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Experimental Methods and Equipment for Diffusion
Measurements of Radioactive Rare-Gases in Solids
(Rare-Gas Diffusion in Solids 7*)

Suinmary

A literature survey is given on the methods and equipment used

for the measurement of release of radioactive rare-gases in solids,
with a discussion of advantages or disadvantages. Continuous
methods with sweepgas or circulation and various discontinuous
methods are discussed and apparatus used for Hahn emanation-,
DAD- or PAD-experiments are described. In addition references
are given concerning sampling purifying and measuring of radio-
active rare-gases as well as materials to be used for measuring
rare-gas diffusion at high temperatures in oxygen sensible systems,

Introduction

The results of diffusion studies in solids are often influenced by surface
reactions of the specimens and misleading conclusions concerning the
diffusion coefficients may result. This fact has been stressed by others,
e.g. by Gray [ 7] for the work on uranium metal. Other sources of error
in diffusion experiments with radioactive rare-gases are numerous.

In connectioﬁ with the work of our group [ 1-6] on rare-gas diffusion in
solids, a great deal of effort has been exerted in designing suitable
apparatus and techniques. This report describes some of the equipment
used and has been extended to a review of some experimental techniques

used elsewhere for diffusion studies of radioactive rare-gases.

In the following the abbreviation PAD is used for post-activation diffu-

sion and DAD for dum-activation diffusion or in-pile measurements

(cf. [5]).

This work was carried out under the EURATOM research and development

contract Nr, 064-61-8 RDD.

* Earlier publications cf. references 1-6



] CONTINUOUS METHODS

The advantage of a continuous method is that a fast release of fission
gases may be recorded and the kinetics may in this way be studied. The
main drawback with a sweep gas method is connected with the difficulties
in producing a pure enough gas, as even ca-refully treated gas can corm-
de a sample in a short time. In order to aveid the difficulties of purify-
ing the continuous feed of incoming sweep gas, a forced circulation
method may be used. Thereby the purified carrier gas is pumped back

to the specimen and the accumulated activity is recorded.

1.1 Sweep gas method

A principle lay-out of the apparatus is given in Figure la. Helium is
preferred as sweep gas as it facilitates the removal of krypton and
xenon with the aid of cooled charcoal traps. The helium passes a purifi-
cation system to remove corroding impurities and enters the furnace.
with the specimen from where the released gases are carried through

a second purification system in order to remove all components save
rare-gases., The stream then passes a monitoring and measuring device
where the radioactivity is continuously recorded. For detailed analysis,

gas saumples are collected for subsequent measurement,

A swecep gas rnethod may be used for Hahn emanation as well as for
DAD and PAD experiments; the equipment used is in principle the same

as described in Figure la.

1.1.1 Hahn emanation techniques

Simple sweep gaé apparatus used for measuring the emanating power
were early developed [8]. More sophisticated designs including auto-
ma‘t.ic registration of temperature and rate of release have been descri-
bed in great detail by Zimen [9, 10], and Figure 2 shows a typical setup.
As the measured gas in these experiments was an alpha emitter, electro-
meters were suitable detectors and were also developed to a high state,
of perfection. Gregory [11,12] later described a similar flow system

for measuring thoron emanation from -180°C to 1650°C. Bevan [13]
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used a scintillation counter instead of an e].evctrometer and Skladzien

[14] developed a cylindrical geometry proportional spectrometer for

the counting.

1.1.2 DAD experiments

1

The first detailed description of a dummactivé.tion. ai)éaratus 1s givé»n“v
by Markowitz [15]. Later a number of in-pile experiments were perfor-‘
med in Harwell by Stubbs, Walton and co-workers [16-21]. The tech-
nique used is nearly identical in all the experiments [16, 17,22] and
permits measurement of rare-gas release up to 1000°C. The upper
temperature limit is due to the fact that the specimen is contained in

a quartz tube which is electrically heated. By using ceramic material,
higher temperatures could be reached if the safety of the reactor so
permits. Details of the apparatus used, especially of the specimen

capsule design are given in ref. [17, 22],

Stubbs and Walton have investigated the influence of the sweep gas
velocity on the composition of the radioactive gas reaching the counting
chamber. If the velocity of the gas is so adjusted that the fission gases
reach the detector in the order of minutes, a number of nuclides .with
short half-lives are registered. The résulting gamma spectrum con-
sists largely of superimposed peaks and is furthermore too corﬁplicated
to be analyzed. If the gas velocity is lowered until the radioactive gases
take hours to reach the detector, the short-lived isotopes have decayed
away, leaving the gamma peaks from Xe-133, Xe—i35 and Kr-85m to

be registered.

