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resonance structure are determined by sampling from the statistical level and
widths-distributions, Preliminary results of both theories will be presented.
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RECENT INVESTIGATIONS CONCERNING THE INFLUENCE
OF NON-UNIFORM TEMPERATURE DISTRIBUTION
IN DOPPLER EFFECT CALCULATIONS

SUMMARY

To study the influence of nonuniformities in the temperature distribution inside the fuel rods
the Doppler coefficient has been calculated by direct integration of the narrow-resonance formulas for
a single resonance for a slab lattice. Also, a Monte Carlo method has been developed which allows the
calculation of the total temperature coefficient of non-uniformly heated fuel in the region of unresolved
resonances; in this method the details of the resonance structure are determined by sampling from the
statistical level and widths-distributions. Preliminary results of both theories will be presented.

1 — INTRODUCTION

The practical importance of the exact knowledge of the change in resonance
absorption due to the Doppler-broadening of the resonance lines is well known. For
this reason the Doppler-effect has been considered in almost all computations of effective
resonance integrals [1]. Extensive tabulations of the functions that appear in calculations
of this type have been given by Dresner [2] for the calculation of homogeneous resonance
integrals and by Adler and Nordheim [3] for the heterogeneous case. However, in all
these treatments of Doppler-broadening the assumption was made that the thermal
motion of the absorbing nuclei can be described by a single value of the parameter
“fuel temperature”.

In modern power reactor projects, especially in the case of intermediate and fast
assemblies, the trend to high power densities and the use of rather poor thermal con-
ductors as for instance uranium oxide as fuel make it necessary to provide for the non-
uniform temperature distribution in the fuel.

The first part of this paper deals with the calculation of the absorption in a
single resonance line at energy E, in the case of a plane lattice, where plates containing
the resonance absorber alternate with plates of some coolant or moderator.

2 — EXPRESSIONS FOR THE CROSS SECTIONS

The cross section 3,; in the coolant plates is assumed constant in space and lethargy
and corresponding to pure scattering only. Inside the plates we have a mixture of some
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pure scattering materials, with constant crosssection 3., and the resonance absorber,
with atomic density N and a total microscopic cross section o;, which is the sum of a
potential scattering cross section o, (constant), and of the energy dependent cross sections
o, (absorption), o, (resonance scattering) and o; (interference term between resonance
and potential scattering). However, the interference term is usually rather small and we
shall therefore neglect it. The shape of the resonant parts of the crosssections for a
Doppler broadening corresponding to a temperature T is given by

Ty ' T,
o-a(E,T) =g, —I‘— 5[/(0,12) Osr =0y 5[/(0,15) (1)
where
6 i 02( )2}
51’(0,5‘):27_\ exp Z Y 1 (2)
d
i 1+y* 7
T 4 E, kT \%
9=— A= 3
. (455 ®
ke T, _E—E,. 1
Op=—aT g.l? x= I‘/2 ] ()

and where the other symbols have their usual meaning (k = Boltzmann’s constant, 4 =
mass number of the resonance absorber, Ty, Ty, I' = neutron, radiation and total width,
respectively, g, = statistical weight factor for the compound state of total angular momen-
tum J, 2 7k = wave lenght associated with the relative motion neutron-nucleus).

In the case we are considering the temperature is not uniform across the absorber
plates, but is a function of the coordinate z normal to the plates.

By solving the equation of heat conduction for a uniform heat source density Q,
a surface temperature T, a mean coefficient of heat conduction « and a plate thickness a,
we obtain

Inserting this expression in eq. (3), A,0 and therefore 5[;(0,;:) become functions of z.
Henceforth we write ¢(E,z) instead of ¢(E,T(z)).

3 — EXPRESSION FOR THE RESONANCE INTEGRAL

We treat the resonance absorption in the narrow resonance approximation, which
is valid if the practical width of the resonance (i.e. the width of the energy interval,
in which the resonant part of the cross section exceeds the potential part) is narrow
with respect to the mean loss of energy per collision with any of the nuclei present in
the reactor. For uranium this condition is valid in the kev-range.
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We have two contributions to the absorption: the first comes from the neutrons
which had their last collision in the absorber plates; the second conmsists of the neu-
trons slowed down in the coolant. We start with the first part. Since the resonance has
been assumed to be narrow we have a spatially and lethargically uniform source density
3,9 in the absorber plates, where

