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1 Introduction

Electricity markets worldwide have undergone a process of liberalisation in recent decades.

Electricity generation, which was the preserve of state-owned vertically integrated utilities,

is now a competitive industry. However, electricity market structures differ from one

country to the next. One of the significant differences that can arise between markets

is whether they have a specific capacity remuneration mechanism (CRM), and if so, the

form it takes.

A CRM aims to compensate generation firms for owning generation capacity, regardless

of the extent to which it is utilised. An electricity market which includes a CRM is

usually considered as the alternative to an ‘energy-only’ market, in which generators are

compensated on the basis of the energy they generate only. Electricity cannot be easily or

economically stored, and blackouts or brownouts are not socially or politically acceptable.

There is thus a requirement for sufficient generation capacity to meet demand at all hours

of the year, including peak demand hours, and so some peaking units are required which

cannot expect to generate for more than a few hours per year. Ensuring sufficient revenue

to render such units economically viable is the main reason for CRMs.

There are several arguments put forward as to why such low-load units would not

prove viable in the absence of a CRM. The first is the absence of an active demand-side

in electricity generation markets, which means that consumers cannot signal their desired

level of reliability of supply (Cramton and Stoft, 2005). There is therefore a weaker price

signal for reliable supply, and consequently for electricity generation capacity. There is also

an opportunity and incentive to exercise market power, particularly in the period close to

real time. Another argument in favour of CRMs is the the shared nature of the electricity

network. This introduces a ‘free-rider’ problem, whereby it is not possible to differentiate

between consumers who had entered into a contract for reliable supply. The imposition

of price caps in electricity markets, often for political reasons, is also argued to reduce

investment incentives for low-load units (Grigorjeva, 2015). Finally it can be argued that

electricity has public good characteristics (Abbott, 2001), and so policy-makers may be

reluctant to leave the secure supply of generation capacity to market forces. Each of these

factors, alone or in combination, mean that generators face a ‘missing money’ problem in

relation to recovering their fixed costs (Stoft, 2002). Thus separate capacity remuneration

mechanisms have been proposed as a means of compensating generators for the cost of

holding capacity, separate from providing energy (Cramton and Ockenfels, 2012; Cramton
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and Stoft, 2008; Botterud and Doorman, 2008).

In recent years, the increase of variable renewable generation, such as wind and pho-

tovoltaic solar, in modern power systems has given rise to more calls for some form of

CRM. Such generation is semi-dispatchable (i.e. can only be dispatched down) and has

zero or near-zero marginal costs. Thus the units enter the market at the bottom of the

supply curve and displace thermal generators, as well as depressing the prices earned by

all generators in the spot market. However, given the fact that the output of renewable

generators is variable and relatively unpredictable, there is still a need for excess ther-

mal generation units to ensure sufficient supply at all hours of the year. These effects

exacerbate the ‘missing money’ problem (Cramton and Stoft, 2008).

Capacity markets exist in several markets worldwide to date. In the USA, capacity

markets exist in the Pennsylvania-New Jersey-Maryland (PJM), New York Independent

System Operator (NYISO) and the Mid-Atlantic System Operator (MISO) markets. The

European Commission is skeptical at best on the requirement for CRMs (European Com-

mission, 2013). However according to Caldecott and McDaniels (2014), in 2013 European

energy companies announced mothballing of over 20 GW of gas power plants, giving rise to

concerns that capacity remuneration was necessary. At present in Europe, capacity pay-

ments exist or are planned in Spain, Portugal, Great Britain, and Ireland and are under

consideration in Germany, France, Italy, Spain and the Netherlands (CREG, 2012). For

an extended discussion on the capacity payments under consideration, see ACER (2013)

or CREG (2012).

Capacity mechanism designs can be broadly categorised as ‘price-based’ or ‘quantity-

based’ ACER (2013). Price-based mechanisms provide a regulated payment designed to

mimic the inframarginal-rent an otherwise-marginal generator would receive, and is dis-

tributed equally among all generators. Quantity-based mechanisms see supply companies

or the System Operator contracting ahead for a fixed amount of capacity, typically equal

to the expected peak demand in a given period. Within each of the price and quantity

categories there are numerous types of CRMs; for an overview see Botterud and Doorman

(2008) and for a more detailed discussion see De Vries (2007).

While capacity markets are found in many modern electricity markets and are under

consideration in many more, the optimal design of CRMs is an area of active research.

