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FAST LOW LEVEL PULSE HEIGHT DISCRIMINATOR 

SUMMARY 

The behaviour of the tunnel diode in a fast low level pulse 

height discriminator is here analyzed. The characteristics of the 

tunnel diode in fast trigger circuits are studied by plotting the 

switching waveforms for non linear load and variable input pulse 

amplitude and shape. The relations between the switching time, the 

"lambda" pulse and the hysteresis are considered and extended also 

to the classical trigger circuits. As a result of the analysis a 

discriminator circuit has been developed after an investigation of 

the different bias oircuits. The lowest threshold level is about 

2 mV and the input range is higher than 100. The linearity is 

satisfactory over the whole range and a good temperature stability 

can be achieved with a simple and cheap thermostat. The length of the 

"lambda" signal is about 8 nsec but could be further reduced with faster 

components and more care in the circuit lay-out. 
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l - I N T R O D U C T I O N 

The tunnel diode has been widely used in nuclear electronics 

as a basic component of fast pulse height discriminators (1, 7). This 

is due to the simplicity of most circuits, because the tunnel diode 

can be operated with less components than a transistor, due to its 

small size, to the stability of its characteristics and to the fast 

response associated with a high loop gain and short delay. Many authors 

have described discriminator circuits which are linear and stable with 

minimum threshold levels from 50 to 100 mV and with an input signal 

range of about 100. However no circuits were developed, as far as we 

know, for signals of the order of millivolts with linearity and stability 

comparable to those of discriminators with higher input levels. 

The usefulness of such cirouits may be quite large because in this 

way it is possible to avoid all the problems of development of a fast 

linear amplifier with rise time of the same order of magnitude of the 

pulse lenght lambda in a tunnel diode discriminator. 

In the present paper after an initial brief description of the 

tunnel diode characteristics, its application to trigger circuits is 

discussed. The influence of the bias on the sensibility and stability of 

the threshold is considered and the factors affecting the switching speed, 

the delay and the settling time are analyzed. Finally the circuit which 

has been developed is described and the experimental results are reported. 

(x) The "lambda" pulse is the duration of the input signal for which the 
threshold level is twice the value which is required for an input 
signal of infinite lenght. All our measurements have been made at a 
threshold of 2 mV and the input signal corresponding(to the "lambda" 
pulse was 2 mV above this level. 
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2 - T H E B E H A V I O U R · O F T H E T U N N E L D I O D E A S AN 

A C T I V E C O M P O N E N T I N S I D E A R E G E N E R A T I V E 

L O O P 

The steady s t a t e voltage v s . current c ha r a c t e r i s t i c s of a germanium 

(x) 
tunnel diode are well known ( 8 , 9 ) . The t r a n s i e n t behaviour i s affected 

in a f i r s t order approximation by the junction capacity C of the diode 

i t s e l f , by i t s negative conductance -G, by the se r i e s inductance L 
S 

and the series resistance R . Moreover it depends on current and voltage 

peak to valley ratio (I /I and V./V ). The typical characteristics are 

as follow : 

c ~ 

L s -

R a¿ s 

V
X

v -

V
V

v ~ 

1 -+■ 20 pF 

5 nH 

2 ohm 

1 -i-20 mA 

300 mV 

­3 
­G ¡ζ- 5­4­20 χ 10 ̂  Siemens 

One of the most interesting properties of the tunnel diode which 

makes its application attractive in low level discriminator is the temperature 

behaviour. The stability in temperature of the peak current depends on the 

doping and of the resistivity of the semiconductor material, that is from 

the peak voltage. The variations are normally within one part in one thousand 

per degree centigrade but also smaller in special diodes and in the neighbour­

hood of 25°C. The stability of the peak voltage is of the same order and 

the voltage itself is always decreasing with the rise of the temperature while 

the peak current changes may have both positive and negative directions as the 

temperature grows higher. Intrinsically less stable are the vail¿j voltage 

(x) ­ Here we do consider only germanium tunnel diodes. 
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and current. The order of magnitude for voltage variation is of 
about - 1 mV/°C and for current of about + 1 % /°C. Also the negative 
conductance is sensitive to the temperature and decreases of about 
0.5 % /°C with the increase of temperature. 

From this brief survey it can be seen that both the peak voltage 
and current may be considered as sufficiently stable with temperature 
and for special applications when an extra stability is required a 
rough thermostat may be used. It is possible then to design a voltage 
or current-sensitive discriminator with good stability. 

