this transport
equation. First of all, take the Laplace transform of
both the sides of Eq. (A.23) multiplied by 2%l , then
we have

Lp.4)= J— zy)b(- ‘fr(,ff)ﬁ?(/“;“;
lzu
+z Y, cva :zzxj "o
50% SR LT )LL)
Further, upon 1ntegrat1ng Eq. (A 24) over/u , we get

L 4)= f/tf wﬂ)+ ML—th; (= lizujdx’z"zgzlau ). (4.25)
0

(A.24)
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This leads to

4 E - (-4800 =M
fon L= B

+ 2 )| g ol B o) e sy, (426)

This equation is nothing but Eq. (A.12) as
immediatly seen if we introduce the following

representation:

g R
F4.4)= %—?Jz"‘sf“im‘z”ura), (A.27)

and then further Eq. (A.24) is reduced to Eq. (A.11).
Equation (A.27) tells us also that

Flo.)=3%) ) (4.28)

which has been already shown in the previous work
(Asaoka, 1961).

As seen from the above-mentioned formulation, the
essential point of our technique is not only the
adoption of a viewpoint different from the usual
one but also the introduction of the discontinuity
factors such as Eq. (A.22). As a result of this,
the neutron transport problems for a finite system
can be dealt with in a similar way as those for an

infinite system.

Appendix 3. Critical Condition and Flux Distribution

for Bare Spheres

The determination of the flux distribution in
spherically symmetric systems, as well known, can ’
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be reduced to its determination in a certain system
with plane symmetry. Actmnally, this is shown
easily by following a similar procedure as in
Appendix 2.

Let ¥ be the radial coordinate and M4 the cosine
of the angle between the neutron velocity and the
direction of Y . The number of neutrons in 44 at

M, produced as a result of collisions inardy’ at

Y, in dt’ at time tt , is given by
V(e 1) 40 Ay 4,
Teking account of the condition,
Y=ottt

the number of neutrons in #YdYy at Y at time T is

written as follows:

- Ly
NPy =-LZY l) ) fctfj R AR il

X [S(\/-Y’Hvt’)‘+2v"5U.’(’—r)+8(\/ vt Rst+0)1dY, (Al 29)

where K is the radius of the sphere and the source
neutron at time t=0 is omitted because our interest
lies in the asymptotic behaviour of N(Vt) as t-eo .

Now replacing M, by S5=/r% mﬁ9+m¢ﬂf, rewritting
§(5-Y) in the form of sdﬁafﬁfﬁﬁﬂ, integrating over
S from “¥’| to Y4vt’ and taking the Laplace
transform, then we have !

Y2 L (64 )=Y*fm“‘tm 1)t

Y- Sdfj‘f'ff[%n'ﬂf v (@METL ] (4.30)
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This leads to

YLwa=4Z szwff‘f gz Lfdr’r’u‘” o 2,
or extending the definition of L(rd) to <0 by puttlng
Lena)=Lnd)s

L)~ B B B = L, (4.31)

in which § is replaced by 2=§/=.
From this equation, we get .

Fig, 0= SR (2 0(202) | Ra-2] Feod), (4. 32)

where

o
Fig.0= 2 fare ™y Lina)
“R

(A.33)
And by combining Egs. (A.31) and (A.33), we have:
YL o= ’—‘lﬁ)—_SW%M (Z¥2) 112 Fre,4) | (4.34)

This can be identified with Eq. (A.13) omitted the
source term, because Eq. (A.13) is rewritten in the
following form when the origin of the space coordinate
is displaced to the center of the slab:

L(I,A>=,-f’q—,r" o (B0 = Foy ) | (A.13)

and besides Eq. (A.32) is identified at once with
Eq. (A.12), upon omitting the source term which comes
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from the neutrons undergoing the first collision. That
is, Eq. (A.34) together with Eq. (A.32) is nothing but
the equation governing the neutron distribution in a slab
of thickness 2R ,where Y7(r,t) is the neutron flux.

