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Under the assumption that the scattering of neutrons is
spherically symmetric in the L system, the number of neutrons
leaking from the slab with u, a directional cosine of the emission
angle, as a result of the N-th collision of an incident neutron has
been derived, And further, the total number of the lecakage neutrons,
the total neutron current at the boundary of the slab and so on have
been also written in the forms of an infinite series of the spherical
Bessel functions.

The numerical results have been obtained by truncating the
sum at the first five terms and it has been shown, by comparing
some results with the exact ones, that the present approximation
gives a very accurate result.

Moreover, the critical condition of the slab in the one-group
approximation has been derived and shown that it exactly coincides
with the one obtained in the previous work.

Under the assumption that the scattering of neutrons is
spherically symmetric in the L system, the number of neutrons
leaking from the slab with 4, a directional cosine of the emission
angle, as a result of the N-th collision of an incident neutron has
been derived, And further, the total number of the leakage neutrons,
the total neutron current at the boundary of the slab and so on have
been also written in the forms of an infinite series of the spherical
Bessel functions.

The numerical results have been obtained by truncating the
sum at the first five terms and it has been shown, by comparing
some results with the exact ones, that the present approximation
gives a very accurate result.

Moveover, the critical condition of the slab in the one-group
approximation has been derived and shown that it exactly coincides
with the one obtained in the previous work.
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REFLECTION AND TRANSMISSION OF NEUTRONS
BY THE MULTIPLE COLLISION METHOD

SUMMARY

The reflection and the transmission of neutrons for a
homogeneous slab have been dealt with analytically by the multiple
collision method or the random walk approach, where the elementary

processes of the neutron are followed statistically in order of its

spatial moveément.

Under the assumption that the scattering of neutrons is
spherically symmetric in the L system, the number of neutrons leak-
ing from the slab with'/l, a directional cosine of the emission
angle, as a result of the PJ—th collision of an incident neutron has
been derived. And further, the total number of the leakage neutrons,
the total neutron current at the boundary of the slab and so on have
been also written in the forms of an infinite series of the spherical

Bessel functions.

The numerical results have been obtained by truncating the sum
at the first five terms and it has been shown, by comparing some re-
sults with the exact ones, that the present approximation gives a

very accurate result,

Moreover, the critical condition of the slab in the one-group
approximation has been derived and shown that it exactly coincides

with the one obtained in the previous work,



l.

Introduction

The multiple collision method i8 a new analytical method for
dealing with neutron transport problems, This method is based on a
viewpoint different from that of the Boltzmann equation, that is, the

life-cycle viewpoint in contrast to the neutron-balance one,

The one-group critical condition has already been derived accu-
rately by this method, for a homogeneous slab in which scattering is
spherically symmetric in the L system (Asaoka, 1961), The two-group
critical condition for the same system has been also derived according
to this technique (Asaoka and Nakahara, 1962), In these previous works,
the elementary processes of the neutron were followed statistically in
order of time and then the critical condition was obtained from the
convergence of the total number of neutrons in the system as time

proceeds indefinitely,

The present report is concerned with a further development of
the multiple collision method for treating the reflection and the
transmission of neutrons for a homogeneous slab. Here, the elementary
processes are followed statistically in order of the spatial movement

of the neutron.

Although a number of investigations have been made on the problem
regarding to the reflection or the transmission of radiation (for
example, Grosjean, 1958), it seems that their methods are not suffi-
cient to briefly obtain the accurate and plentiful information. In
this report, it will be shown that the problem can be treated effi-
ciently by the multiple collision method,



2, Formulations

Consideration will be given to the case of an infinite homo-
geneous slab with finite thickness { in which the neutrons are
scattered in spherical symmetry in the L system, on the basis of
the constant cross section approximation, To the case that the cross
section for the medium is assumed according to the two-group model,

the method is easily extended as shown later.

Let X be the space coordinate, /( the directional cosine of
the neutron velocity, 2. the macroscopic total cross section and (

the mean number of secondaries per collision,

Now, consider one incident neutron with a directional cosine/ufﬂh
upon a surface of the slab, X = 0, It will travel for a certain
distance ﬂ , in the direction with ,M=7“, , before it collides with
a nucleus. Since this probability is wf(—zr,) and the collision
probability in AYL at Y, is Eidﬂ , the fractional number of neutrons
with directional cosines between /Q and /u2+¢ul as a result
of this collision will be (CZ/Z),(/)&!)(—ZY,)AY, Mz . They will
then travel for a certain distance Jf; in the direction /“1 until
they meet another nuclei. As a result of this second collision, the
fractional number of neutrons between M and /ﬂ3+4ﬂ3 will amount
to (c=/2 )224(19 [“Z(ﬂﬂz)] AY,dv, d/; 4}«(3 . This process of
movement will continue until the neutron leaks out of the slab after

the Fl—th collision as shown in Fig. 1.

