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The influence of high-boilers content by pyrolitic and radiolytte decom­
position was studied. An important result : Besides the percentage of high boiler 
(% HBR) the nature of formation of that percentage has an influence on the 
physical properties. 

Some other results with pure high-boilers are presented and the data of 
the latent heat of vaporisation. 
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position was studied. An important result : Besides the percentage of high boiler 
(% HBR) the nature of formation of that percentage has an influence on the 
physical properties. 

Some other results with pure high-boilers are presented and the data of 
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PHYSICAL PROPERTIES OF NUCLEAR REACTOR COOLANTS 

SUMMARY 

Apparatus for the following properties were developed : density, viscosity, thermal conductivity, specific 
heat, vapour pressure, surface tension, latent heat of vaporisation and critical temperature. 

The influence of high-boilers content by pyrolitic and radiolytic decomposition was studied. An important 
result : Besides the percentage of high boiler (% HBR) the nature of formation ofthat percentage has an influence 
on the physical properties. 

Some other results with pure high-boilers are presented and the data of the latent heat of vaporisation. 

INTRODUCTION 

At C. E. N.-Grenoble — connected with EURATOM by a contract within the ORGEL program 
— apparatus for the following physical properties were developed : density, viscosity, thermal 
conductivity, specific heat and vapour pressure. All equipments are working up to 500°C and 
20 kg/cm2. 

Besides the measurements of the properties of diphenyl and terphenyls, the influence of 
high-boiler content formed by radiolytic and pyrolytic decomposition was studied. About this 
the following question is important : Is there a change in physical properties if the HBR is 
obtained at different temperatures and different irradiation dose? 

On the other hand the data of pure high-boilers are of interest. Moreover some properties 
are not yet wellknown (like latent heat of vaporisation and surface tension). These data — 
important for boiling and burnout — should also be measured. This program was started in Ispra. 

1 — DESCRIPTION OF THE DIFFERENT APPARATUS 

1.1 — The apparatus developed in Grenoble 

The equipments are all provided for a temperature range up to 500 °C and a pressure 
up to 20 kg/cm2. The most important points of view for the construction have been the following : 
simplicity, easy to handle, elimination of glands, small number of joints. 

1.1.1 — The densimeter?)?) 

It is based on the principle of Mohr's balance : the weight of a quartz plummet immerged 
in the liquid is determined with an electromagnetic balance which regulates automatically the 
current of equilibrium. Between current and weight we have a linear dependence. The current 
is measured with a Potentiometrie method. The error in temperature measurement — done with 
platinum resistance wire — is in the range of 1/4°C. The accuracy of density determination 
is about 0.1%. Fig. 1-1 shows the apparatus. 

1.1.2 — The viscometer 

The principle of the method is Lawaczek's falling cylinder viscometer. The velocity of 
a cylinder (diameter d) in vertical tube (diameter d') filled with a liquid of dynamic viscosity μ 



is approximately : , _ 

~ 24/* · </ 

where ρι and Q% are the densities of cylinder and liquid, and g is the gravity acceleration. 

The velocity ν is measured by two magnetic signals corresponding to a certain falling 

distance. The reset of the plummet to the starting position is also done magnetically. 

A series of cylinders is provided to cover a range of viscosity from 0.15 to 10 centipoises 

In the optimum zone of each plummet the error on viscosity determination is within —0.7% 

at room temperature and about 1.5% at 500°C. The global error on temperature — measured 

with a platinum resistance thermometer — is about 1/2°C. Fig. 1­2 shows the apparatus. 

1.1.3 — 77?e equipment for vapour pressure measurements (:) (3) 

The vapour­pressure is determined with a zero­method. The sample is placed in a containei 

with uniform temperature, which can be evacuated. It is closed by a metallic bellows. The vapour­

pressure is counter­balanced by a nitrogen pressure, which is measured with manometers ol 

0.5% accuracy. The temperature error is less than 1/3°C. Fig. 1­4 gives a view of the apparatus 

1.1.4 — Measurement of thermal conductivity (x) 

A non­stationary wire method was chosen. The equipment is working nearly full auto­

matically to minimize reading errors during the short measuring period. 

A very thin resistance wire is immerged in the liquid. The temperature rise caused by ε 

heating electrical current step in the wire multiplied by time is inversely proportional to tht 

thermal conductivity of the liquid. The law is valid in the few seconds which follow the heating 

step. 