The behaviour of the tunnel diode as a negative resistance device 
has already been described many times. Here we present an extension to the 
capacitive and non linear resistive load of a graphical method already 
published (10) for computing the switching time. In Fig. 1 are represented 
the voltage vs. current characteristics of a tunnel diode and in Fig. 2 the 
steady state characteristics of a load composed of a transistor and a 
parallel resistance. This circuit is indicated in Fig. 3 and its nodal equation 
is as follows : 

1 » XD + XC + h (Ì) 

and is plotted in Fig. 4. The current I indicates the supply current, 
I_ the diode current, I„ the capacitor current and I is the current D C o 
of the load in parallel to the capacitor (l„ + I_). - Obviously the ma­ri Cr 
gnitude of the current I , I and I depend on the a o impedance of the 
components. 

Let us suppose that C is constant during a short time interval 
A t . Then 

*vc - A lc < A * - > (2) 
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and by substituting the value of I from equation(l) into (2) we oan 

rewrite it as : 

A V C = A V D = -A(I D + I 0 ) ( ^ - ) (3) 

This expression represents a straight line on the V_ I R plane of the 

characteristics and V vs. time Δ t can be easily calculated from it. 

It is also important to remark that we have supposed that the amplitude 

of the input signal does not change appreciably during eachAt interval. 

When these two conditions are satisfied (constant C and switching time 

much faster than the input signal) equation 3 may be represented as shown 

in Fig. 5 and the voltage V across the diode can be plotted vs. time for 

both the forward and the backward switching transients. The results obtained 
ι 

will be as accurate as the V^, I_, and V , I characteristics could be 
D D o o 

defined and the smaller time intervals are chosen. It means that -C/At 

slope should be as high as possible. When C is not constant it will be 

necessary to calculate for each step of the plot in Fig. 5 a new value of 

C from the C = c(V ) function and the corresponding slope -C/Δ t of the lines, 

These slopes are then either increasing or decreasing as C is being reduced 

or growing higher, because normally C = C(V ) is a monotonie function. This 
C 

type of plotting is quite tedious and is normally avoided also because 

results of sufficient accuracy can be obtained by simply considering a mean 

value of C, as seen before. 

Much more interesting is the influence of the input pulse shape and 

amplitude on the output pulse because it happens quite often that fast 

discriminators are used with input signals which have a duration comparable 

to the switching time of the circuit. The value of the current I (see Fig. 4) 

then changes with the input signal and (I + Ι~) lines are shifted parallely 

to the I axis. The plotting method previously described can be adopted also 

to this case, but a A t interval small enough must be taken so that a good 
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—C 
precision can be obtained by varying the origin of the — — τ — lines 

Δ t 

according to the input signal. This procedure is illustrated in Fig. 6. 

The switching times are as fast as the L·, current is high with 

O 

constant C, in particular as high as the I_/C ratio. This behaviour is 

O 

quite obvious and well known but the graphical analysis is useful to 

appreciate visibly the dependence of the switching time from the I_ 

O 

current. It may be also useful to point out that, all other conditions 

being equal, the magnitude of I is in inverse ratio to I_ and I so 

G H O 

that it is always convenient to design circuits with high impedance in 

parallel to the tunnel diode. Referring to Fig. 2 and 3 it may be seen 

that the transistor junction supplying the I„ current is generally reverse 

u 

biased up to the point V of the characterÈtic of the tunnel diode j i.e., 

that it behaves like a high impedance for almost all the switching time. 

In this way the resistor R must have a high dynamic value in order not to 

limit the switching speed. 

The jitter during the rise time depends mainly on the loop gain of 

the circuit in the neighbourhood of the switching points Ρ and Q (see 

Fig. 5). From the mathematical point of view the jitter magnitude is in 

inverse ratio to the second derivative of the I = I_ (V ) function in 

C 0 0 

tangent points Ρ and Q. The influence of the intrinsic loop delay will be 

examined later. 