Thus the fractional number of neutrons leaking from the slab
with directional cosines between /( and /H+4ﬂ as a result of the
N-%h collision after following a typical path shown in Fig, 1, is
glven by

(CZ/,Z)N!&//fD{-Z(YﬁY;-W Pt )Ty dry Yoo, NZ1.
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Before performing integrations over all allowable paths to
obtain the number of neutrons reflected by or transmitting the slab,
we must take into account some restrictions imposed upon the range of
integration variables 1in order to exclude the neutrons which have left

the slab after the ([“l) -th collision, These are written as follows:

0<Ewm<a, j=L2N, 2)

Besides this, an another condition must be imposed in order to make
the neutrons leave the slab with a directional cosine /“ after the

N ~th collision:

y . —_~ _) 0, for the reflection,
ety =l @

{ ' , for the transmission,

This condition (3) can be rewritten in a form of Fourier reprees

sentation of the Dirac delta function:

N -
BRI = T4y ) i -t ]
x5 ' l ”
=F 37 ) A L (%YMI(/‘Y_I"J% WA )] )

where the upper sign is applied to the case of reflection S/V<C))

and thg lower one to the case of transmission 9“?>0 ) . The con-
ditions (2) can be taken into account through Dirichlet®s discontinuity
factors:
o . :
J}ES“J_M_;lﬁiul%:{l, when IQJ\< I =12 N
oo d 0, when )EJ-‘>]) S
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Then introducing the N discontinuity factors and the Fourier

representation of the S function, the number of neutrons reflected by
or transmitting the slab in a direction with /M as a result of the
N -th collision of one incident neutron with /b(=/u, , is written as

follows;

)

. /
Mt )= 2 F) o e o
N -l €5)

xﬂ P’E@ fopugloy(i ”ﬁ/ﬁ*i)]}i;w sl = 0

where J,n(l) is the spherical Bessel function. Replacing :(J by

5({‘: (2/(24))5 1, (J.f-‘l,"‘/ NH) and performing the integrations over
/‘d' (J':),'“,N) )‘}-(J's Lo N) and Y , Eq. {5) is reduced to

(MeA Ty HE ;%_gja MFTLZWL a/2)] Gl 1)

RO (6)

in which the independent variable 7NH is replaced by g . The

functions GJH(X,'/“J s gatisfy the following recurrence relation:

Gx+f<?’/">=%‘—‘5“<k [‘zf‘(l‘?ﬂ@%@w,), [=HNL 2,
6.1 0= G P p) 4520

~ThglptED ] | @

Now it is convenient to expand (:r:!}, (j}/,) ts in the spherical Bessel

functions:

G () =2 bl P (), NN (8)
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Then by using the Gegenbauer?!s addition theorem:

)0(1—‘({)=%0(271+1)J,1(Z)J“ (1)

and the orthogonality relation for the spherical Bessel functions, the

recurrence relation (7) is rewritten as follows:

] J* o .
Gine n poa=2. T )T ) =N A, 2,

n+M= even

) | (9
KSR S DR D)
where
Jmm)= g%idj(}%(dj)(];n(orj)ﬁg}. ) o(z_zzg .
(10)
Upon substituting Eq. (8) into Eq. (6), we get
/}ZN(IM/H 2 &Zf (—EZT/?‘T>7'§D£"WV'>J71 <—i%> )
¢11)

of which the coefficients {;f”gm) are to be determined by the

recurrence relation (9).

The total number of neutrons reflected by or transmitting the slab

in a dircction with /K as a result of the incidence of one neutron with

/ufylu ,18 given by
n (Xo,az/t.)#; %N(Yuyt;/t.)whg(/t-/l.)hf(-z%“,) ) €12)
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The infinite sum in this equation is written in the following form
according to Eq. (11):

DA Z 00 N \
NZ;‘I ’YlN (’on“}/ua) = j/xf (—7}%1%:0/&1}%)/’“(—"%) , (13)
where $m(/“')=,%'£m’m9u') is to be determined by an infinite

set of linear equations which are derived from Eq. (9):

_1 - 2
(m1)C "Qm(/’>—m'gm)y*'>+;o ’lgn(/“')]-(‘mm);

mm=even

(14)
m=o,1,2,- .

The total number of neutrons reflected by or transmitting the slab
as a result of the incidence of one neutron with /Hiﬂ, is obtained in
the following form by integration of Eq. (12) with respect to /H from

-1 to zero of from zero to 1:
'n(7»;/&)=q§az€my¢o£%w/n(-%—“t}j;n(ii%t)+A’*/f('§%), (15)

where

{ 0, for the reflection,

1, for the transmission;

When the integration with respect to /l is performed after multi-
plying szpyubﬂ,) by qvu , the total neutron current in the di-

rection of the outward normal to the surface of the slab is obtained:

Japy=2 W,)j% Up(-BR) y (HIB )+ afmp(-BL)

(162
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Then the so-called albedo for this slab for the case of the incidence
of neutrons with /U=/1, can be obtained by

/A\(/’J:I(O"/“/)//“, . (17)

