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RECENT INVESTIGATIONS CONCERNING T H E INFLUENCE 

OF NON-UNIFORM TEMPERATURE DISTRIBUTION 

IN DOPPLER EFFECT CALCULATIONS 

SUMMARY 

To study the influence of nonuniformities in the temperature distribution inside the fuel rods 
the Doppler coefficient has been calculated by direct integration of the narrow-resonance formulas for 
a single resonance for a slab lattice. Also, a Monte Carlo method has been developed which allows the 
calculation of the total temperature coefficient of non-uniformly heated fuel in the region of unresolved 
resonances; in this method the details of the resonance structure are determined by sampling from the 
statistical level and widths-distributions. Preliminary results of both theories will be presented. 

1 — I N T R O D U C T I O N 

The pract ical impor tance of the exact knowledge of the change in resonance 
absorpt ion due to the Doppler-broadening of the resonance lines is well known. For 
this reason the Doppler-effect has been considered in almost all computat ions of effective 
resonance integrals [ 1 ] . Extensive tabulat ions of the functions tha t appear in calculations 
of this type have been given by Dresner [2] for the calculation of homogeneous resonance 
integrals and by Adler and Nordhe im [3] for the heterogeneous case. However, in all 
these t reatments of Doppler-broadening the assumption was made tha t the the rmal 
motion of the absorbing nuclei can be described by a single value of the parameter 
"fuel t empera ture" . 

In modern power reactor projects, especially in the case of in termedia te and fast 
assemblies, the t rend to high power densities and the use of ra ther poor the rmal con
ductors as for instance u ran ium oxide as fuel make it necessary to provide for the non
uniform tempera ture dis tr ibut ion in the fuel. 

T h e first par t of this paper deals wi th the calculation of the absorption in a 
single resonance l ine at energy Er in the case of a p lane lat t ice, where plates containing 
the resonance absorber a l ternate with plates of some coolant or moderator . 

2 — EXPRESSIONS FOR T H E CROSS SECTIONS 

The cross section Si in the coolant p la tes is assumed constant in space and lethargy 
and corresponding to pure scattering only. Inside the plates we have a mixture of some 



pure scattering materials, with constant cross section %m, and the resonance absorber, 
with atomic density N and a total microscopic cross section at, which is the sum of a 
potential scattering cross section σρ (constant), and of the energy dependent cross sections 
σα (absorption), σ8Γ (resonance scattering) and σ\ (interference term between resonance 
and potential scattering). However, the interference term is usually rather small and we 
shall therefore neglect it. The shape of the resonant parts of the cross sections for a 
Doppler broadening corresponding to a temperature Τ is given by 

Γ Γ 
σα(Ε,Τ)=σΓ-γ-ψ(θ,χ) σ8τ = σΓ-^-ψ(θ,χ) (1) 

where 

(2) 
dy 

'" Γ θ2 Ί 
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'■VTT 

οο 1+Υ" 

Γ / 4 Er kT 
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Λ ».ο Γ » Ε —Er 

Γ Γ/2 

(3) 

(4) 

and where the other symbols have their usual meaning (k = Boltzmann's constant, A = 

mass number of the resonance absorber, Γ„, Γ7, Γ = neutron, radiation and total width, 

respectively, gj = statistical weight factor for the compound state of total angular momen

tum J, 2 πΧ = wave lenght associated with the relative motion neutronnucleus). 

In the case we are considering the temperature is not uniform across the absorber 

plates, but is a function of the coordinate ζ normal to the plates. 

By solving the equation of heat conduction for a uniform heat source density Q, 

a surface temperature Tl5 a mean coefficient of heat conduction κ and a plate thickness a, 

we obtain 

z(a — z) 
Γ = Γ 1 + \ Q (5) 

Inserting this expression in eq. (3), Α,θ and therefore ψ(θ,χ) become functions of z. 

Henceforth we write σ(Ε,ζ) instead of σ(Ε,Τ(ζ)). 

3 — EXPRESSION FOR THE RESONANCE INTEGRAL 

We treat the resonance absorption in the narrow resonance approximation, which 

is valid if the practical width of the resonance (i.e. the width of the energy interval, 

in which the resonant part of the cross section exceeds the potential part) is narrow 

with respect to the mean loss of energy per collision with any of the nuclei present in 

the reactor. For uranium this condition is valid in the kevrange. 