The above analysis, developed for tunnel diodes, applies also to other 

negative resistance circuits. For these circuits it is necessary to choose 

the proper point inside the loop for plotting the steady state VT characteristics 

in order to appreciate in the best possible way the equivalent capacitive 

and resistive load. 
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3 - Τ Η Ε B I A S C I R C U I T 

The bias circuit is defined by the steady state VI characteristics 

of the equivalent load of the tunnel diode and by the magnitude of 

the current I (see Fig.3). The circuit may have two stable positions or 

one stable and one semistable position which or is independent from the 

input signal or lasts as long as the input signal remains above the 

threshold. In these last two circumstances, when one semistable pole 

does exist, the discriminator must have a memory generally performed by 

a L R circuit or by a delay line. These three above mentioned conditions 

of stability are shown in Fig. 7. The steady state load line indicated by 

the N. 1 cuts three times the characteristics of the diode but only A and 

Β are stable working positions. In this case, an external reset circuit 

with memory is required in order to switch the circuit from Β to A. The 

load lines 2 and 3 have both a single stable position C, but the load 2 

dynamic characteristic cuts the tunnel diode characteristic also at the 

point D giving the wanted semistable position. 

From the previous discussion it is clear that better performances 

are obtained by biasing the circuit with load lines of the first and the 

second type. In this way the circuit has a higher dynamic impedance in 

parallel to the tunnel diode thus giving faster switching with constant 

output voltage. From this point of view the first two biasing circuits 

are equivalent. 

Let us now examine the other properties which distinguish these 

two circuits. The regenerative action takes place when the working point 

meets the point Ρ of tangency between the steady state VE tunnel diode 

characteristic and the dynamic load characteristic. . Sometimes the steady 

state and dynamic characteristics of the load are not equal as it happena 

for the load line 2 of Fig. 7, then the bias circuit and the diode show 
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two different impedances. This is illustrated in Fig. 8. Let us 

consider that the diode is biased at the point Τ of the characteristics. 

The segment TR gives then the magnitude of the bias current and the 

segment TS the input signal current which is necessary in order to bring 

the diode from the point Τ to Ρ in which starts the regeneration. (This 

procedure is valid only when the input signal variations are fast as 

compared to the time constant of the tunnel diode equivalent load). It is 

very interesting then to make a plot of TR (the bias current I ) vs. TS 

(the signal current I ) beginning from the point Τ superimposed over the 

point Ρ (the minimum threshold) and going with the point Τ to the left of 

the characteristics. For simplicity we have approximated the tunnel diode 

characteristic with three straight lines as in Fig. 9. Referring to notations 

indicated in the figure : 

TR a - c 
TS b - c 

and for a> b̂ · c 
tg β > tg a > tg £ 

The TR vs. TS is plotted in the same figure and it can be observed that the 

threshold and the bias current are non linear for the low voltage levels. 

This non linearity has been also experimentally controlled by measuring the 

bias voltage V. vs. the signal voltage V (instead of the currents) in the 
D S 

circuit of Fig. 10 which has a load line of the second type and is triggered 

by a low impedance generator. The results are given in Fig. 11. This non 

linearity is emphasized as the difference between the terms a and b of Fig. 9 

becomes bigger and it does exist, as said before, only when the steady state 

and dynamic load lines are different. When the load has an unique characte­

ristic at rest and during the switching, the terms a and b are equal and 

tgj2>= tgot= tg£ , so that the threshold is always linear with the bias. 



- 15 -

Another property which distinguishes the circuits with the 

dynamic load line different from the steady state load is the long 
(x) settling timex . This is due to the delay lines or inductances which 

are used as already mentioned. In the first case, it may be difficult 

to make a good impedance matching because the tunnel diode undergoes 

a big change of impedance during switching from its low to high voltage 

state and back and this mismatch always negatively affects the settling 

time of the circuit. Moreover the spikes of the mismatched line may 

trigger the circuit at the end of the pulse, so that the discriminator 

behaves as having a higher hysteresis. When an inductance is used, the 

voltage swing on its terminals during the semistable state is generally 

from five to eight times higher than the corresponding voltage during 

the settling time which is in this way increased by a factor of five 

to eight in respect to the output pulse duration. This is illustrated in 

Fig. 12. 

From this analysis it may be seen that the circuit with a dynamic 

load characteristic which differs from the steady state has two main 

disadvantages:the non linearity of the threshold at low voltage levels 

and the long settling time. For these reasons these circuits, which are 

very attractive because of their simplicity, were not used in our 

discriminator and we have preferred a bistable circuit which needs a 

separate reset and input circuit. 

The reset circuit makes the discriminator itself more complex 

and limits the minimum duration of the semistable state and the maximum 

(x) - The settling time is defined here as the interval of time required 
by the circuit threshold to reach its quiescent value after the 
arrival of an input pulse. 
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repetition frequency. The input circuit was required because it was 

necessary to transform a voltage signal across a low value resistance 

of the order of 50 Ohms into a current to be supplied to the tunnel 

diode from a high output resistance. This circuit introduces a supple­

mentary delay and also a small integration of the input signal. 