A similar technique has recently been used in Oak Ridge by Carroll
and Baumann [23], Figure 3. With a suitably designed charcoal trap
krypton has a hold-up time of five minutes while xenon is delayed for
two hours. This enables krypton to be measured separately until xenon
breaks through. However, they also found that solid daughters of
krypton and xenon contaminate the walls of the counting chamber,

amounting to about one third of the total activity.

As distinguished from the heating technique previously described, the
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uranium specimens investigated contained fissile material in such a
quantity that they were heated by their own fission heat. However, in
this case only thin specimens may be used if diffusion coefficients are
to be measured, as otherwise too high a temperature difference between
the surface and the centre of the specimen makes a calculation of

diffusion coefficients impossible,

The difficulties of determining the short-lived fission gases have been
overcome by measuring their daughter products [17] which, as mentioned
above, tend to contaminate the gas line. The technique has been thoraugh-
ly investigated by Townley et al. [24] and is described later (see 2.'1.1
and 3.1). The fission products released from defective fuel elements
during their use in a reactor have been determined using sweep gas.

As such investigations do not permit a calculation of diffusion coef-
ficients, the technique used is not covered here. The registered radioac-
tivity originates from a number of nuclides with short and long half-life,

and good results are hard to get even with the best gamma-spectrometer.

1.1.3 PAD experiments

Flow systems using helium and nitrogen as sweep gases have been
used for some time [25]. Cubiciotti [26] has thoroughly described an
argon flow system in which the specimen is heated in a furnace and the
evolved radioactive fission gases are carried through a train of traps
in order to remove all nuclides save the rare-~-gases. The radioactivity
was measured with an ionization chamber. The amount of rare-gases
left in the specimen after heating in argon was determined by burning
it in oxygen. A similar system using argon is described by Bates and

Clark [27].

An apparatus used at the Battelle Memorial Institute for continuous
measurement of the cumulative amount of fission rare-gases is de~
scribed by Rosenberg et al. [28], Figure 4. The sweep gas passes
through a charcoal trap within a scintillation crystal where the radio-
active xenon is absorbed and continuously recorded together with the

temperature of the specimen,
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A similar technique is used by Barnes anci Sp.nderman [29], Figure 5.
In this case the helium used is first continuously analyzed before
entering the fufnace, and the radioactivity of the gas is thus continuoudy
recorded together with furnace temperature, helium flow rate and
pressure, and oxygen and moisture concentrations. The accumulated
amount of fission gas is also measured, as the sweep gas passes
charcoal traps cooled with liquid nitrogen. The successful use of an
apparatus of similar design is reported by Berry and Darras [30] and

by Parker and co-workers [153].

1.2 Forced circulation methoed

The main components of a forced circulation system are shown in
Figure 1b, a detailed example is shown in Figure 6, The method has
been used [31, 32], though difficulties seem to be connected with the
pump, which has to be completely leak tight (see 3.5). Normally the
accumulated activity is recorded, but also rates of release may be
observed. In the latter case, the system is preferably filled with helium,
and the evolved radioactive gases continuously removed with a cooled

charcoal trap before the gas stream returns to the specimen.

1.3 Natural circulation method

In the case of relatively slow diffusion processes the released radio-
active gases have plenty of time to spread evenly to all parts of a closed
system, and the method can be regarded as reliable and requires ouly
simple apparatus. Reynolds |33] used an evacuated closed system for
the postirradiation heating of uranium metal. The evolved Kr-85 was
measurecd with a double walled GM counter which was attached to the
system. The activity was continuously recorded and assumed to be

proportional to the fraction of the tetal krypton leaving the sample.

The method has also been used by Felix [34] to study slow release of
fission gases over longer periods of time. The heated part of the system,
as well as all connecting tubes, has a small volume and the main volume

consists of a counting chamber which is located at such a distance from
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the radioactive specimen that the background activity is low.