Hobbs et al. (2007) considers the implications of using dynamic demand curves rather than

specific demand targets in quantity-based mechanisms, and finds that demand curves re-
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duces costs and risk for consumers and producers. Khalfallah (2011) use a dynamic model

under Cournot competition, and find that ‘market-based’ mechanisms are more efficient

than non-market based mechanisms in securing generation investment, but that under

cartel and monopolistic situations market-based mechanisms increase installed capacities

and consumer costs. Meyer and Gore (2014) consider the cross-border effects of using

strategic reserve and reliability options to ensure capacity adequacy in two interconnected

markets.

One question which has not been addressed in the literature is the extent to which the

reliability of the units themselves impacts on capacity payments, and whether and how

to incentivise generators to invest in refurbishing existing generation capacity in order to

improve their reliability. The reliability of a unit can be broadly interpreted, but it should

not be ignored in capacity payment design1. The reliability can be thought of as the

number of hours of the year where the unit can be expected to be available for generation.

In terms of thermal generators, the reliability is therefore one minus the forced outage

rate, whereas for a renewable generator the reliability is a function of the weather, and is

linked to the capacity value of the unit in question.

The reliability of generation units has an impact on market clearing prices, both di-

rectly, by seeing market prices increase when units are unavailable to generate, and in-

directly, by inducing different levels of investment by generation firms, which impacts on

market-clearing prices. Thus, the price paid by consumers, the total reliability of the sys-

tem, the final levels of generation and the profits of generators are all dependant to some

extent on the reliability of generation units. This paper considers the equilibrium prices

and generation capacity that arise on a system with unreliable units.

The paper considers these market outcomes when generators, each with a given reli-

ability, compete in a market that includes energy and capacity payments. We consider

one price-based capacity payment mechanism and one quantity-based capacity payment

mechanism, both of which are found in energy markets. The effect of refurbishment of

exiting units, and the impact on prices and unserved energy, is considered. A case study

is presented with stylised generation firms. Cost parameters are chosen from a variety

of sources and reliability and elasticity parameters are taken from the Single Electricity

Market (SEM) of Ireland.

In order to model these markets, we construct the problem as a stochastic Mixed
1The appropriate design of penalties in the case of nondelivery of energy by units in receipt of capacity

payments, for example, is a difficult issue that has not been resolved
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Complementarity Problem (MCP). MCPs allow the optimisation problems of multiple

players (in our case we consider multiple electricity generation firms) to be solved in

equilibrium by comparing the Karush-Khun-Tucker (KKT) conditions for optimality of

each of the players and connecting them via market clearing conditions (Gabriel et al.,

2012).

The stochasticity of the models arises from the uncertainty surrounding the availability

of units in any given period. As we wish to compare the effects of investing in new units and

refurbishing existing units, we allow firms to invest in refurbishment, which increases the

probability of their unit being available. Thus the stochastic MCPs we employ incorporate

endogenous probabilities.

The remainder of this paper is structured as follows. Section 2 outlines the mathe-

matical formulation of the three different capacity remuneration mechanisms considered.

Section 3 describes the input data used. Section 4 outlines the results obtained. Section

5 discusses the results and section 4.1.2 concludes.

2 Methodology

Consider the case of n generation firms. The firm’s objective is to maximise profits, which

they earn in both energy and capacity markets.

We compare three different capacity payment mechanisms. The first mechanism is a

price-based mechanism, whereby a capacity pot is calculated on the basis of the investment

cost of new generation multiplied by the amount of generation required to meet the peak

electricity demand. Thus, the pot is calculated so as to mimic the inframarginal rent an

otherwise-marginal unit would require in order to break even, as mentioned above. This

pot is divided evenly among all generators on the basis of their capacity2.

The second mechanism is a quantity-based capacity payment mechanism, whereby

generators compete in an auction to hold reliability options. Generators in possession

of reliability options can be called on by the Transmission System Operator (TSO) to

generate at a predetermined strike price during times of system stress, thereby shielding

consumers from very high spot prices. For a full description of reliability options see

Vázquez et al. (2002).