4 - T H E D E L A Y T I M E , T H E " L A M B D A " P U L S E A N D T H E 

H Y S T E R E S I S 

It has been seen in chapter 2 and from the plots made that a certain 

interval of time which we have defined as delay time, is introduced between 

the time in which any switching circuit is driven into the negative 

resistance region and the time in which the regenerative action is fully 

developed. This delay is a characteristic of each regenerative circuit 

and depends on the loop gain. When the input signal is larger than strictly 

necessary to drive the circuit up to the point P, the delay becomes smaller 

as the overdrive becomes higher. 

From the mathematical point of view as seen in chapter 2 the delay is 

dependent on the rate of rise of the divergent terms of the function V, = V (t). 

For the tunnel diode circuits it is possible to obtain mathematical expressions 

from a theoretical analysis of the tunnel effect in the highly doped 

junctions or from the experimental investigations. These expressions are 

somewhat incomplete for the part of the tunnel diode characteristic near 

the valley point and cannot be easily related to the physical parameters 

of the tunnel diode. Much simpler are the mathematical expressions for 

conventional trigger circuits without tunnel diodes, calculated with the 

mutual conductance gm and the load resistances as parameters ; but it is 

more difficult in this case to specify the exact values of the shunt capa­

citances and of the delay introduced by the regenerative loop, (distributed 

capacitances effect on the loop gain). The following formula calculated for 
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the circuit of Fig. I3 and interpreted in the same figure gives 

a fair approximation : 

di = dv [ λ gm-L gm 2 Ί Γ x y'. ίχ x I R 7 - gm1+gm2 J » dV [ft7 - *·! (l i T 0 "̂J 
where i., indicates the current through Τ, , I the emitter supply 

current and'ümay be considered 25 mV at 20°C ambient temperature. 

When the two transistors of the circuit are equal the maximum negative 

conductance is obtained for i, = 1/2 arid equals i «­1/4 . 1/Q. . The 

calculations were made by opening the loop and substituting the load 

resistance with a voltage generator ν and by computing the current i 

through this generator. The switohing time and the delay introduced 

can be valued by considering the collector of T. shunted with an 

equivalent capacitance C which represents the transistor and the load 

capacitances as well as the stray capacitances. 

In this way a regenerative loop is not considered as a constant 

gain amplifier associated with a delay circuit, as usually (11, 12). This 

approximation can be used for computing the threshold level vs. pulse 

length in conventional switching circuits only, when the input pulse has 

a length comparable to the "lambda" pulse. The faot that the gain varia­

tions during the switching time are neglected does not allow any prediction 

on the circuit behaviour during the first part of the switching nor of 

the delay for signals just above the threshold. Moreover with tunnel diodes 

it is even more difficult to use this equivalent circuit because the diode 

itself is too small a component and the delay cannot be considered as 

affected only by the integration effect of its capacitance. 

The graphical method introduced in Fig. I3 is very simple and can 

give qualitative and quantitative indications on the loop gain in any 
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switching circuit. It allows also to determine the "lambda" pulse and 

and shows how an input pulse which disappears too quickly may stop the 
(xx) already initiated regenerationv . This method suffers however of 

disadvantages which are typical of all experimental investigations and 

result obtained with one circuit cannot be extended to other circuits 

even if a similar but rough estimation of their performance is generally 

possible. 

The switching time and the "lambda" pulse depend on the slope of 

the load line as said before but they can also be related to the circuit 

hysteresis. Circuits with big hysteresis are faster. This is clearly 

shown in Fig. I3 and can be explained by the fact that a lower slope 

of the load line makes available a higher current for charging the 

equivalent parallel capacitors. This behaviour is well known specially 

in conventional trigger circuits. The hysteresis should be measured 

immediately after the end of the switching transient.In this way this 

method can be extended to other circuits and also to those having 

hysteresis variable in function of time, as for example a.o. coupled 

Schmitt triggers and tunnel diode discriminators with inductive load. 

From the plots presented it may be seen how a compromise can be 

found between circuit hysteresis and stability of the steady state condition. 

5 - D E S C R I P T I 0 N O F T H E C I R C U I T A N D I T S 
P E R F O R M A N C E S 

The discriminator developed has two stable positions and a separate 

circuit provides a reset signal after each input pulse that triggers the 

(xx) A regenerative circuit is considered to be switched when the output 
voltage reaches a predetermined threshold v, which equals the voltage 
level of the next circuit to be triggered. In fact the regeneration is 

a continuous phenomena and it does not give by itself any information 
about the circuit switching. 
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tunnel diode. Efforts have been made to reduce the integrating effect 

in the regenerative loop in order to achieve a small "lambda" pulse length. 