In case of that the angular distribution of incident neutrons is
spherically symmetric, that is, the number of incident neutrons with di-
rectional cosines between M, and /4,+5M, is oyx, when the total number
i8 normalized to unity, Eqs. (11)~ (13) and (15)~/(17) are modified as

follows:
T jO= 2 (-34) 2 ™4, 138, (1%
LTI =Z My f)+ 5 p (ZR ), (121)
N};I ﬂN(Io,/u)= %(‘%ﬁ)mi;ozgm(jm(—i%-)) (13t)
ﬂ(zo>=gﬁmi% wp(-Zpt) [ EFR) T AT, (Z0) (15%)
7<1°>=,%'fmf %Mf(—%“f}};ﬂ(t 1Z81)+ AE,(Z), (16)
!
A=2T(0) . (17
The coefficients mNH and »ﬁ)m= P‘%quml are determined

by the following recurrence relation (9%) and the set of simultaneous

equations (14%), respectively:

| , o ] .
W%;} = ‘%_;0 li’nJ Jm) J—-N/ N R
Ntm= even

. ?
%nz:(mlﬂ)%‘fl Loy (-221)], +iZ21), | (9"

| _ | 2,2
(2'm+1)c4mw>m+nc fme%, _ﬁnj(m,n)) m=0,1,2, (14*)

MN=eyen
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A comment will be inserted here, on the critical condition of
the slab in the one-group approximation, Also to the case of that there
are fissionable nuclei in the medium, the equations having been derived
can be applied, if discussions are restricted to monochromatic neutrons,
Therefore, in case of that C;>I , the total number of neutrons leaking
from the slab must diverge beyond all bounds at the critical thickness.
In other words, the critical condition in the one-group approximation

must be derived from the divergence of
NOMITNH ), T0:4)TT@M) , M0)+N@) or T(p)+](a),

Since these are given in the following form as seen from Eqs. (15), (16),
(15%) and (16%):

%Bm#m(/:)*”c or ‘;Z.j: Bmﬂfszc/)

m=0

Where Bzm, C and C/ are bounded functions of XA , the critical

condition should be given by the condition of divergence of 4@m9m)

and —%;n . This condition is that the determinant of coefficients for
1ﬁ"l(,) ts or 4&m *s in Ea.(14) or (14?) vanishes; that is,

Siﬂ ,2M

(‘Mn'ﬂ)C.—j(‘?/’z'm) ‘:01 %fm::ol 112;”” .
(182

This condition (18) is nothing but the one-group critical condition
that was derived in the previous work by the author (Asaoka, 1961).
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Now we shall consider the reflection and the transmission of
newtrons in case of that the cross section for the medium is assumed
according to the two-group model, Let 2; and zfi be the macroscopic
total cross section for the fast group and the thermal group, respectively,
and (, and C(; the mean number of secondaries per collision for each
group., And further, let assume that ]Vc i8 the number of collisions re-
quired to decrease the energy of the incident neutrons to the thermal

value, .

Following the same procedures as those in the constant cross
section approximation, the number of thermal neutrons reflected by or
transmitting the slab with /u as a result of the N-th collision of
one incident neutron with /M=>M, is written as

h _ N -1 (1
/nNt (Iay“;/h):*%cjjg %f[ ’2_-34_3/ %/2)} Gﬂ+l(j"%'> 3
N=N. = l) (19)

where Gd” {3 4,)= Q_L_jdl 22 o 7)]Im IGJ(I/,) W
JENNL Net i,
GJ” 2'3 /L>’ Zag“ [T(I—g)]jﬁ”‘—l I /‘)
e 2,
G, (B p)=2Z28 xJ[ <1;;>]ﬁf’—f2@ ¢20)

-

Thus the total number of thermal neutrons leaking from the slab with /M
is given by

Mg i) =2, T (o)
-3
’__‘ﬁ_s‘o )Zﬂ’ LJ;(T yl)JN?-; T'“(”/LL\ (21)
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where

5 Gt = G 1)+ ST BEOCDYEIE Cpy e

as easily seen from the first equation in Eq. (20),
Here the functions Cﬁ+|(gbu,)*s are expanded in the spherical Bessel

functions:

3 G A= g0l 3R Y),
Py %) i+ . . (23)
G (IS )=E A P (B, f=Nebel 1,

of which the coefficients are to be determined by the following equations:

s =g o+ £, i Lonmy )

'mf-'n-= even

@+ ¢, f'mw(/u/) = 4 JQ‘ )7 (m,m), /: Ne, Nl 2)

m+N=even (24)

T )= (2m+l> ' %ﬁi) ”’f g,%z% J

where I‘z (M,7N) and j, m,m) are given by Eq. €10) in which (X=Z,4/2
and 2 a/2 , Trespectively,
Thus, combining Eq, (21) with the first equation in Eq. {23), we get

Mo Cpip) = tp (BN E B0 ] 158

(25)
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Similarly, the number of thermal neutrons leaking out after the PJ-th

collision, /nNﬁ(7%#¢u’) shown in Eq, (19) can be easily written also in
a form as that of Eq. (25), and further the total number of thermal neu-
trons leaking from the slab, 7Gh(ni/,) , and so on can be obtained also

easily, even for the case of the incidence of isotropic neutrons,

Numerical Results and Discussions

Since all expressions such as ’nN(1}¢1OM.) in Eq. (11), WN(Lyu)
in Eq. (11*) have been written in the form of an infinite sum, we are
forced to truncate it at M=M for obtaining the numerical results.

We shall call this approximation as the JM-approximation.