Ep:NO'p'i"zw (6)

and ¢ is the flux per unit of lethargy above the resonance (c.f. the discussion in Chapter V
of [1]). Let K (z,5E)dz’ be the probability that a neutron generated with energy E in
a plate at a point z makes its next collision in an interval dz’ at a point 2z’ in one of the
plates (in each plate the coordinate z measures the distance from the left-hand surface).
Now the total absorption rate of the neutrons of energy E generated in one plate becomes

S \ &K(zz E)h(z'\E)dz dz’ (7)
1] 0 i
where
No.(z,E) T E) —
h(Z,E): g (Z ) :_‘y 2‘1()(z ) Ep (8)
S.(zE) T  Zo(3E)
and
, E—E,
S«O(st):Nat+21n:N0'rl//<0(Z), I‘/Z >+Ep (9)

Let us now consider the neutrons which originate in the moderator. Let P(z,E)dz
be the probability that a neutron of energy E generated in the region between two of
the plates makes its next collision at a point s in the interval dz in one of the plates.

The source strength in this region is Z;¢.

Therefore the contribution of these neuirons to the total absorption is

(b3,)¢ \ P(2,E)h(z,E)d= (10)

St

b being the thickness of the coolant layer between two fuel plates. By definition [1],
the effective resonance integral I of the line is then given by

1 1
\K BV (o".E)dp dp’ + b3\ h(p,E)P (p,E)dp (11)
0

o

o0

NI=\ — ! a3,

C’_/‘a,_.

0

with p=2z/a.



As the result of the straight-forward calculations one obtains

oo 1

NIZS dE de Ty
E

0 1}

l—exp(—34 b/w) )
p w(l—R(m,E) T —exp(—T(E)/a)

[i)]

(12)

—S,a (Rl(w,E) T e L L )

l—exp(—T(E)/»)

l_exp(_su b/w) 2
+ l—exp(—T(E)/w) : (l_exp(_s(a,E)/O))—'zme(m,E)

where

»=C08%

@ being the angle between the direction of flight of the neutron and the positive z-axis,

s(z,E) =\ 3o(z,E)dz’

Ct 0

T(E)=s(a,E) + b3,

R(»,E) =;1 S exp(—s(z,E)/v)dz

a'.:

R.{0,E) ;_1_ S dz.exp(—s(z,E) /o) \dz’exp(s(z’,E)/w)

0

These formulae have been programmed for the IBM 7090 (this work was done in
collaboration with SOMEA, Milano).

As an example, we calculated the resonance integrals for the following -cases:
(isolated plate, 3:b > 1)
a=03cm, b=10cm, 3;=15cm™?, E=1000eV, I,=0.07eV, I'y=0.03eV, ¢,=1950 barn,
N=0.0223X10* nuclei/em?, 3,=0.65cm™. If one plots the values of the effective reso-
nance integrals NI (cm™) for different central and surface temperatures as functions of
the mean temperature

- 2
T=T1 +? (Tmax_Tl)

one obtains a smooth curve (see Fig. 1). This indicates that for the given resonance the
mean temperature can be used as “effective temperature” for the calculation of the Doppler
effect.

In similar calculations for the Doppler effect in a non-moderating fuel plate (In-
finite Absorber-Mass Approximation) Keane [4] has found some differences between mean
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and effective temperature. It seems that in the present case the considerable slowing-
down in the fuel produces a more uniform absorption in the different regions of the
fuel element. Further calculations are planned to reselve these questions.

4 — MONTE CARLO PROGRAM
FOR THE CALCULATION OF THE DOPPLER-COEFFICIENT IN A FAST REACTOR

In principle we only have to calculate the multiplication-factor K for a given
temperature-distribution. Feor this we start a number of fission-neutrons IV, in the reactor
and count how many fission neutrons (IN,) are produced in the next generation,

(K=N,/N,).

To trace a fission neutron through its life from collision point to collision point

we have to answer two questions:
a) what happens at a collision point and

b) where is the next collision point ?

5 —ENERGY-DEPENDENCE OF CROSS SECTIONS

To find out what happens at a collision point, we need the probabilities for the
different kind of reactions possible, i.e. the crosssections. As we take the shape of the
reactions cross section to be given by the Breit-Wigner resonance formula, we can cal-
culate their values if we know all the parameters which characterize a resonance
(position and reaction width). These parameters are not known for the energy range
that contributes most to the Doppler coefficient in fast reactors; we have only some
information about the statistical behaviour of these parameters, that is, we know only
their distribution functions. (Chisquare distributions for resonance spacing and for
reactionwidth’s. The necessary parameters for these distributions were taken from [5].)
By a random sampling we simply have to pick out of these distribution functions a set
of parameters for the resonance in question and calculate the cross sections numerically
out of the analytical formulas. .