2 DISCONTINUOUS METHODS

Many of the apparatus described above for continuous registration of
the rcleased fission gas may be used for discontinuous measurements,
One is forced to measure discontinuously as soon as the released gases
consist of a mixture of many radioactive species. Sampling and analy-
sis of the gas is thus necessary, and specially designed apparatus are

preferable in many cases.,

2.1 Sweep gas method with discontinuous sampling

2.1.1 DAD experiments

Sweep gas methods with discontinuous sampling applied to Xe-133
have been used [35] but the apparatus is the same as described 1.1.2 .,
The discontinuous sampling is in this case a complement to the con-
tinuous measurcment and may possibly also be needed if the registered
gamma spectrum is complicated. At Harwell [36] this procedure has
often been needed; gas collected in the counting chamber (see 1.1, 2)
was sampled and measured frbm time to time, thus making an ana-

lysis of the gamma spectrum possible.

Investigators at Battelle Memorial Institute [24] have determined the
rceleased rare-gases with short half-lives using an in-pile loop,

Figure 7. Sweep helium passes the sample and enters a trap filled
with steel-wool. The mean passing time for the gas through the trap

is 90-125 scconds and most of the Xe-140 (16 sec) and Xe-141 (1.7 sec)
present decays within the trap. The radioactive daughters are absorbed
on the stecl-wool. After removal of the trap the daughters Ba~-140 and
Cc-141 are extracted by chemical treatment and measured . Kr-89
(3.2 min) and Xe-137 (3.9 min) may also be determined in this way.
The method is usable, however, only if the daughters are not released

directly from the fuel together with the rarc-gases, which does not

apply at high fuel temperatures.
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2.1.2 PAD experiments

A discontinuous apparatus for ~postirradiati§n experirﬁents using
helium as carrier gas is described by Booth and Rymer [37], Figure 8.
The specimen is placed in a furnace, through which the purified V
helium in order to sweep out the evolved rare;gases. The krypton

and xenon are trapped by means of activated charcoal cooled with
liquid nitrogen., During the experiment the carrier gas alternates
between two parallel trap lines for a period of 3'to 6 hours. The
charcoal trap is fused off and placed in a fixed geometry over a

spectrometer crystal for measurement of the activity.

A similar apparatus is used at the Oak Ridge National Laboratory [38],
Figure 9, The helium sweep gas carries the rare fission gases into

a train of collection bulb containing activated charcoal at -1900C.
Parallel trains are incorporated in the system so that up to 12 sampes
of fission gas may be collected from a single specimen. The bulbs -
are sealed off and krypton and xenon are measured by means of a

gamma spectrometer.

2.2 Closed systems with discontinuous sampling

Heating a sample in a closed system after irradiation and collection
of the released gases is an often used and reliable method for the

calculation of diffusion coefficients,

The most simple procedure is to heat the specimen in a closed tube
in vacuum or indifferent atmosphere. After the heat treatment the
evolved rare gases are sucked into evacuated counting chambers

[3, 40] and the radioactivity is measured. The tube with the specimen
may aleo contain charcoal, and after heating , this part of the tube

is cooled with liquid air and sealed off [35,39]. By this method a
maximum temperafure of only 11000C can be reached, and possibly
less than that considering the permeability of quartz glass at high
temperatures (see 3.6). '

The following procedures allow heating of the specimen under con-

trolled vacuum conditions. Figure 10 shows the annealing system
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by Auskern and co-workers [41]. Tn the evacuated, closed system the
sample is lowered into the hot zone. During heating there is enough
degassing of the furnace material to raise the pressure to about 0.5 torm
After annealing the sample is raised from the hot zone and the gases
evolved are collected on activated charcoal at —1900C. When the pressure
of the system is low enough, the charcoal trap is sealed off and the

sample may again be lowered into the furnace for further heat treatment.

A similar procedure is used by Schmeling [42], Figure 11. A double-
walled quartz tube is heated ::m a furnace in high vacuum. During this
degassing period the specimen is located at position 1 until the quartz
is completely baked. The specimen is then placed in position 2 in the
hot zone for a certain period of timme. After cooling, spectral pure
krypton and =xenon is added as carrier; the line is connected to a
charcoal trap cooled with liquid air, and the radioactive gases evolved

during heating are collected.