The flow diagram of calculations to get the numerical results in
the constant cross section approximation is shown in Fig. 2, And the
concrete expressions of the functions with 7l£54- which are located at
the starting points in the flow diagram, are shown in Appendix I,

In the }M—approximation, the coefficients -i#fbﬁ),%mﬂ%),,%#ﬂ
and ‘fn are determined approximately by solving the equations ob-
tained from Eqs. (9), (14), (9') and (14%), by retaining only 4ﬂJ§M,))
’f'n(/")) fmJ and f, with Q=M , respectively.

As seen from Eqs. (14) and (14%), 4Lngﬂ:) s and %;n 'gs are
coupled only with one another, and not with $1m19u,) *s and 1ﬁn+| ts

’

respectively. Therefore, the expressions for these coefficients with an

even suffix in the }iMH -approximation_are the same as those in
the JJM -approximation and the ones with an odd suffix in the
J’M -approximation are the same as those in the JlMﬂ -approximation.

The expressions of 1%‘V“) *s up to in the J$—approximation are shown
in Appendix II,The expressions of a{n's are the same as these except

that %%29u,) *3s in the numerators are replaced by ”2 tg,
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Numerical computations are carried out for the slab with c =1,
for various values of the parameters shown in Table 1. The results for
the three cases of the monodirectional source with M, =1, 0.5 and

0.1, respectively, are shown in Figs. 3~-26 and in Tables 2 and 3.

The number of neutrons réflected by or transmitting the slab
with /u after the N-th collision has been calculated in the j1 -
approximation, These results for N =1 are compared with the exact
ones which are obtained directly by performing the integration with
respect to 3 after substituting G;(jay,) shown in Eq. (7) into
Eq. (6). As seen from Figs, 3 and 14, the present approximation gives
very accurate results for the case that the values of /u, are not
close to zero, but it becomes to introduce some error to these results
especially for the slab with the larger values of Z a4 when the values
of M, decrease close to zero. This error, however, may be reduced
to be smaller as the value of N increases because the values of

f%ﬁwﬂgud become small compared with the ones of 4ﬂmJVQ)
(see Eq. (11)).

As seen from Figs., 3~ 12, the values of 7My(0/:4,) become to
depend strongly on the value of @ as N goes up to larger values,
as expected, especlally for the case of that U, = 1, And the curves
are convex, that is, ﬂN(OV“bMID gradually decreases around LMI =1
as VA\ goes down to smaller values, for the smaller N , but they
become to be concave as N becomes larger. This can be interpreted
by taking into consideration that the positions at which the neutrons
ﬁave suffered the final collision become to distribute uniformly within
the slab,
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The dependency of ’7?,;(0%;/,(,) on the value of M, 1s as follows.
For the smaller values of N , Ny (0,/;/“') increases as U, decreases,
as expected, especially for the smaller X4 . As the value of N becomes
large, however, it turns to decrease as /u, does, especially for the larger
>4 . This is understandable because 7 (oM. M) for large N comes mainly
from the neutrons which have undergone the first cecllision near the center
of the slab, Fig. 13 shows 'nN (0,/(;}4,) for the slab with A = 2 and 4

as a function of N .

In Figs, 14 24 are shown ’HN (a,/u',/u,) *s, the number of neutrons
transmitting the slab with /L{ as a result of the J-th collision of one
incident neutron with M=K, , For the smaller values of N, on the whole,
Ny (a,/u;/u,) for the smaller > Q4 is larger than that for the larger
> , especially for small M, and/M . But as the value of N increases,
’nN(aL,/u;/((l) for the smaller Z 4 becomes smaller than that for the larger XQ ’
especially for the large M, and /LJ , because it depends upon the value
of the probability that the neutrons take collisions N times within the
slab, multiplied by the transmission probability, This may be clarified
by comparing the curves for X4 = 2 with the ones for 24 = 4 shown in
Fig. 24.

The curves of ’)?N(d/l;/u,) are convex for the smaller ZA but they
turn to be concave as the value of Z 4 increases, because the positions
at which the neutrons have undergone the final collision may become to be
far from the boundary of the slab, And further, it is seen that for the
smaller 24 , the values of 'nN(a,u;/t,) depend strongly on the value of U, ,
and increase as M, becomes small. Contrary to this, Py (a,/y,;/u’) for the

larger 2@ decreases as M, does,

It may be worthwhile to mention that 7y (a,/u;/u,) becomes to have
the same values as those of ], Uj}/“/“') as the value of [N increases.
This is a natural consequecnce because the spatial distribution of neutrons

within the slab comes to be symmetric. The value of N from which both
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the values of OQN(a,uay,) and 71N<07a;u,) nearly coincide with one
another, in other words, the terms with odd M in the infinite sum in

Eq, (11) can be neglected compared to ones with even 7 , 'is larger for
the larger X , for example, these values for ZQ& = 0.5, 2 and 4 are
about 10, 20 and 50, respectively.