The main parts of the equipment are : the wire­support, measuring bridge, direct currem 

amplifier, an electronic multiplying and differentiating system and a recorder. 

Toluene was taken for calibrating. The accuracy on thermal conductivity determinatior 

relative to that of toluene is estimated to be in the range of 1.5% (included 0.5% systematic error) 

Fig. 1­4 shows the wire­support, which was provided to put into the furnace of the densi­

meter (Fig. 1­1). 

1.1.5 — The calor ¡met ei­

lt is an adiabatic type with a small heat capacity of the sample container. The containei 

is tightly closed and heated electrically. The temperature rise is measured by a platinum resistance 

wire. 

The vapour pressure in the container is counter­balanced by an outer­pressure to avoic 

destruction of the thin walls. The container is surrounded by a copper­jacket which is following 

the container­temperature to obtain adiabatic conditions. 

The container and the heated jacket are placed in a vessel kept on uniform temperature 

which holds the counter­pressure for the sample container. 

The regulation is done with differential thermocouples. 

The scattering of the results was within 4.0.5%. The systematic error in the upper tempe­

rature range is estimated to be in the same range. 

The photographs on Fig. 1­5 give an impression of the calorimeter. 
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Fig. 1-1 The densimeter 
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1 — Sample 
2 — Stainless steel container 
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Fig. 1-3 — The vapour pressure apparatus 
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1.2 — Apparatus developed at C.C.R. Ispra 

In Ispra up to now are finished apparatus for measuring the following properties : density, 
viscosity, surface-tension, thermal conductivity, latent heat of vaporisation and critical tempera­
ture. Mostly (except for heat of vaporisation) they are micro-methods with sample quantities 
from 50 to 500 mg, to be able to measure also pure high-boiler which are difficult to obtain in 
larger quantities. The chosen methods for density, viscosity and thermal conductivity are different 
from those taken in Grenoble for better detection of probable systematic errors. 

Fig. 1-4 — The thermal conductivity probe 

1.2.1 — Measurement of density (4) 

Fig. 1-6 shows the principle of the method. The length of a liquid thread in a capillary 
fused at one end is measured with a cathetometer while heated up in a glass furnace with slitted 
copper bloc. Afterwards the capillary is weighed on a μ-balance. The relation between length 

10 
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of thread and volume was tested before by water calibration. The open capillary works up to 
a certain temperature range below the boiling point. For higher temperatures the capillary is 
fused and the method is working like a dilatometer. For injecting system and capillary a sample 
quantity of 100 mg is necessary. Accuracy is estimated to be 0.5% for the absolute method and 
1 % for the relative method (fused capillary). Ref. (4) gives details. 

1.2.2 — Viscosity measurement 

A capillary is placed horizontally in a furnace with slit for observing. A small liquid-
thread (diameter 2 mm, length 30 mm) is pushed by a differential pressure through the measuring 
capillary (diameter ca. 0.12 mm) and observed with a cathetometer. The thread is kept together 
by the surface tension so that the liquid does not flow out. Horizontal capillary and furnace have 
some advantages : no density correction on measuring values, the liquid flow stops when pressure 
difference is zero and better temperature distribution of the horizontal furnace instead of the 
vertical one. A counter, started and stopped by hand, was taken for a stop watch. The capillary 
is filled with a special injecting system. The minimum need of substance for injecting and 
measuring is in the range of 200 mg. The temperature is measured with thermocouples in the 
bloc. In a special experiment it was verified that the liquid thread takes the temperature of the 
bloc. Calibrating was done with distilled water at different temperatures. The error relative to 
the water values is estimated to be in the range of 1 %. (See fig. 1-7). 

1.2.3 — Surface-tension measurements (4) (5) 

A liquid thread is placed within a capillary with 0.3 mm diameter which is heated up in 
an horizontal furnace. A small pressure pushes the thread to the end of capillary. Without pressure 
both surfaces of the thread are half spheres, but with a certain pressure the liquid surface at the 
cut end of the capillary is plane and reflects a maximum quantity of a parallel light beam which 
is observed in a telescope. The pressure is determined with a miniscope (reading 1/100 mm H2O). 
Between pressure and surface-tension exists a linear relation. The calibration was done with 
7 test liquids at well known surface tension. The method works only with full wetting liquids 
(contact angle zero). With another method — the bubble pressure method — was verified that 
the terphenyls and their mixtures fulfil this condition. Fig. 1-8 shows the principle of the 
apparatus. 