The procedure described permits a clean treatment of the sample. In
order to completely avoid corroding influence of the gases evolved
when heating the furnace material, a method has been developed to
heat the sample in high vacuum [42] to high temperatures. Figure 12
shows the arrangement . The sample is placed in a cool part of the
system during the initial degassing of the furnace material and is later
brought into the hot zone. The furnace is connected to a high vacuum
glass pump via an activated charcoal trap. The evolved gases are
continuously pumped into the cooled trap where they are collected. An
extra trap situated after the high vacuum pump ensures quantitative
collection of the-gases evolved, and it has been found that this second
trap contains less than 1 % of the gases collected in the first one, The
sample is thus annealed in high vacuum, and the addition of small
amounts of spectral pure rare gas carrier from time to time ensures

a complete transfer of the evolved gases.

The method of evacuation through an activated charcoal trap has also
been used by investigators at Chalk River [43], whereby the trap is

continuously monitored with a gamma-ray-spectrometer.
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Other investigators use Toepler pumps as a collecting device or for
intermittent circulation of the gases. In the latter case they may easily
be made to work automatically (see 3.5). Toepler pumps are complety

leak proof and therefore suitable for use in a closed system.

With an apparatus used at Bettis Plant [44], a cé.psulé éontaining the
irradiated specimen may be remotely punctured, and the gases are
released into an evacuated system. The gases are pumped trough
cooled charcoal traps with the aid of a Toepler pump. Felix [3] used
a valveless pump in order to distribute the radioactive gases evenly

in the system, as shown in Figure lc and Figure 14,

Other investigators [27,31, 33, 46,47] also report the beneficial use
of a Toepler pump, as exemplified by the apparatusused by Walker
[47], Figure 13. Belle and co-workers [152] used a closed system '

filled with helium, whereby a Toepler pump circulates the gas through

charcoals traps which were sealed off at various times.

2.3 Irradiation capsule studies

A technique to yield valuable information about the quality of a reactor
fuel element is the method to irradiate capsules. A specimen is irradi-
ated in a closed capsule under simulated reactor conditions and under
rigorous atmosphere control.

By punciuring the capsule the fission gases released can be collected
and measured. However, due to the temperature gradient in the sample
and to the fact that a sample allows just one single measurement of

the quantity of gases reléased though knowledge of release as a function
of time is desirable, such studies are of little value for the calculation
of diffusion coefficients, Therefore, *his technique 1is not fully covered
here, but some interesting studies may be mentioned. An excellent
review is given by Plail [48]. Equipment used [48~54] and details of the
postirradiation examination [44, 51, 53, 55-57] are described by many
authors. The postirradiation examination can be extended to determine
not only the radioactive fission gases evolved but also the stable ones

[55, 56,58] .
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3 AUXILIARY EQUIPMENT

3.1 Notes on counting and sampling techniques

A review onu the counting of rare gas activity is given by Momyer Jr.
[59] . Early investigators describe the use of electrometers [8-11,26]
and GM tubes [25, 60] . With the development of the gamma-scintil-
lations-spectrometer this instrument is the one most frequently used
today [15,16,23,28,29,37,61] and it may even be used for determining
short lived rare gascs by measuring their longer living daughters
[17,24] . '

A "pair production' spectrometer has been used by Stubbs et al.[17].

The collection of rarc-gases on activated charcoal at low temperaturés
is & much used mcethod., Adams and Browning [62-66] have measured
the hold-up of krypton and xenon by charcoal traps and Cannon ct al.
[67] report adsorption isotherms for xenon and argon. An excellent
work is reported by Peters and Weil [68], and a good review is given
by Moinyer Jr. |59].. The use of charcoal traps for the separation

of xenon and krypton with subscquent mncasurement of only krypton is
also possible [231 . The collected activity in a dry ice cooled trap may
be mecasured continuously with a well scintillation crystal [28] .