Therefore high equivalent load resistances and small parallel capacitances 

were used and the wiring inductances were kept as small as possible. 

The complete schematic is shown in Fig. 14. The circuit is sensitive 

to negative signals and the input is made on the emitter Junction of 

the transistor T. which is biased at 1 mA. The input resistance is of 

about 25 ohm at ambient temperature but higher values could be obtained 

with series resistors. The collector has a high output resistance as 

required for fast switching of the tunnel diode and this transistor also 

isolates the input from transients of the discriminator. In this way other 

oirouits can be operated from the same signal generator without interferences. 

The threshold level is adjustable by means of a ten turns helicoidal 

potentiometer that supplies the bias current to the tunnel diode through 

the transistor Τ which behaves also as a high impedance source. The difference 

amplifier (transistors T^ and T„) has a fixed threshold. A rectangular 
3 f 

output pulse independent of the input pulse shape is obtained. A second 

difference amplifier (transistors T,- and Tfi) is used to restore the d c 

levels and to reset the tunnel diode through the delay line D and transistor 

Τ . Care must be taken in order to have a reset signal free of spurious 

transients which may trigger once more the discriminator. For this purpose 

the diode S 555 G connected to the base of transistor T„ prevents the charge 

stored in the base to flow through the tunnel diode. The double difference 

amplifier introduces a delay of about 30 η sec. A negative output signal is 

taken from the collector of T,. and the load resistance is matched to the 
5 

characteristic impedance of the output cable. The output pulse is shown in 

Fig. 15. The small positive signal is due to the capacitive coupling through 

the transistors of the difference amplifiers. 
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The smallest input signal of 1 mV across a 50 ohm resistance 

produces a current of 20 ,uA that should trigger the tunnel diode. To 

achieve such a low threshold level it is necessary to have both a long 

term and temperature stability of the peak and the bias currents better 

than 10/UA at least ; this means of an order of about two and a half 

parts in one thousand with a diode peak current of 5 mA. This degree of 

stability is normally compatible with the intrinsic stability of the 

peak current of the tunnel diode but the bias current still depends on 

the power supply stability, on the thermal coefficient and tolerance 

of resistances in the voltage divider, on the base to emitter voltage 

drop and on the base currents of the transistors T, and T? as well as 

on the reverse current of T^ which is a germanium transistor. The 

resistances of the divider and the threshold potentiometer can be made 

as stable as required by a proper choice of components, the -10 Volt 

power supply shall be superstabilized, but the variations due to the 

thermal sensitivity of the transistor can be reduced only with a thermostat. 

This device can be very simple owing to the small size of the components 

which will be placed inside, their high thermal conductivity and little 

thermal capacity. Moreover the circuit can be thermally isolated from the 

ambient outside so that no special fast response thermostat is needed. 

There were two possible solutions : a box with metallic walls internally 

heated with an iron type resistor^ and kept at about 40°C constant temperature 

by means of a control circuit or a plane metallic surface of smaller size 

also heated and controlled as before with components "plunged" into it in 

order to achieve a good thermal contact. We have used a thermostat of the 

first type because the second one requires transistors with collector 

isolated from the case in order to get a good thermal contact without 

increasing the circuit stray capacitances. The control circuit of this 

thermostat is shown in Fig. 16. 

(°) - An iron for pressing cloth 
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The performance of the circuit has been experimentally tested 

with a mercury switch pulse generator (ELA type GflS-1). The linearity 

of the threshold vs. the Mae setting and its stability with tempe­
ri 

rature have been measured and are reported in Pig. 17 and 18V '. The 

frequency response has been valued by measuring the threshold level 

vsj input signal length (Pig.19) and the delay from the input to the 

output of the circuit with a oonstant threshold and for different 

signal amplitudes (Fig.20). The time resolution has been tested by 

applying two pulses to the input and measuring the amplitude of the 

second pulse and ite delay from the first one (Pig.21). 

6 - C 0 N C L . U S I O N S 

The results obtained are satisfacory for our purposes but a better 

temperature stability, if needed, could be obtained with a more 

sophystioated thermostat. Also the frequency response may be improved 

using a tunnel diode with a better switching performance at low level 

signals and a reset circuit with a smaller settling time. 