1.2.4 — Thermal conductivity 

A stationary wire method was taken to determine the thermal conductivity. A platinum 
wire of 0.1 mm diameter in the axis of a 2 mm capillary is heated electiically. The temperature 
of the capillary wall is measured with platinum resistance wire. With temperature difference 
of wire and wall and the produced heat in the center wire the thermal conductivity can be 
calculated. An end correction must be applied and the convection must be avoided. The latter 
is done by heating with different energies and extrapolating to zero. The capillary is placed in 
a pressure system wich allows working up to 20 atm and 450"C. The method is an absolute one. 
Comparison with other absolute data from RIEDEL (obtained with another method) for Benzene, 
Toluene and Carbon tetrachloride aave an agreement within 4-1 %. 
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1.2.5 — Latent heat of vaporisation 

Up to now there existed only a few direct measurements of the latent heat of vaporisât 
of polyphenyls. A certain property, evaporated isothermally and adiabatically, flows throi 
heated tubes and valves to the condenser. Heat loss in the container is reduced to a minim 
by a high vacuum container, which surrounds the sample container. An oil flow system he 
the two containers and the tubes. The condensed portion is weighed and the electrical ene 
is measured. The quotient gives heat of vaporisation. By graphical extrapolation to infii 
heating energy the influence of the heat losses is eliminated. The temperature range is limi 
by the thermostate oil near 250°C. The temperature dependence can be taken from a generali 
curve, following the law of corresponding states which is very well fulfilled in the case of 
heat of vaporisation. The critical temperature must be known. 

1.2-6 — Critical temperature 

Direct measurements of the critical temperature were done by observing the vanish 
of liquid surface in ampoules. The temperature measurements must be made very quickly, otl 
wise a strong pyrolitic decomposition occurs. After the run the samples were analysed and 
change in ciitical temperature by HBR was corrected by a calculation. The heating and cool 
periods were in the range of 20 seconds respectively, but even during this short time we fot 
HBR production up to 30%. 

2. RESULTS 

2.1 — Results obtained at CE.N.Grenoble 

2.1.1 — Density, viscosity and vapour-pressure of irradiated polyphenyls and mixtures 

Figures 2-1, 2-2. 2-3, 2-4 give results of measurements of the density and viscosity 
diphenyl, the terphenyls OMP and OM? with HBR obtained by inpile radiolysis. OMP a 
OM2, from PROGIL (France), had the following composition : 

OMP o-terphenyl 12.5% 
/?7-terphenyl 63 % 
^-terphenyl 24.5% 

OM2 o-terphenyl 20.5% 
/72-terphenyl 76 % 
/;-terphenyl 3.5% 

OM2 with 35.6 HBR was produced by radiolysis at a dose of 26.4 W h/g and a temperat 
of 380°C. 

The products of 10, 20 and 30% HBR were obtained by dilution of pure OM2 in 
35.6% product. 

The curves of the vapour pressure are presented in fig. 2-5· 
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The numerous measurements of viscosity, density and vapour pressure with irradiated 

terphenyl OM3 at different temperatures demonstrate that although the samples have the same 

HBR content the properties could differ remarkably. It can be concluded that, besides the 

HBR­influence, the properties depend also on the "history" of producing the HBR (HBR 

product at different temperatures and different radiation doses). The vapour pressure is much 

more influenced than density and viscosity. 

Table 2­14 presents a list of the characteristics of the samples and the curves 2­6 to 2­11 

show the results. 

The products were irradiated in an inpile loop placed in the reactor Melusine (The labora­

tories of the "Institut Français du Pétrole" were in charge of this loop). 

2.1.2 Specific heat and thermal conductivity 

Measurements with the calorimeter and the apparatus for the thermal conductivity started 

some months ago. 

The specific heat seems to be the least sensitive property concerning HBR. Fig. 2­12 

presents the results obtained with pure OM2 and (at different temperatures) irradiated OM2. 

Fig. 2­13 presents the variation of the thermal conductivity curves with the HBR. 