In this casc one has to consider the fact that the incoming rare-gas
may be adsorbed in different parts of the charcoal column, thereby
affecting the counting geometry [30,150] . Mostly the traps are
arranged in a train and individually sealed off and measured. The
procedure preferred in this laboratory is bo transfer the gases from
the trap into a standardized gas counting chamber which has a thin
aluminium window. These chambers may be stored and measured by

a GM-counter or o scintillation crystal until the contents are assuredly
known. Samples of the gas may also be collected directly without
charcoal trap with the aid of a medical syringe and evacuated serum

bottles as standard counting chambers [69] ,

3.2 Determinalion of fhe total amount of rare-gas presént

The determination of the total amount of rare-gas present.in the

specimen may be made by calculation or by using a suitable dasimeter
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to be irradiated together with the specimen [28,49,70,71] . The de-
termination of U-235 depletion and the ratio of cesium/uranium or
plutonium/uranium [70] is more cumbersome and is not needed in

most cases.

Many investigators determine the total activity by dissolving the
specimen in acid [44,41, 72] or potassium pyrosulphate [30,37,73] .
In order not to des:croy the sample, a second piece of the sample
material may be irradiated together with the specimen and separately

dissolved.

In some cases the total a.ctivityv is determined by burning the specimm
in oxygen [26] . However, the method ca.nndt be recommended as the
rare -gases are not completely released. It is inefficient for the
complete release of krypton and xenon [74,153] , and metallic uranium
is not liberated from its rare-gas contents when treated in air at

temperatures above its melting point [75, 76].

3.3 Purification of sweep gases and inert atmosphere

Inert atmosphere in general avnd'sweep gases in particular have to be
very pure if corrosion of the specimen is to be avoided. Corrosion

is accompanied by a release of rare-gases, and may be mistaken for
diffusion, a fact which is recognized [7] and which necessitates rigor-
ous purification [23,29] . Corrosion of the specimen as a result of
impure gases has been noted during experiments for the study of
diffusion of rare-gases in metallic uranium [16,46,47] , uranium
dioxide [34] and uranium carbide [77]. The effect of oxidation on the
gas release from uranium and uranium dioxide has also been reported
[74 .76, 78, 79] . A number of methods are used to purify rare-gases
[80-84, 86]. Metallic uranium is known to be a good getter for oxygen
and nitrogen [80, 81] and has been used for the purification of sweep
gases [16, 17] . Calcium has been frequently used [23, 55, 56, 80, 82,
83] as well as copper [15, 25,29, 30, 80, 84, 85], titanium [80, 82, 83] ,
zirconium [15,29, 80], magnesium [83], molecular sieve [30], and

activated charcoal [38, 55] at the temperature¢s of liquid air. In order
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to remove the last traces of oxygen, hydrogen may be added, cata-
lyzing the reaction between the oxygen and hydrogen present [23, 86] .
Traces of gas may be adsorbed at the walls of the apparatus and
released wnen the system is heated. In order to eliminate corrosion
as far as possible it is advisable to place the sample in a cold part

of the closed system, where it is kept during an initial degassing
heating period. It is then transferred to the hot zone with a suitable
device, i.e. magnetically operated [29], with winch and chain [38],

or simply by dropping the specimen [42], cf. Figure 12,

3.4 Purification of released fission gases

The gases released from an irradiated specimén at temperatures of
about 1000°C in most cases consist exclusively of krypton and xenon.,
At higher temperatures a number of other elements are vaporized
which makes the measurement of the rare-gases more difficult, The.
main contaminating species is iodine but a whole range of isotopes

may be released at very high temperatures [87-89].

A simple filter [16,23,75, 89] may be used for the condensation and
trapping of radioactive species other than the rare-gases, while a
‘charged wire technique is preferred by other investigators [26, 61,
90,91] . The removal of iodine from gas streams has been thoroughly
studied [92] , and a number of trapping materials have been investi-
gated, such as activated charcoal [75, 93—99] , Linde Molecular Sieve
Material [94,97] , silvered copper [95,97,98] , copper [25,26,30,95
98], silver [4,29,31] , sodium thiosulphate [97] , potassium iodine
[99] , and potassium hydroxide [37,75;76,91,93] . Many of the cited
materials have to operate at elevated temperatures. However, the
most efficient of all seems to be activated charcoal [95,97, 98] which

can operate at room temperature.