Now expanding F(f4)in the spherical Bessel functions:

F(%d):;‘)’fmwnm(zR?)) (4.35)

it is immediately seen that only the terms with odd
values of M in this infinite series remain on the right
side of - Eq. (A.34), contrary to the case of Egq. (4.13'),
because Y[,(I'4) should be an odd function about ¥ and
hence the coefficient ofFi(34) in the integrand of

Eq. (A.34) should be an odd function aboutl 2 .

Thus, N(r,t)is written in the form according to Egs. (A.34)
and (A.35):

~ . . 11
Yoty ,—g;,gog%i‘”ﬂmﬂ@mfﬂ LR E D @), (A.36)

F—-wD

Since 4=y must be the pole of-&mﬂu)for the critical system,
the neutron distribution in the critical shere is given

by
_1 & Y (YR 1’@42 '
Y/'l (Y) - TV"))?::D "#24'“"_&@1 é J-?"H‘) (ZRQ)) ( A, 37 )

where %Qﬂis the residue of fuyi)at ==V . Performing the
integration, this becomes :

2 . dp i 1 RO |
VM=, B { iR [ﬁgﬁ oo (ERRY((ZROL zw0a)]

Qo . e (A‘38)
+5‘ %J;,,L,(iZR’r)(zZ(R Dt _ RO ) % )

where | . o _ . _
bt @= ey @€ o @ FF (foy = o €)) |
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The concrete expression up to in the Jé—approximation is
(R
al

Y= S 54 E)
38 (.39)

5o

75k

E-de B e %

where (§=3R, ¥=ZY and En=En (0-5)~Ey (45 ) .

On the other hand,‘{,fm,(d)'s with ==y obey the
following infinite set of linear equations which
are derived by substituting Eq. (A.35) into Eq. (4.32):

e Fonn(F) = 2 oy EOIT s, 204, (4.40)
,,n=0, 1, 2, ot

and hence the critical condition is given by

o
c<+;z’:3) Y”"“»”“D\ 0, mm=012 (A.41)

where

Yt 21413= 324 | o) BHL

The ratios among the values of %%”,'s are determined
as follows:

79,:‘5)3:"?5:
“TW3) =JWS) =Jun)d |- T 705 701 ] -J‘(l3) pas( l) -I(H)
=|-7(33) ~7(3.5) | TG -T6s5) 1H-763) 760
~7(53) {z-7(55) TS50 TieI55) J53) T,
(A.42)

In accordance with Eq. (A.41), the critical
conditions in the [ - and the [ -approximation are
written in the following forms, respectively:
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(a) The J}—approximation;

<= 37“,!)«/{%“(" %""), 0 |,

(A.43)
n—gm%(-é o),

(b) The Jé—approximation;

- %T(l,l)+%7<33>+J (Z701)-276.3))+21(T0.30)*

%(m 5 )0( ﬁ32?2§+f27?50\/5’] 00 (A.44)
~ = 0782990 (1-0.505040), 0<< |,

3t ks a
The expression of 37(i,)) is the same as that of the collision

probability on first flight under the assumption of the
uniform neutron distribution within the sphere (Case et al.,
1953), like the expression of W in the &—approximation

for the critical slab is the same as that of the collision
probability for the uniform distribution within the slab
(Asaoka, 1961).

The values of € for various values of K= between
0.005 and 50 are shown in Table A.1. Our results are
compared with Carlson's work, in which he obtained the
critical radius for various values of ¢ by using a
guadratic trial function in the single-iteration moments
method (Carlson, 1949). As seen from Fig. A.2, our
results in the }3—approximation are on the curve

showing his results.

Case K.M., Hoffmann PF. and Placzek G. (1953) - Introduction
to the Theory of Neutron Diffusion, Vol.1, Sec. 10.2.