(x) - A commercially available power supply has been used. 
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TUNNEL DIODE VOLTAGE 

Fig. 1 Typical VI character is t ic of a tunnel diode. 
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Fig. 2 Steady state charac ter i s t ic of a load composed of a t rans is tor 
and a paral le l res i s tance . 
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Fig. 3 A typical c i rcui t of a tunnel diode connected to a t r ans i s to r . 
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Fig. 4 Graphical plot of the nodal equation of the circuit of Fig. 3. 
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F i g . 5 The r i s e t i m e and the fal l t i m e in a tunnel diode c i r c u i t . 
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Fig. 6 An example of the r i s e t ime de te rmina t ion in a tunnel diode 
c i rcu i t when the switching t ime is of the same magnitude 
of the input signal length. 





κ. 

ο 
UJ 

Ο 

Q 

■J 

TUNNEL DIODE VOLTAGE 

Fig. 7 Examples of the different biasing of a tunnel diode tr igger 

circuit . 
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Fig. 8 The tunnel diode character is t ic with the steady state and the 
dynamic load l ines. 



4-> 

Λ 
oc 

•r* 

rt) 
u + J 

co 

Λ 
J - i 

• H 

ì? 

CTI 

a 
■1-t 

CI 

η 
u 
OH 

P. 
rö 

tJ 
• H 
4-" 

CO 

Í-I 

0) 
-M 

U 

rt) 

M 
π) 
Χ 
υ 

cu 
τ ) 
0 

13 

> — Ι 

Φ 
β 

c 
d 

-M 

0) 
Λ 
Η 

ο 

ω 
• Μ 

h 

rt 
C 
ta 

• H 
CO 

3 
Λ 

• Η 

OJ 
Λ 
- l - > 

T3 

rt) 

CO 

rt) 
• H 
¿i 

(U 

Ο 

co 
α> 
? 

r - l 

m 
> 

Τ ) 

cu 
+ j 

rt) 
. — t 

υ 
f - H 

rt) 
U 

cu 

-4-> 

-Ό 
d 
rti 

co 
<u C 

.—ι 

CO 
-t-> 
C 
<L· ΪΗ 
μ 
3 
υ 

κ . 
* 
UJ 
Q: 
0: 
S 
υ 
UJ 
Q 
o 
Q 
^ 
U j 
^ 
^ 
O 
K. 

/'= /a" U 

Ts = ls- rT=-bVT+cvT =(c-b) Vj. 

TUNNEL DIODE VOLTAGE 

TR = iñ-iT=(c-a)vT TR - a-c 
TS b-c 

κ-

i 
S 
o 
IO 

¡=-cv 

SIGNAL CURRENT 

a> b>c 

*«·-£- tgß s -fzJL > tg α 
D-C 

>9Χ-η£ϊ<*>α 





V ρ ty 

Ο-
ϋ 

»fr 

Rp 
->ΛΛΛ 

L 

ΠΓοΊΠΠ 

ν\ΛΛ-
Ri 

VO 
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bias voltage and the input signal in the circuit of Fig. 10. 
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Fig. 14 The schemat ic of the d i sc r imina to r c i rcui t . 
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Fig. 15 The output signal from the discriminator circuit, 

a) The sweep speed is 50 n sec/div and the vertical sensitivity 100 mV/div. 

The oscilloscope was a Tektronix 585 



Fig. 15 The output signal from the discriminator circuit, 
b) The sweep speed ¡s 10 n sec/div with the same sensitivity as before. 

The oscilloscope was a Tektronix 585 
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Fig. 16 The schematic of the control circuit of the thermostat . 
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Fig. 17 The l inear i ty of the threshold vs . the bias set t ing. 
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Fig. 18 The stabil i ty of the th reshold vs . the ambient t empe ra tu r e . 



Fig . 19 The minimum threshold level vs . the input pulse length. 

10 20 50 100 

INPUT PULSE LENGTH IN NANOSECONDS 



NANOSECONDS 

■61 

t-. 

α. 

ι«. 

Ο 

IS 
κ. 

u. 
χ 

•J 
UJ 

57 \ THRESHOLD 10 mV 

-53 

-49 

45 

-41 

THRESHOLD 50mV 

—37 

—33 

-29 

— 25 

IO WO 1000 mV 

SIGNAL AMPLITUDE ABOVE THRESHOLD 
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Fig . 21 The t ime resolu t ion vs . the input pulse amplitude. 
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