We have two contributions to the absorption: the first comes from the neutrons 
which had their last collision in the absorber plates; the second consists of the neu
trons slowed down in the coolant. We start with the first part. Since the resonance has 
been assumed to be narrow we have a spatially and lethargically uniform source density 
2ρφ in the absorber plates, where 

Sp=Mrp+S» (6) 

and φ is the flux per unit of lethargy above the resonance (cf. the discussion in Chapter V 
of [1]). Let Κ (z,z,E)dz' be the probability that a neutron generated with energy E in 
a plate at a point ζ makes its next collision in an interval dz' at a point z' in one of the 
plates (in each plate the coordinate ζ measures the distance from the left-hand surface). 
Now the total absorption rate of the neutrons of energy E generated in one plate becomes 

a a 

%ρφ \ [K(z,z',E)h(z',E)dzdz' (7) 

where 

L, PX Νσ,(ζ,Ε) Γ7 Xo(z,E)-Xp 
h(z,E)= = (8) 

and 

ρ ρ \ 
Ζ0(ζ,Ε)=Νσ(+ϊ,„ = ΝσΓψ[θ(ζ),——-^\ + %ρ (9) 

Let us now consider the neutrons which originate in the moderator. Let P(z,E)dz 
be the probability that a neutron of energy E generated in the region between two of 
the plates makes its next collision at a point ζ in the interval dz in one of the plates. 

The source strength in this region is %χφ. 

Therefore the contribution of these neutrons to the total absorption is 

(fcSO* \ P(z,E)h(z,E)dz (10) 

b being the thickness of the coolant layer between two fuel plates. By definition [1], 
the effective resonance integral I of the line is then given by 

NI J dE 

E 
0 

1 1 1 

alp \ \K(p,p',E)h (p',E)dp dp' + bïAh(p,E)P(p,E)dp (Π) 

with p = z/a. 



As the result of the straightforward calculations one obtains 

NI = 
dE f da> Γ7 

E 
o 0 

where 

ω l R(<o ,E) 

 V ß j W l i ß ' W ) 

+-

1 —exp(—Si 6/ω) 

1  β χ ρ (  Τ ( Ε ) / ω ) 

exp(—Si b /ω) 

1  β χ ρ (  Τ ( Ε ) / ω ) 
(12) 

1 — exp(— Si &/«>) 

1  β Χ Ρ (  Τ ( Ε ) / ω ) 
— (1 —exp(—s(a,E)/o))—5ΡωΑ(ω,Ε) 
α 

) = COS# 

ι? being the angle between the direct ion of flight of the neut ron and the positive zaxis, 

ζ 

s(z,E) = [%0(z',E)dz' 

0 

T(E)=s(a,E) + bX1 

β ( ω , Ε ) = — \ exp(s(z,E)A>)<iz 

R1(<*,E)=— \ t 2 z . e x p (  s ( z , E ) / w ) \cZz'exp(s(z',E)A,) 

These formulae have been programmed for the IBM 7090 (this work was done in 

collaboration with SOME A, Milano) . 

As an example, we calculated the resonance integrals for the following cases: 

(isolated plate, Sifc ^> 1) 

o = 0.3cm, 6 = 10 cm, Si = 1.5 cm1, E = 1000eV, Γη = 0.07 eV, Γ 7 = 0.03 eV, o>=1950 barn , 

N=0.0223 XlO 2 4 nucle i /cm 3 , SP = 0.65 cm 1 . If one plots the values of the effective reso

nance integrals NI (cm 1) for different central and surface temperatures as functions of 

the mean tempera ture 

one obtains a smooth curve (see Fig. 1). This indicates tha t for the given resonance the 

mean tempera ture can be used as "effective t empera tu re " for the calculation of the Doppler 

effect. 

In similar calculations for the Doppler effect in a nonmoderat ing fuel p la te (In

finite AbsorberMass Approximat ion) Keane [4] has found some differences between mean 



and effective temperature. It seems that in the present case the considerable slowing-
down in the fuel produces a more uniform absorption in the different regions of the 
fuel element. Further calculations are planned to resolve these questions. 

4 — MONTE CARLO PROGRAM 

FOR THE CALCULATION OF THE DOPPLER-COEFFICIENT IN A FAST REACTOR 

In principle we only have to calculate the multiplication-factor K for a given 
temperature-distribution. For this we start a number of fission-neutrons N0 in the reactor 
and count how many fission neutrons (iVj) are produced in the next generation, 
(K = N0/Nl). 

To trace a fission neutron through its life from collision point to collision point 
we have to answer two questions: 

a) what happens at a collision point and 

b) where is the next collision point ? 