Figure 25 or 26 shows the results of the total number of neutrons
reflected by or transmitting the slab with U :’n(ayﬂbﬂ;) or'n(dyuow),
in the £1 -approximation, Comparing Fig. 25 with Fig. 3, it is seen
that the contribution of 7L(0,H§ﬂ:) amounts to more than half of the
total number for the smaller ¥ @ , but it decreases to ca. 20 % as the
value of */ becomes larger, especially for the case of that ‘}L, =1,
In the case of the transmission, the contribution of 7, (4, M; i ) to the
total number of neutrons having transmitted the slab after suffering
collisions once at least, amounts to ca. 50 % for X4 = 0.5 and de-
creases to several % for A = 4. Therefore, these results of the total
number show that the values depend upon the ones of /L and /K1 in a
similar manner to those for /nl(zbw;/u’) for the smaller 2.& and to
those for ’nN(x,,/u ,/u‘) with large N for the larger X,

The total number of neutrons reflected by or transmitting the slab,
72(03;Q) or -71(&&“,) , 1s‘ca1cu1ated in the }l" and }¢—appro—
ximations, The results in the J;—approximation are shown in Table 2.
Since C =1, that is, there is no absorption of neutrons, the sum of
71(0;“,) and Ql(q;ul) should be equal to unity, This conservation
condition for the number of neutrons is satisfied for all systems nearly
completely, as seen from Table 2.. Besides this, the results in the
J'—approximation are little different from those in the i,—approximation,

these being shown only for the smaller values of 34 1in Table 3.

In this table, our results are compared with those in the
Chandrasekhar?s exact theory and in the Grosjean's approximation

(Grosjean, 1958), It is clear that the results obtained by means of
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our multiple collision method are very accurate., Although the results

of 77lcn7“bﬂ7> in the ii-approximation reveal to have some error,

as mentioned already, it 18 seen that this error hardly contributes to
the total number, as expected, especially for the smaller ZA& . (It is
found out some difference between the results of ‘WN(Zy“;M;) in the J;-

and J1-approximation, but only a little difference between those of

Lo pis ) e

The total neutron current at the boundary of the slab, ICL;ﬂﬁ),
is obtai?ed in the Jl—approximation because we are convinced that
the J’-approximation gives an accurate result. The results are shown
in Table 2, To interpret these results, the average cosine of the emission

angle of the leakage neutrons 18 calculated:

Ry =T @)/ MM ) (26)

The results in the fl-approximation are shown also in Table 2,
For the reflection, this value increases gradually from 1/2 to 2/3 as
the value of XA does, These :asymptotic values correspond to the ones
for the spherically symmetric emission and for the emission with a cosine
distribution, that is, 7lukyayl)c7:lﬂ4 , respectively. Moreover, it-
i8 seen that the values of the average cosine decrease a little as the

value of /A, does,

These are shown also analytically., According to Appendices 1 and .II,
Eqs. (13), (15) and (16) are written in the following forms, respectively,
in the Jl—approximation:

G S ST -
‘;:’RN(I.,(;/A,)N ,“.Yl )‘"r, yu+o<(,3nzo( 37, 7"%';—"‘;'90} 7

JIDE-G-B 0 30)] | ooo,
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ﬁ-(—‘g(_ ) s =5 +X ‘/&1 O(-)’_.L)
MLy i)~ M | /u’) I(I.,yx,)fv %/{ ﬁ (A2 2 ],

(28)
o Gy )
“4W'—>0 )
')1(7n;/1'x,)mi—f'+ - 3% ‘;F’“zow*‘?j%‘(*v)]
X—00 ,
j(n,>m3ﬂ+0*m“&*w+%%ﬂ (29)

where qE:ZSQyCZ . And hence the average cosine in the Jl-approximation
is given by
L [ C2o=Y-12)]

o

M —>0)
e 225

3—-(,_..1__
5 - 27% ),
FO+rH)/r )

In the case of the transmission, the average cosine takes the value
’/(( +3§——> asymptotically for small ZA/H4, and it tends to
%_—(Hj%‘)/ l+3§1) as %A increases indefinitely, as shown in Eq. (30).

As seen from Table 2, these values have a maximum at the thickness

‘/u(zﬁ“'/u')‘av ~
% (30)

R—>00 |

QA ~ 100, 10 and 4 for the cases of that M, =1, 0.5 and-0.1,
respectively. And they increase as the value of /h decreases for large ZA4,
as guessed also from the last expression in Eq. (30). These are inter-
preted by considering that the smaller the value of MU, becomes, the farther

the positions from which the transmitting neutrons mainly come, remove from
the boundary.

The numerical results for the spherically symmetric source are shown

in Figs. 27~-31 and Table 4, Figures 27 and 28 show the results of 7@(07u>

in the J$ -approximation, where those for N= 1 are compared with the
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exact ones which are obtained directly by integrating Eq. (8) for h§= 1
with respect to /u,. Here again, it is seen that the approximation gives

an accurate result except that for 2 4 = 10, which is underestimated
a little. Comparing the results shown in Figs, 27 and 23 with those in Figs,
3~ 12, it is seen that the former nearly coincides with the latter for

the case of that /“, = 0,5,

The results of My (4. 4) and N (X, p4) in the Jo
approximation are shown in Figs. 29, 30 and 31, respectively. It is seen

also that these results are nearly the same as those for the monodirectio-

nal source with M, = 0.5 except those for 7L(ayu) "no(ayuoul)

being given by S(/‘/K,),fo?(-zaﬂ,) .