Carlson B. (1949) - Neutron Diffusion Theory; Integral Theory
Methods and Formulae, AECD-2835 (LA-990),

or see Reactor Handbook, Vol.III, Part 4, Chap.4, 154 (1962).
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And further, the so-called extrapolation distance d

has been calculated according to the following form:

D S (A.45)
Zd= V3IY0) ZR,

which, upon substituting Eq. (A.43) or (A.44), gives:

(a) The L—approximation;

de{g/\/?—(l—lﬁ/f)a, K<), i)
(ﬂL/.?)M‘O() 0(>>’)
(b) The } -approximation;
[YERRIiR -
=57 X, K<l
T~ § i) | (£.47)

(-0 )ot s =-00301P3 0+ L0331, o371,

The values of 5 corresponding to each value of the

critical radius K are shown in Table A.1.

Also from this Table, it is seen that the accuracy
nf the results in the L— and the j3—appr0ximation may
be in the same extent as that of the results in the [ -
and the h-approximation, respectively, for the case
of the slab (Asaoka, 1961). And hence it may be believed
that our results in the %~approximation are accurate,
except the extrapolation distunce for the sphneres with
very large radius, of which even the error around
0.001% for ¢ might give an influence on the first

figure of the value of =({ .

In the }3—approximation, the ratio of %3to,£ is
given in the following form according to Eq. (A.42),
together with Eq. (A.44):

By _Yeo-TUD _ 703

B0 T Vo)

5”,7533 ('+23Q5}ZF 0 )=0.31574 (01640, o< |,

(A.48)

=50, o,
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Then for small (X , the leading term of the right side of
Eq. (A.39) is given as follows:

(a) The }I—approximation;

: x(-5%) 3,
‘—O}KW SDN{“ “2>’ (4.49)
‘ Gr5h(E)s,, smas<),
(b) The js—approximation;
(73 (-5 2
%Kvm(§)~< =;,2£3’810{ ()—5.7552%; ), 3<«|,

BRI+ T (b +BE L)y,

-075’]020(1—0 30212(1,1 +15375)) 305,

(4.50)

And for large ¢ ,

(a) The h—approximation;

) '; §<< I)
BE 5y (4.51)
! FdgrEhE-rH)s5 | n=0-5<<),

(b) The J—approx1mation;
- Ha), 5=,

—}v/n 5%{ (4.52)

/20( + 35 fn‘%‘ b""z)i, 5,=0-5<<),
Similarly to the case of the slab shown in the text, the
results converge fast for the smaller values of ( as
goihg to the higher order approximation, but not so faster

for larger (X.

The extrapolated end-point —3, is obtained from the
following equation according to Egs. (A.38) and (A.39):

|- _%_,_%(,—.En.)z-fﬁss] {%—:0. (A053)
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For large {{ , this gives in the }y—approximation that
~35=4/5. (A.54)

From the results shown so far, together with those
in the L—approximation in Fig. 5, we are convinced that
our results of the flux distribution in the }E—approximation
are practically regarded as the accurate ones, whether
the radius of the sphere is large or small. In Fig. A.3
are shown the results for the spheres with ({=0.005,0.5
and 10.

In this Appendix, thus, we have got the values ot
C required to keep the bare sphere to be critical,
within an error less than 0.01%. And the values of the
extrapolation distance, which are indispensable to
evaluate the critical condition by means of the elementary
diffusion theory, have been obtuined accurately for the
system with radius less than several times of the neutron
mean free path. Besides these, the flux distribution within the
critical sphere has been derived also in a concise form
to be calculated easily.
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Table A.1 ~— The Mean Number of Secondaries per

Collision and the Extrapolation
Distance for the Critical 3phere of
Radius R

Mean number of secondaries ¢ Extrapolation distance ZR[

Radius
ZKR &-approximation L;approximatior L—approximation &;approximation
D.005 267.378 256.080 1.8122 1.8124
G.05 27.3819 26.1915 1.7979 1.7995
0.25 6.06442 5.77785 1.7348 1.7446
0.5 3.41620 3.23743 1.6567 1.6818
1 2.11529 1.98870 1.4979 1.5724
2 1.49794 1.39634 1.1459 1.4045
5 1.172335 1.096470 -0.2693 1.1149
10 1.080643 1.028710 -4.3603 0.8572
50 1.015225 1.001342 -36.1889 -0.4602
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