6 — SPACE-DEPENDENCE OF CROSS SECTIONS

We come now to the other question: where is the next collision point ? This is
a purely geometrical problem and depends on the geometrical configuration. For our
example we took a reactor consisting of fuel needles (about 3 mm diameter) arranged in
a square lattice (lattice pitch about 4 mm).

We pick now out of the distribution e¢ a value d for the optical distance up to
the next collision point and find the geometrical distance s out of the relation:
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: wo: last collision point
d=g2(wo+nt)dt (13)

; n : direction after collision
if the cross section is space dependent. This is in fact the case for our example as the
temperature in the fuel needles shows a parabolic behaviour and the cross sections depend
from the temperature. This dependence is such, that we have with increasing temperature
a decrease of the cross section in the center of the resonance and an increase of the
cross section in the wings of the resonance. If we now move from the surface of the
rod towards the center we have an increase of the temperature and therefore an increase
or decrease of the cross section. This leads us to the assumption that we can approximate
the real spatial dependence of the cross section also by a parabolic shape:

2(r)=aor2+ bo (14)

If we insert this quadratic dependence of the cross section from the distance from
the center of the rod in equation (1), we find the following relation of third degree
between the number of mean free path and the geometrical distance (for a flight in
a fuel element):

d=as*+bs*+cs (15)

where the parameters a, b and ¢ depend from the last collision point w, and the direction
n in which the neutron escapes.

Now we have the necessary tools available to build up a neutron history and to
calculate the multiplication factor K for a given temperature-distribution. Then we have
to change the temperature-distribution somewhat and to calculate K again to find
another value K’ which can lie within the range of the statistical error of K. We may
not therefore simply perform the difference K’—K to find the effect of the temperature-
change on the multiplication factor. But it is possible to calculate the difference AK
directly with the Monte Carlo method.

7 — DIFFERENTIAL EFFECTS

We calculate the number F of fission neutrons produced by one starting neutron,
then we change the temperature and let the neutron again run on the same geometrical
path producing hereby another number F’ of new fission neutrons. The difference
F'—F gives us a direct contribution to AK. The calculation of F’ can be done for the
same geometrical path in the changed temperature case by properly modifying the weight
of the neutron during its flight:

The probability that the neutron makes its next collision in ds after traversing
the distance s is given by e %5, ds, (d¢(s) is the number of mean free path’s up to the
next collision point, 3, is the total cross section at the next collision point). If we change
the temperature this probability is given by e4®3;ds. As we take for both cases the
same geometrical path, that means we sample in the “changed” case out of the distri-
bution function for the unchanged case, we have to provide the neutron with a weight
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g in such a way that: e“‘a(’)Eods.g=e“‘n(’)E.lds. It is this factor g with which we have
to multiply the weight of the neutron running for the changed case when entering a
collision process and then we proceed in the usual way.

8 — RESULTS

With this method we have made some calculations for the following situations:

Diameter of the fuel elements: 0.317 em

Distance of the fuel elements: 0.368 cm (square lattice)
Composition of the fuel elements: 10% U235, 90% U238
Temperatures: Teenter (°¢) 700 1000 1300 1500

Teurtace (°c) 500 500 500 500

In our special example the neutrons started with an energy of about 10 Kev and
were followed until they passed 1 Kev, (we made the assumption that we have no con-
tribution to the Doppler effect in the energy range above 10 Kev). The results are shown
in fig. 2. These results can be used to give an answer to the problem of the mean
temperature. If we want to replace K=K(T.T;) by K=K(T,) where the mean tem-
perature T,, should be calculated out of the temperatures T, and T, by a procedure that
is independent of T, and T, we are led to the condition: AK/AT .=const. AK/AT,.

As this proportionality is not shown in Fig. 2, we conclude that it is not possible
to introduce a mean temperature in the way above. For the type of reactor considered,
one has to employ two Doppler-coefficients AK/AT, and AK/AT, and we showed that
it is possible to calculate these quantities with the Monte Carlo method.
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