Table 4 shows the results of 7(X%) , J(2,) and M (1) ay
in the }, —approximation. And the analytical expressions of them in

the extreme cases are given as follows:

- 14 (—},@0(— ‘(+l'1‘“|%|,f1120() , D(/l/l\ _)O;
%W(L'}")’V Wl[li(,_%l—‘jlx)] O(—>OO ,

’ (31)
X h2p-Y+1) 3
= Jp20t-Y+ 1)

/2 (~fn20t-Y+1)
/2 (& (hn2ot-¥-3)1 |

j<1,>~{

(32)

N~ F (-7 3] ]

o=
T (L) ~501E -5 +4)] J
(33)
\/2) .
I/M(To7\av hd { /2 fl+20((‘}'l20(—b/")] ) *0

% 2/3 (mVGas),

5/7 (14 1/35&) ),

(34)
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4, Conclusions

The reflection and the transmission of neutrons for the homogeneous

slab has been dealt with by a new analytical method, the multiple collision

method,

In the constant cross section approximation, the expression for the
number of leakage neutrons from the slab in a direction with /H as a
result of the rV—th collision of a monodirectional or spherically symmetric
incident neutron, has be derived at first. And then the sum of this number
over N and further the integration with respect to /& , the directional
cosine of the emission angle, have been performed to get the total number
of leakage neutrons. Moreover, the total neutron current at the surface of
the slab, the so-called albedo for this slab and the average cosine of the

emission angle of the leakage neutrons have been obtained.

Furthermore, it has been shown that these are easily extended to the
case of that the cross section for the medium i1s assumed according to the
two-group model. And the critical condition of the slab in the one-group
approximation has been derived and shown that 1t coincides with the one

obtained in the previous work,

The numerical results have been obtained by trunceciing the infinite
sum in which all the above-mentioned expressions are written, By comparing
some results with the exact ones, it has been shown that our results in the

}4 —approximation, where only the first five terms in the infinite sum
are taken into account, are very accurate especially for the slabs with the
smaller values of 1 , the thickness measured 1in units of the total mean

free path, Even in the j‘-approximation, the results for the quantities

having been integrated with respect to /H such as the total number of

the leakage neutrons, are the most accurate among those obtained by using

other approximate theories ever developed,
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It is believed that the multiple collision method has, again in
this report, revealed itself powerful and useful for obtaining accurate
and plentiful information about neutron transport. Although the present
work is performed under the assumption that the scattering of neutrons
is spherically symmetric in the L system, the method will be extended to
the case without this assumption, Moreover, it is hoped to perform a

further extension of this technique to more general problems.
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APPENDIX I, Expressions of the Functions in Fig, 2

Concrete expressions of J‘-n(-(p)jp'g:
J ‘P)Eﬁ"-{'g (=27,
J gy af= -—?[uu"/f)_JP.(,- )] |

b i) P = g (P )-F 2Py + 5 1-7) ],
Js )P =4 [(nu%") %(1 H’)+ (1+4F) - 15,(,-1 #)]

(}f (-iF)iP = E‘F [(.-fP>~Jr_‘}( )+[Jf’)+3?3-'§ (1-2%F)- J%%(nu”ts)fj%;()—ﬁ@ )]

Concrote expressions of  J (N, M) ‘ta:

7(0,0) = U2 )2z (-2*)+o E, (20r) |

T (1) = 535 =200 gl (1-27%)

T(0, 2)=:fl§('§'z,(z )+lz’°‘)+ﬁ,§(l—f’“)

TQ)=%-dz+3ns W s (H38%)+ 3 & —,W(.—’J“)

T(.3)=45 M,(l ~ 4% )+6’0(3 (145 )+ 8% -L(| Fao)

JG3)=745 30 2 (- £~ T L2 (1 By - B
+332; ( ) |

(0= g 4 S 55803 (- B )+ 2 (4380 35, (%)

Ty e ) i - G-
w3 0=y |

j(‘h‘f)f--%'-:f}a(ﬁ”w{;( +:f% |+I0 d)‘”% 20(_%5_ (;~7zze'13’)+i(f?—&5i(2r

0{5 e—zo(
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O RO I B ),

Concrete expressions of ),”“érin(-fofﬂf” 's:
E‘Zf}o(—io{t)i“= 2 (- B o],
j'odﬂ (-iort)e*t < - g -y (-2 ]
it = gl F 5y )]
f4 ], Cot)at = g (-0 )-8 (-5 )
[ b Gt )%t = (GO + - )-8 (B 2L poey]
Concrete expressions of Sl.o%}n(ioﬁ)f“t 's:
Slm%ja((wf)e'““::ﬁ {820 Eyam)],
Smd@},(icxf)i“f 2xg Lt 58-S (-2 - 2o, (a0)]
J O ) = g - R+ 27 ) 2 127
LGty o% = g - 058 B 30 fp )]

R IXCOLIEE G (O EO T (=557l gam) B0y ]

Concrete expressions of Slw%-jntiocﬂf“f 's:
5”1%4 () £ = o [1-F%4 20 Es (200 ]
(0= ey o)
5 ﬂg&uo(t)é =~ﬁ{;-f5ﬁ“—%’(w%i”}+iU-i“’()*ﬂ-l?g(zx)]
U i) == (- B3 g 22 VB trsn]
Jmc“' % A = 0= Bl 57 s Fh-52%)- L8 (14 847%) 4 25006 ]
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Leading terns of (n(if)F  's for small B
AP pr3psp, (DI Spepr i,
LRI AP Opr g, LRI s P pripbpt),
b (~fﬁ>fﬂ~#ﬁ*('—ﬁ+#ﬁ*~ﬁf§>.