3.5 PumEi

For the circulation of radicactive gascs through filters and counting

chambers, a leak proof pump is needed. Few pumps fulfil this
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requirement, and all pumps based on rubber or plastic tubing
[100,101] and diaphragms must be discarded as air easily leaks

through the tube walls [102] .

3.5.1 Mercury displacement pumps

Displacement pumps using mercury are reliable and are very suitable
for circulation if mercury vapors can be tolerated in the system. The
Toepler pump is widely used and can be made to work automatically
[203 - 205] The pumping however is discontinuous,

A mercury displacement pump designed to give a constant rate of flow

is described by Shapiro and Landesman [106].

3.5.2 Magnetically operated pumps

A magnetically operated pump consists of an accurately fitting barrel
;a.nd piston coupled to a pair of valves. The piston has a core of soft
iron and is moving in an electromagnetic field. The pump is completely
sealed and therefore leak proof., It performes well also at pressures

as low as 300 torr [107-11®, 149].

3.5.3 Bellows pumps

A metallic bellow coupled to a pair of valves may be used as a pump
[111]. A cheap and efficient pump of this type is available commercial-~

ly [112].

3.5.4 Blowers

Fans have been used to circulate gases. However, the fan must not be
connected to a motor by a shaft passing through a seal, as such seals

tend to leak. A completely built-in blower is described by Foresti [113].

3.6 Materials

Many authors have reported the corrosion of a specimen during heat
treatment [46,47, 77] due to the pick up of trace impurities from the

surrounding atmosphere, and the effect on the determination ofdiffusion
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coefficients has been pointed out by Gray [7] in the case of metallic
uranium. The mounting of the specimens is also of great importance,
as well as the behaviour of materials present during the heat treatment.
The extreme difficulties to be overcome when heating metallic uranium
are well known, as uranium is an effective getter and readily reacts
with air in trace amounts. The mounting of uranium does not seem to
be a problem, as relatively moderate temperatures are used [114, 115].
Quartz glass has often been used in connection with heat treatment of
metallic uranium, which however leads to corrosion at temperatures
above 800" C [116]. Quartz is slightly permeable for gases already at
700°C [45,151] and special precautions must be taken to inhibit perme-
ation at higher temperatures. Furthermore, the quartz must be baked
in high vacuum in order to remove not only adsorbed gases but also
gases which seem to be solved in the glass [117,118]. The compati-
bility of uranium dioxide at temperatures above 2000°C with various
materials has been reported [119,120}.Tantalum, tungsten, molybde-
num and rhenium seem to be suitable materials in combination with
uranium dioxide.

The uranium carbides are more reactive than uranium dioxide and
caution must be taken when mounting a specimen for high temperature
treatment.. Tungsten, tantalum, zirconium carbide and niobium carbide
seem to be suitable mounting materials. Thoria and pure zirconia seem
to be inert against uranium carbide to at least 2000°C [121-126].

Uranium carbide reacts with platinum [30] and iridium [127].

Details regarding high temperature metals and oxides can be found

in handbooks as well as reports [128-136].

3.7 Furnaces

The literature contains many furnace designs which are quite suitable
for heating a radioactive specimen in vacuum or in a controlled atmos-

o
phere above 1500 C, and the references given below may be useful.
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3.7.1 Resistance furnaces

Wire-wound furnaces are seldom capable of reaching temperatures
above 1500°C. However, with rhodium wire 1800°C may be reached
[29]. The metallic resistor furnaces can be brought to temperatures

in the neighbourhood of 3000°C and are suitable for work in vacuum

or inert atmosphere. They consist of a tube or a coil made of molybde-
num, tantalum or tungsten which is directly heated with a high current

(low voltage) power supply [119,130,137-144].

Graphite resistors have also been used for many years [145].
Adsorbed gases are however difficult to remove from graphite, and
gascous products may also contaminate the furnace atmosphere and

react with the specimen,

3.7.2 Inductinn heated furnaces

In induction heating a current-carrying conductor operates at high
frequency and induces an eddy current in a susceptor made from
graphite, iridium, tantaluim, molybdenum, or tungsten. The susceptor
may be heated very rapidly, in a couple of minutes the temperature
reaches 1500°C. Temperatures of about 2400°C may be achieved

[38,120,130, 146-148]. -
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