

ASSOCIATION EURATOM - C.N.E.N. - U.L.B. (European Atomic Energy Community - Comitato Nazionale per l'Energia Nucleare - Université Libre de Bruxelles)

# Cl, K AND Na CONCENTRATIONS IN ANTARCTIC SNOW AND ICE

by

J. BROCAS et R. DELWICHE (Université Libre de Bruxelles)

1963



Work performed under the Euratom contract No. 004-61-10 GEAC

Reprinted from JOURNAL OF GEOPHYSICAL RESEARCH Vol. 68, No. 13 - 1963

# LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM) in pursuance of the joint programme laid down by the Agreement for Cooperation signed on 8 November 1958 between the Government of the United States of America and the European Atomic Energy Community.

It is specified that neither the Euratom Commission, nor the Government of the United States, their contractors or any person acting on their behalf :

- 1º Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or
- 2° Assumes any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

The authors' names are listed in alphabetical order.

This reprint is intended for restricted distribution only. It reproduces, by kind permission of the publisher, an article from "JOURNAL OF GEOPHYSICAL RESEARCH", Vol. 68, No. 13 - 1963, 3999-4000. For further copies please apply to American Geophysical Union, 1515 Massachussets Avenue - Washington 5, D.C. (U.S.A.).

Dieser Sonderdruck ist für eine beschränkte Verteilung bestimmt. Die Wiedergabe des vorliegenden in "JOURNAL OF GEOPHYSICAL RESEARCH", Vol. 68, Nr. 13 - 1963, 3999-4000 erschienenen Aufsatzes erfolgt mit freundlicher Genehmigung des Herausgebers. Bestellungen weiterer Exemplare sind an American Geophysical Union, 1515 Massachussets Avenue - Washington 5, D.C. (U.S.A.) zu richten.

Ce tiré-à-part est exclusivement destiné à une diffusion restreinte. Il reprend, avec l'aimable autorisation de l'éditeur, un article publié dans le « JOURNAL OF GEOPHYSICAL RESEARCH », Vol. 68, Nº 13 -1963, 3999-4000. Tout autre exemplaire de cet article doit être demandé à American Geophysical Union, 1515 Massachussets Avenue - Washington 5, D.C. (U.S.A.).

Questo estratto è destinato esclusivamente ad una diffusione limitata. Esso è stato riprodotto, per gentile concessione dell'Editore, in «JOURNAL OF GEOPHYSICAL RESEARCH», Vol. 68, Nº 13 -1963, 3999-4000. Ulteriori copie dell'articolo debbono essere richieste a American Geophysical Union, 1515 Massachussets Avenue - Washington 5, D.C. (U.S.A.).

Deze overdruk is slechts voor beperkte verspreiding bestemd. Het artikel is met welwillende toestemming van de uitgever overgenomen uit "JOURNAL OF GEOPHYSICAL RESEARCH", Vol. 68, no. 13 -1963, 3999-4000. Meer exemplaren kunnen besteld worden bij American Geophysical Union, 1515 Massachussets Avenue - Washington 5, D.C. (U.S.A.).

## EUR 415.e

REPRINT

CI, K AND Na CONCENTRATIONS IN ANTARCTIC SNOW AND ICE by J. BROCAS and R. DELWICHE (Université Libre de Bruxelles).

Association EURATOM - C.N.E.N. - U.L.B. (European Atomic Energy Community - Comitato Nazionale per l'Energia Nucleare - Université Libre de Bruxelles). Work performed under the Euratom contract No. 004-61-10 GEAC. Reprinted from "JOURNAL OF GEOPHYSICAL RESEARCH", Vol. 68, No. 13 - 1963, pages 3999-4000.

The Cl, K and Na concentrations of precipitation, firn and ice samples collected in Queen Maud Land (King Baudouin Base, 74º S. 24º E.) have been determined.

The Na concentrations, varying between 0.1 and 4 p.p.m., show a minimum at 100 Km of the coast.

The Cl-concentration values of the same samples show a continuous decrease when proceeding from the coast to the interior. The extreme values are 2 and 0.15 p.p.m.

### EUR 415.e

REPRINT

CI, K AND Na CONCENTRATIONS IN ANTARCTIC SNOW AND ICE by J. BROCAS and R. DELWICHE (Université Libre de Bruxelles).

Association EURATOM - C.N.E.N. - U.L.B.

(European Atomic Energy Community - Comitato Nazionale per l'Energia Nucleare - Université Libre de Bruxelles). Work performed under the Euratom contract No. 004-61-10 GEAC. Reprinted from "JOURNAL OF GEOPHYSICAL RESEARCH", Vol. 68, No. 12, 1069, 2000, 4000

No. 13 - 1963, pages 3999-4000.