Leading terms of TJ(N,M) ‘s for small (X ( ¥ ; the Euler-

Mascheroni constant):

_ 3 2

00,00~ & (fn20-Y+ 3 )+ 2o Jf 2, JO D~ - R fpo- 2 ot
Ly

TOR U500 e, T2 k- Rsur Bsart

d v .

TSNS A 507, Tt 2o

(04)~ - T :

TOBR~ =m0+ 000, TR~ F5x-3547

7<‘k‘f)~7'%bf‘ﬁ§or’+0(a"‘)_

Leadming terms of X%{:Jn(‘ioﬁ)f” ts X%Jn(w('f)qu ts and
5‘ %J,’z(w{'t)jdf 's for small X

7| ;odﬁm(—i“ VAl S‘ %'nam o~ 57% Jociot) 2%t

o | ~hanvrira-kad | FuCharrnd)-Sarda® | o 30t charr 5o

I A0k i L0 NI E RO TP SIS SRy Y T PR D I

: RARLD - (- Fotr Jor) - 950 -y +3L)
3 F(1+0ta)) ~f (%) o

4] Jp(1t0fa) o - Frad ) T o
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APPENDIX II. Expressions of »f,n(/x,) 's up to in the Jﬁ-approximation

Expression of »A( I) in the - and -approximations:
0 ]

Sguy=t4’pmy/ =T 0]

Expression of 1?,( J in the | | - and . -approximations:
s e 2

PY=35 49/ (-7

Expressions of /5’0(/1,) and »/1(/(,) in the j; ~ and J_? -approximations:

F = [ ol T2+ 07 02)) /[H-T00) T D) ~(To) ]

Fuffid)= Led 10,20+ 471k -To ) ]/[ (£-70.0) G T00)-(TO) ],

and the leading terms of the denominator for C = 1 are given by

S(raCha-yr33)], a0
2 5 T4, >
(n-j(o,0))(%—1(:,@)—(7(0,2))~{ | 3

W (- +30), o—>e0.

Expressions of /f,(/u,) and 4/3944,) " in the Js- and }1-approx1mationsx

A= 4 T30+ 43 ,>J<L3>]/ [eT0deT03)-(703)°] |

= [eT0 e e L))/ [ Ge T00)AT63)-(0.3) ] )

and
thé leading terms of the denominator for C=1 are given by

F(-%w) , a0,

(5-TUD)FTE3)-(T03) '~ {
7 | T%(?("%%(‘), A—>00
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Expressions of ,zé(/l,) , ’fzy‘/) and 4?1(/1(,) in the (}‘}—approximat

4{,(/4,>=J5{ AP G TR e T’
+3e 4, ). e THADHTO0TCH] + £ T 0JED+ Tk -7(2 2))]}
=15 {Hﬁ% UR)Ge-Ta)+T0DTCH)]
T4, [T 00N Fe TR ~(Tog) T+ £ )TN ET00D+ Tio257 0, 21
7@(/%5{ E4 P T0DTAD T4 TR)]
e, Y TRD(ET0)+T0 )T+ fi [ (£ Teo)GeT22)-(002 1}

where

D=(fe-Tet)[(ETeeTR2)-(J02) 1 -y thF00)

~(JoDY (TR D)-2J 0T 01)F24) |

and the leading terms of each factor and the denominator [) for C=],
for small (¥ and for large (¥ , are written in the following forms,

respactively:

(5 TG TEDTeOT~ 250 H) ana (LD + @,

TOD-TER) +T0RT A~ 75 (-3 ) and ,gag(,-%ﬂugg—,‘ ),

(0,2)7(2; = 2
JODTRIIT T E -T(2.2)) ~ ~ g0 (-%2%) and g (-

=J(0,0)(3- - 2
(-Jo)(+ J&+)~(7(0) mlfj—[l—o((—}nm_p%)] and %3 (- I%Jrlj%'
JRAET00) 70T 0D ~ X A Chat- ¥+ 3] ana e 0- B+ 350

Dm#fi—a(-inw-h%)] and —,;%:(l—%").
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List of numerical results

Table 1 -

Range of parameters

Item Number of Absolute value Slab thickness Numerical re-
collisions of directional sults are shéwn
N cosine of leak- >a in
age neutron, bul
T 4 M) 0~ 70 0.1,0.3,0.5, 0.5,1,2,4 and 10| Figs, 3~24
0.8 and 1 ‘
'nu,,,,u;/u,) - " " Figs, 25 and 26
ML M) - -~ 0.01~100 Table 2
J’(Ia%) _— _— " "
* — _— " "
I/“(1¥9“0|m
Ty (Fo pt) 0~100 0.1,0.3,0.5, 0.5,1,2,4 and 10| Figs. 27~ 30
0.8 and 1
(YooY _ " " Fig. 31
71(1«) - - " Table 4
Jex) _ _ " "
* —— ——— 1"t 1"
LX),

% The average cosine of the emission

angle of the leakage

neutrons (see Eq.(26)).