5 —ENERGY-DEPENDENCE OF CROSS SECTIONS 

To find out what happens at a collision point, we need the probabilities for the 
different kind of reactions possible, i.e. the cross sections. As we take the shape of the 
reactions cross section to be given by the Breit-Wigner resonance formula, we can cal
culate their values if we know all the parameters which characterize a resonance 
(position and reaction width). These parameters are not known for the energy range 
that contributes most to the Doppler coefficient in fast reactors; we have only some 
information about the statistical behaviour of these parameters, that is, we know only 
their distribution functions. (Chisquare distributions for resonance spacing and for 
reactionwidth's. The necessary parameters for these distributions were taken from [5].) 
By a random sampling we simply have to pick out of these distribution functions a set 
of parameters for the resonance in question and calculate the cross sections numerically 
out of the analvtical formulas. 

SPACE-DEPENDENCE OF CROSS SECTIONS 

We come now to the other question: where is the next collision point ? This is 
a purely geometrical problem and depends on the geometrical configuration. For our 
example we took a reactor consisting of fuel needles (about 3 mm diameter) arranged in 
a square lattice (lattice pitch about 4mm). 

We pick now out of the distribution e~d a value d for the optical distance up to 
the next collision point and find the geometrical distance s out of the relation: 



* u>o : last collision point 
d=\%(w0+nt)dt (13) 

·' n : direction after collision 
0 

if the cross section is space dependent. This is in fact the case for our example as the 
temperature in the fuel needles shows a parabolic behaviour and the cross sections depend 
from the temperature. This dependence is such, that we have with increasing temperature 
a decrease of the cross section in the center of the resonance and an increase of the 
cross section in the wings of the resonance. If we now move from the surface of the 
rod towards the center we have an increase of the temperature and therefore an increase 
or decrease of the cross section. This leads us to the assumption that we can approximate 
the real spatial dependence of the cross section also by a parabolic shape: 

S(r)=o 0 r 2 + 60 (14) 

If we insert this quadratic dependence of the cross section from the distance from 
the center of the rod in equation (1), we find the following relation of third degree 
between the number of mean free path and the geometrical distance (for a flight in 
a fuel element) : 

d=as'J + bs2 + cs (15) 

where the parameters a, b and c depend from the last collision point w0 and the direction 
n in which the neutron escapes. 

Now we have the necessary tools available to build up a neutron history and to 
calculate the multiplication factor K for a given temperature-distribution. Then we have 
to change the temperature-distribution somewhat and to calculate K again to find 
another value K' which can lie within the range of the statistical error of K. We may 
not therefore simply perform the difference K'—K to find the effect of the temperature-
change on the multiplication factor. But it is possible to calculate the difference AK 
directly with the Monte Carlo method. 

DIFFERENTIAL EFFECTS 

We calculate the number F of fission neutrons produced by one starting neutron, 
then we change the temperature and let the neutron again run on the same geometrical 
path producing hereby another number F' of new fission neutrons. The difference 
F' — F gives us a direct contribution to AK. The calculation of F' can be done for the 
same geometrical path in the changed temperature case by properly modifying the weight 
of the neutron during its flight: 

The probability that the neutron makes its next collision in ds after traversing 
the distance s is given by e-'OWSo ds, {d0{s) is the number of mean free path's up to the 
next collision point, So is the total cross section at the next collision point). If we change 
the temperature this probability is given by e_<ii<s)Si ds. As we take for both cases the 
same geometrical path, that means we sample in the "changed" case out of the distri
bution function for the unchanged case, we have to provide the neutron with a weight 

10 



g in such a way that: e'do^'%ods.g=e'di,-^X1ds. I t is this factor g with which we have 
to multiply the weight of the neutron running for the changed case when entering a 
collision process and then we proceed in the usual way. 

8 — RESULTS 

With this method we have made some calculations for the following situations: 
Diameter of the fuel elements : 0.317 cm 
Distance of the fuel elements: 0.368 cm (square lattice) 
Composition of the fuel elements: 10% U235, 90% U238 
Temperatures: Tcen te r (°c) 700 1000 1300 1500 

Tsurface (°c) 500 500 500 500 

In our special example the neutrons started with an energy of about 10 Kev and 
were followed until they passed 1 Kev, (we made the assumption that we have no con
tribution to the Doppler effect in the energy range above 10 Kev). The results are shown 
in fig. 2. These results can be used to give an answer to the problem of the mean 
temperature. If we want to replace K=K(Tc,Ta) by K—K(Tm) where the mean tem
perature Tm should be calculated out of the temperatures Ts and Tc by a procedure that 
is independent of T„ and Tc we are led to the condition: AK/ATC = const. ΔΚ/ΆΤ,. 

As this proportionality is not shown in Fig. 2, we conclude that it is not possible 
to introduce a mean temperature in the way above. For the type of reactor considered, 
one has to employ two Doppler-coefficients AK/ATS and AK/ATC and we showed that 
it is possible to calculate these quantities with the Monte Carlo method. 

11 
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