The Cl, K and Na concentrations of precipitation, firn and ice samples collected in Queen Maud Land (King Baudouin Base, 74º S. 24º E.) have been determined.

The Na concentrations, varying between 0.1 and 4 p.p.m., show a minimum at 100 Km of the coast.

The Cl- concentration values of the same samples show a continuous decrease when proceeding from the coast to the interior. The extreme values are 2 and 0.15 p.p.m.

#### EUR 415.e

REPRINT

CI, K AND Na CONCENTRATIONS IN ANTARCTIC SNOW AND ICE by J. BROCAS and R. DELWICHE (Université Libre de Bruxelles).

Association EURATOM - C.N.E.N. - U.L.B.

(European Atomic Energy Community - Comitato Nazionale per l'Energia Nucleare - Université Libre de Bruxelles).

Work performed under the Euratom contract No. 004-61-10 GEAC. Reprinted from "JOURNAL OF GEOPHYSICAL RESEARCH", Vol. 68, No. 13 - 1963, pages 3999-4000.

The Cl, K and Na concentrations of precipitation, firn and ice samples collected in Queen Maud Land (King Baudouin Base, 74º S. 24º E.) have been determined.

The Na concentrations, varying between 0.1 and 4 p.p.m., show a minimum at 100 Km of the coast.

The CI-concentration values of the same samples show a continuous decrease when proceeding from the coast to the interior. The extreme values are 2 and 0.15 p.p.m.

The K concentrations, about 0.2 p.p.m., do not show any geographical variations.

The Cl-/Na ratios in precipitations varies from 1 (coast) to 0.3 (300 Km South) and is thus always lower than the corresponding ratio in sea water (1.88).

The K concentrations, about 0.2 p.p.m., do not show any geographical variations.

The Cl-/Na ratios in precipitations varies from 1 (coast) to 0.3 (300 Km South) and is thus always lower than the corresponding ratio in sea water (1.88).

the second real for the second real for the first the formation of the first the first

The K concentrations, about 0.2 p.p.m., do not show any geographical variations.

The Cl-/Na ratios in precipitations varies from 1 (coast) to 0.3 (300 Km South) and is thus always lower than the corresponding ratio in sea water (1.88)

# Cl, K, and Na Concentrations in Antarctic Snow and Ice

J. BROCAS AND R. DELWICHE

Service de Géologie et Géochimie Nucléaires Université Libre de Bruxelles, Brussels, Belgium

Introduction. Absolute and relative concentrations of various elements in precipitation are subject to geographical variations which are sometimes very important [Eriksson, 1957, 1959, 1960; Junge, 1956, 1957; Junge and Gustafson, 1957; Junge and Werby, 1958; Sugawara et al., 1949]. These variations can be explained by some meteorological and geochemical hypotheses.

The present work supports these hypotheses. A hundred samples of precipitation, firn, and ice from Antartica have been collected in Queen Maud Land by Dr. W. De Breuck, glaciologist of the 1960 Belgian Antarctic Expedition. The samples were obtained mainly in the vicinity of Base Roi Baudouin (70°26'S, 24°19'E), located on the ice shelf of the Princess Ragnhild Coast, 12 km south of the ice front.

Some of these samples came from a pit 16 meters deep, excavated at Base Roi Baudouin. They were collected to measure possible seasonal variations of salt content, which would be related to the nearness of the open sea. During the summer, the ice pack is open and the sea is relatively calm; in winter, on the contrary, the ice pack stretches over more than a thousand kilometers, interrupted only by a few channels of agitated sea.

The Antarctic continent is a region of great interest in geochemical research, being far from any human activity, and having preserved past precipitations, nearly without any melting, evaporation, or alteration after their deposition.

Analytic methods. Thus far, we have determined the Cl, Na, and K content of these samples. The results are given in Table 1.

Cl has been measured by an indirect colorimetric method, based on the exchange reaction:  $2MCl_n + nAg_2CrO_4 \rightarrow 2nAgCl + M_2(CrO_4)n$ . The liberated  $CrO_4^-$  radical is classically measured by colorimetry. Na has been determined by flame photometry; K by isotopic dilution, using a tracer enriched in the stable K<sup>41</sup> isotope.

Mass spectrometry of one sample seems to reveal, besides Na and K, the presence of Li, Al, Si, Ca, Rb, and Sr. All these elements will be determined.

Conclusions. Cl concentrations decrease from the coast to the interior of the continent. Na concentrations follow the same pattern but increase in the mountainous area 300 km south of the coast. This may be interpreted as evidence of an appreciable regional influence. The 1.8  $Cl^-/Na^+$  ratio of sea water was not found in any precipitation sample. This means either an important supply of nonmarine Na (even above the ocean) or a liberation of Cl. This latter hypothesis is not very likely, the solid state of precipitation above the Antarctic continent making all exchange reactions practically impossible.