Table 2 - Total numnber of neutrons leaking from the slab in the L*—approximation, total

neutron current at the surface and average cosine of the emission angle of the

leakage neutrons in the },—approximation (monodirectional source)

(to be continued)

Slab MO M) NCAM,) \ JCO5 4,0 J@H)
thickness
>=a M, =1 0.5 0.1 M=1 0.5 0.1 M= 1 0.5 0.1 H=1 0.5 0.1
0.01 0.004975 |0.,009902 | 0.04760 | 0.99503 |0.99010 |0.95240 | 0.002533 |0.005041 |0.02423 | 0,99258 | 0,49514 |0.11471
0.1 0.0476¢ [0.09104 {0.32307 | 0.95231 {0.90896 [0.67693 | 0.02595 |0.04950 |0.17440 | 0.93072 | 0.45860 |0.20671
0.5 0.20251 [0.33438 10.60494 | 0.797-9 {0.66562 ]0.39506 |0.12142 [0.19920 |0.34908 | 0,72268 | 0.36640 |0.25130
1 0.34133 10.49838 |0.69756 | 0.65567 | 0.50162 |0.30244 |0.21349 |0.30851 |0.41908 | 0.55486 | 0.30694 |0.21443
2 0.51753 10.65722 {0.78825 | 0.48247 |0.34278 |0,21181 [0.33361 |0.41937 |0.49410 | 0.36909 | 0.23393 | 0.16207
4 0.69098 0,78560 |0.86551 | 0.30902 [0.21441 |0.13450 |0,45271 {0.51197 |0.55977 | 0.21892 | 0.15348 | 0,10573
10 0.85322 10.89824 |0,93485 | 0,14679 |0,10176 [0.06515 {0,56464 |0,59356 |0.61669 §0.10204 | 0,07311 {0.04998
20 0.92189 10,94568 {0.96480 |0,07811 {0,05432 [0,03520 |0,61223 [0.62772 |0,64012 | 0.05444 | 0.03894 | 0.02655 |
100 0.98355 }0.98850 |0.99246 |0.01644 |0.01149 |0,007527{0.65516 |0.65845 |0.66108 | 0.01150 | 0.008218] 0,005591

_gg—,
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Table 2 (Continued)
Slab -/H(O}/M,)av /u(a;/uJaV
thickness
sa /U'= 1 0.5 0.1 /ﬂ= 1 0.5 0.1
0.01 0.5092 | 0,5092 | 0,5091 | 0.9976 | 0.5001 | 0,1204
0.1 0.5442 | 0.5437 | 0.5398 | 0.9773 | 0.5045 | 0.3054 '
0.5 0.5996 {0.5957 | 0.5775 | 0.9062 | 0.5505 | 0.6353
1 0.6254 |0,.6190 | 0,.6027 { 0.8424 |0,6120 [ 0,.7039
2 0.6444 |0.6380 | 0.6302 §0.7653 | 0.6826 | 0.7502
4 0.6546 {0.6519 | 0.6498 1 0.7098 |{0.7151 [ 0.7633
10 0.6614 {0.6610 | 0.6607 | 0.6977 {0.7165 | 0,7497
20 0.6639 10,6639 { 0,6638 | 0.6989 |0.7154 [0.7441
100 0.6661 1 0.6661 | 0.6661 | 0.6998 {0.7145 |0,7401

-bg-
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'I'abie 3 -~ Comparison of the total number of meutrons transmitting
the slab.
Diractional cosine Slab Chandrasekhar's | Grosjean ‘s |Our J‘r— Our 4~
of ineident neutron | thickness | exact theory approxima-|approxima- | approxima~
' /4,(, a tion tion tion
0.1 0.9523 0.9523 0.95231 0.95231
1 0.5 0.7974 0.7968 0.79749 0.79749
1 0.6590 0.6565 0.65867 0.65863
0.1 0.9089 0.9089 0.90896 0.90896
0.5 0.5 0.6654 0.6634 0.66562 0.66561
1 0.5018 Q.4960 0.50162 0.50157
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Total number of neutrons leaking from the slab, N (X.) |
T(I") 3

cosine of the emission angle of the leakage neutrons in the

Table 4 -

total neutron current at the surface, and average

},—approximation (isotropic source)

Slab thickness Z4=0.5 1 2 4 10
7(0) 0.37437 | 0.51559 | 0.68035 | 0.78553 | 0.89796
mna) 0.62563 | 0.48441 | 0.33965 | 0.21447 | 0.10204
J(0) 0.22049 | 0.31678 | 0.42048 | 0.51201 | 0.59356
T(@) 0.40767 | 0.33237 | 0.24119 | 0.15412 | 0,07311
—M(D),, 0.5890 | 0.6144 | 0.6368 | 0.6518 | 0.6610
M@y 0.6516 | 0.6861 | 0.7101 | 0.7186 | 0.7165
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