2.2 — Results obtained at C.C.R. Ipsra 

2.2.1 — Density 

The densities of the pure diphenyl and terphenyls and some mixtures were determined 

up to 420°C. 

A program for high­boilers started with two quinquaphenyls and an hexaphenyl. The 

results of these measurements are presented in diagram (2­14). A certain error can be caused 

by the vapour correction because vapour density is unknown. It will however be not too big 

because boiling point lies in the range of 400°C. 

TABLE 2­14 

Tested samples of irradiated O Mi terphenyl 

% H.B.R. 

0 

10­20­30 

35,6 

10­20­30 

35,6 

20,27 

20,3 

22,25 

23,03 

30,62 

33,80 

34,90 

35­41,45 

24,45 

Irradiation 

Temperature 

°C 

380 

200 

410 

380 

380 

360 

400 

410 

380 

420 

Dose 

Wh/g 

26,4 

11,74 

5 

8,2 

9,11 
15,35 

11,9 

9,5 

21 

4,87 

diphenyl 

0,9 

OM ; 

0,33 

2,2 

0,4 

0,9 

0,71 

2,7 

2,8 

1,29 

3,82 

Composition 

ortho­ meta­

terph. terph. 

20,4 76 

11,5 48,5 

OMRE H.B.R. 

19 

13,6 

14 

15,12 

14,07 

11,7 

9,7 

10,3 

16,18 

56,94 

59 

59 

57,15 

50,93 

47,6 

48,80 

43 

52,07 

para­

terph. 

3,6 

3,5 

3,46 

4,3 

4,35 

3,8 

3,67 

4,20 

3,80 

3,96 

3,48 

Remarks 

10­20 and 30% 

obtained by dilution 

« 

35% obtained by 

dilution 

Marks 

on 

curves 

_ 

• 

0 

+ 
X 

Δ 

Γ 
V 

▲ 
■ 
T 

© 
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Fig. 2-14 — Density of three polyphenyls 
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2.2.2 — Viscosity 

Besides the pure substances of diphenyl, terphenyl and mixtures the 3'5'2o4_ ­hexapln 

was measured (see fig. 2­15). At present a program for the binary system of pure «z­terpht 

with a quaterphenyl was started to obtain the mixing rule. The results will be reported. 

2.2.3 — Surface­tension 

The results for the pure substances (diphenyl and terphenyl) agreed well with meas 

ments in Winfrith (BOWRING et al.­AEEW­R41). With the bubble­pressure method was veri 

that the liquids are really full wetting. The molar surface energy has the theoretical linear dej 

dence from the temperature (constant EÖTVÖS­coefficient) except the o­terphenyl which 

an Eötvös­coefficient at 100°C of 3.1 erg/»C and 2.48 erg/"C at 300»C. Due to the fact 

viscosity and melting behaviour of o­terphenyl show also irregularities, it may probably 

expected that there is some kind of anisotropy of the liquid state. The diagram of the m 

surface energy for a hexaphenyl allows to make a rough determination of the critical temperat 

See fig. 2­16 and 2­17. 

? ?■ Latent heat of vaporisation and critical data 

The measurements for diphenyl and the three terphenyls were done in the range of 25C 

The temperature dependence can be calculated with a generalized curve which is valid for a 

of liquids of very different classes (included polar liquids) if critical temperature is known, 

fig. 2­18 presents the results. 

2.2.5 — Thermal conductivity 

The measuring program started in this week with diphenyl so that only a few data ν 

obtained. For Toluene. Benzene and Carbone tetrachloride the values are presented in fune 

of the product Gr. Pr and the data are compared with those from RIEDEL obtained with flat ρ 

and concentric cylinders. See fia;. 2­19. 

CONCLUSION 

Terphenyl OM­2 with different high­boiler content was studied up to temperature! 

450 "C. 

The main results were : 

1. Concerning to the HBR­influence we can make a series : viscosity (strong influen 

thermal conductivity (medium influence), density and specific heat (small influen 

2. Besides the HBR percentage we have a dependence on the "history" of the liq 

Here the vapour pressure is in the most affected property (important influence 

low boilers). Also viscosity shows an effect. 

Some data for pure high­boilers are presented. New results were obtained with di 

measurements of the latent heat of vaporisation. 
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