The K concentration does not show any important geographical variation. The ratio of nonoceanic Na to nonoceanic K is about 2. This ratio could be that of the nonoceanic source of these two elements. A systematic study of other elements could tell us the nature of this source.

The Na concentration in the pit samples (varying between 0.5 and 2.5 ppm) does not show any seasonal variation on a time scale established by several stratigraphical observations (W. De Breuck, unpublished data) and confirmed by O isotope ratios. However, the conclusions about this variation are presently very uncertain because of the thickness of the measured samples.

An annual recurrence seems to be indicated by maximums of concentration, resulting perhaps from the long exposure time of the upper layers during the summer, causing some evaporation. It is probably not due to a higher content of Na in summer precipitations. This is not surprising, since the origin of Na is not ex-

| T ,*, 1 | 01-               | Na+,<br>ppm                              | K+,<br>ppm                                                  | Cl <sup>-</sup><br>Na <sup>+</sup>                                             | $\frac{\text{Cl}^-}{\text{K}^+}$                      | $\frac{\text{Na}^+ \text{ n.m.}^*}{\text{K}^+ \text{ n.m.}}$                                                                                                                                      |
|---------|-------------------|------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| deg     | CI⁻,<br>ppm       |                                          |                                                             |                                                                                |                                                       |                                                                                                                                                                                                   |
| 68      | 2.33              | 1.54                                     | 0.25                                                        | 1.47                                                                           | 12.47                                                 | 2.21                                                                                                                                                                                              |
| 70      | 2.06              | 1.92                                     | 0.38                                                        | 1.05                                                                           | 5.63                                                  | 2.80                                                                                                                                                                                              |
| 70 - 72 | 0.47              | 0.56                                     | 0.17                                                        | 0.88                                                                           | 3.07                                                  | 2.16                                                                                                                                                                                              |
| 72      | 0.39              | 1.07                                     | 0.33                                                        | 0.44                                                                           | 1.13                                                  | 2.39                                                                                                                                                                                              |
|         | 68<br>70<br>70–72 | deg ppm   68 2.33   70 2.06   70–72 0.47 | deg ppm ppm   68 2.33 1.54   70 2.06 1.92   70-72 0.47 0.56 | deg ppm ppm ppm   68 2.33 1.54 0.25   70 2.06 1.92 0.38   70–72 0.47 0.56 0.17 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Latitude,<br>degCl <sup>-</sup> ,<br>ppmNa <sup>+</sup> ,<br>ppmK <sup>+</sup> ,<br>ppm $\overline{Na^+}$ $\overline{K^+}$ 682.331.540.251.4712.47702.061.920.381.055.6370-720.470.560.170.883.07 |

TABLE 1. Average Results of Analyses of Samples Taken at the Same Place

\* n.m. = nonmarine.

clusively oceanic. However, we expect to be able to detect a seasonal effect by the study of the Cl content of the same samples.

Acknowledgments. We are greatly indebted to Professor E. Picciotto for suggesting this work and for his unceasing advice and help. We are grateful to Dr. W. De Breuck for the great care he took in the collection of the samples.

Our gratitude and thanks are due the Institut Interuniversitaire des Sciences Nucléaires for their financial support. One of us (J. B.) was boursier and the other (R. D.) chercheur agréé of l'Institut Interuniversitaire des Sciences Nucléaires.

This work was carried out under the contract of the association EURATOM-Université Libre de Bruxelles (U.L.B.)-Comitate Nazionale per l'Energia Nucleare (C.N.E.N.) 013-61-7 AGEC.


#### References

Eriksson, E., The chemical composition of Hawaiian rainfall, *Tellus*, 9, 509, 1957.

- Eriksson, E., The yearly circulation of chloride and sulfur in nature; meteorological, geochemical, and pedological implications, *Tellus*, 11, 375, 1959; *Tellus*, 12, 63, 1960.
- Junge, C., Recent investigations in air chemistry, *Tellus*, 8, 127, 1956.
- Junge, C., Chemical analyses of aerosol particles and of gas traces on the island of Hawaii, *Tellus*, 9, 528, 1957.
- Junge, C., and P. E. Gustafson, On the distribution of sea salt over the United States and its removal by precipitation, *Tellus*, 9, 164, 1957. Junge, C., and R. Werby, The concentration of
- Junge, C., and R. Werby, The concentration of chloride, sodium, potassium, calcium and sulfate in rain waters of the United States, J. Meteorol., 15, 417, 1958.
- Sugawara, K., S. Oana, and T. Kayana, Separation of the components of atmospheric salts and their distribution, Bull. Chem. Soc. Japan, 22, 47, 1949.

(Received January 22, 1963.)

相對於1971年期時代的 



CDNA00415ENC