The models for each of the mechanisms are outlined below.
2This resembles the capacity payment mechanism which is in place in the Single Electricity Market

(SEM) of Ireland at present (CER and NIAUR, 2006)
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2.1 Capacity pot mechanism

2.1.1 Firm f ’s problem

Firm f maximises their profits by choosing the amount of generation, refurbishment of

existing capacity, investment in new capacity and decommissioning of existing capacity as

follows:

max
invf,t,

genf,t,p,
exitf,t

refurbf,t

Πf = max
invf,t,

genf,t,p,
exitf,t

refurbf,t

∑
t

(
(invf,t + CAPf,t − exitf,t) ∗ cp− (invf,tICOSTt)

− (CAPf,t − exitf,t)MCOSTt − refurbf,tRCOSTt

)
+
∑
t,p,s

prsBf,t,sgenf,t,p,s

(
γp,s −MCt

)
(1)

subject to:

genf,t,p,s ≤ invf,t + CAPf,t − exitf,t, ∀t, p, s (λ1
f,t,p,s), (2)

Rf,t + refurbf,t ≤ Rf,t ∀t, (λ2
f,t), (3)

where t represents different energy technologies and p represents different time periods.

The decision variables for firm f are invf,t, exitf,t, genf,t,p,s and refurbf,t representing

market investment, market exit, generation and refurbishment decisions respectively. Each

scenario s represents a different combination of units being available/unavailable.

The energy price at each period for scenario s is (γp,s) while cp is the capacity price paid

for each unit of installed capacity. The prices γp,s and cp are exogenous to firm f ’s problem

but are variables of the overall problem. The parameters RCOSTt, ICOSTt, MCOSTt

are the costs of refurbishment, investment in new generation and the maintenance cost

of existing generation3 for each unit respectively, while CAP and MC are the initial

endowment of generation capacity and the marginal cost of production of each technology,

respectively. The parameter Bf,t,s is a binary indicator, describing whether firm f with

technology t is available (Bf,t,s = 1) or unavailable (Bf,t,s = 0) in scenario s. The reliability

(or probability of being available) for firm f with technology t is Rf,t+refurbf,t where Rf,t

3New investments are considered to have a lower maintenance cost, and so MCOST can be thought of
as the premium on maintenance costs for existing capacity over and above new capacity.
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is a parameter representing initial reliability before refurbishment. Hence the probability

associated with scenario s is:

prs =
∏
f,t

(Rf,t + refurbf,t)Bf,t,s(1−Rf,t − refurbf,t)1−Bf,t,s . (4)

Constraint (2) ensures that generation for given unit and time period cannot exceed

the amount of installed capacity while constraint (3) provides an upper bound for the

reliability of each unit. The variables in brackets alongside constraints (2) and (3) are the

Lagrange multipliers associated with those constraints. All primal (decision) variables of

this problem are also constrained to be non-negative.

2.1.2 Market clearing conditions

The market clearing conditions that combine each of the firms’ problems are

∑
f,t

Bf,t,s ∗ genf,t,p,s = Zp − E ∗ γp,s, ∀p, s(γp,s), (5)

POT = cp

(∑
f,t

invf,t + CAPf,t − exitf,t

)
, (cp), (6)

where Zp is the intercept of the demand curve for period p and E is a parameter rep-

resenting the elasticity of demand. In this way, total generation is constructed in equation

(5) as a linear function of demand and its elasticity, which follows the approach of Khalfal-

lah (2011). Equation (6) specifies that the capacity pot, which is set administratively and

so is exogenous to the problem, should be divided evenly between all installed generation.

The prices γp,s and cp are the free Lagrange multipliers associated with these constraints.

As each firm’s problem is convex, the Karush-Khun-Tucker conditions are both nec-

essary and sufficient conditions for optimality. The overall model is thus a mixed com-

plementarity problem (MCP) given by the KKT equations for each firm, along with the

market clearing conditions (5) and (6). The full model is outlined in the appendix.

2.2 Reliability options mechanism

In the second mechanism, the firms receive capacity revenues from a quantity-based reli-

ability options mechanism. The reliability options are allocated to firms at a price deter-

mined by a competitive auction. The objective function and constraints for each firm are

similar to the pot without reliability mechanism above, with the addition that generators

6



offer capacity into an auction and some of their capacity wins a reliability option. There is

thus a new variable, cap rof,t, which denotes the generation capacity owned by each firm

and technology that wins a reliability option. Firms holding reliability options must also

repay the difference between the spot price and a predetermined strike price when spot

prices are higher than the strike price.

2.2.1 Firm f ’s problem

As in Section 2.1, firm f maximises its profits by choosing the amount of generation,

refurbishment of existing capacity, investment in new capacity and decommissioning of

existing capacity. Additionally it now also chooses how much capacity to offer in a relia-

bility options auction as follows:

max
invf,t,

genf,t,p,
exitf,t

refurbf,t
cap rof,t

Πf = max
invf,t,

genf,t,p,
exitf,t

refurbf,t
cap rof,t

∑
t

(
cap rof,tcp− invf,tICOSTt

− (CAPf,t − exitf,t)MCOSTt − refurbf,tRCOSTt

)
+
∑
t,p,s

prs

((
Bf,t,sgenf,t,p,s(γp,s −MCt)

)
− cap rof,trebatep,s

)
(7)

subject to:

genf,t,p,s ≤ invf,t + CAPf,t − exitf,t, ∀t, p, s (λ1
f,t,p,s), (8)

Rf,t + refurbf,t ≤ Rf,t ∀t, (λ2
f,t), (9)

cap rof,t ≤ invf,t + CAPf,t − exitf,t, ∀t, (λ3
f,t), (10)

where all previously mentioned indices, decision variables and parameters are as described

in Section 2.1. The variable rebatep,s represents the unit price rebate that each firm f pays

in period p for scenario s for the capacity for which they hold a reliability option. This price

is exogenous to firm f ’s problem but is a variable of the overall mixed-complementarity

problem. In addition to the extra decision variable (cap rof,t) being constrained to being

non-negative, the reliability options mechanism problem also has an extra constraint which

ensures that capacity offered in the reliability options auction by firm f for technology t

cannot exceed its installed capacity (see equation (10)). The variable λ3
f,t is the Lagrange
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multiplier associated with this constraint.

2.2.2 Market clearing conditions

The market clearing conditions include the condition that all elastic demand must be

met, as in the first problem, along with a constraint that the total number of reliability

options awarded must reach the predetermined target set by the regulator. The Lagrange

multipliers associated with these constraints are γp,s and cp, respectively. The rebate

paid by firms holding reliability options also acts as a market clearing condition. The

rebate is paid when the electricity price, gammap,s, rises above a strike price, SP , which

is determined administratively and is known to the firms in advance. The market clearing

conditions are:

∑
f,t

Bf,t,sgenf,t,p,s = Zp − E ∗ γp,s, ∀p, s(γp,s), (11)

TARGET =
∑
f,t

cap rof,t, (cp), (12)

rebatep,s = max(γp,s − SP, 0) (rebatep,s). (13)

As previously each firm’s problem is convex. Hence, the Karush-Khun-Tucker con-

ditions are both necessary and sufficient conditions for optimality. The overall model is

thus a MCP given by the KKT equations for each firm, along with the market clearing

conditions (11) - (13). The full model is outlined in the appendix.

3 Input data

We solve the model for a simplified system with three generation technologies, five time

periods and four generation firms. The five time periods represent summer low demand,

summer high demand, winter low demand, winter high demand and winter peak demand.

Intertemporal constraints are not considered and so the sequence of the demand periods

is not relevant; for simplicity we show the demand intercept in each period in ascending

order:

Period 1 2 3 4 5
Demand (MW) 300 500 750 900 1500

Table 1: Demand intercept (Zp) in each period

We consider three generation technologies which we denote as baseload, midmerit and
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peaking capacity. We consider pulverised coal to be roughly representative of baseload

units, combined cycle gas plants as representing midmerit units and open cycle gas turbines

as the peaking technology for this study. We consider the investment and maintenance

costs to be fixed, as per Shortt et al. (2013) and Hirth (2013) respectively, and use the

marginal costs of production from Shortt et al. (2013). Sensitivities were conducted using

different marginal costs and they did not impact on the final results. The cost character-

istics are given in table 2.

Technology Investment (ICOST ) Maintenance (MCOST ) Marginal cost (MC)
t (âĆň/MW) (âĆň/MW) (âĆň/MWh)

Baseload 100000 25 65
Mid merit 65000 12 40

Peaking 45000 7 83

Table 2: Generation cost characteristics

Firm one is an integrated firm, with investments in all three generation technologies.

Firm two has baseload capacity only, firm three has midmerit capacity only and firm four

has peaking capacity only. The quantities of each are given in table 3.

t f = 1 f = 2 f = 3 f = 4
Baseload 300 300 0 0

Mid merit 200 0 200 0
Peaking 200 0 0 200

Table 3: Initial capacities (CAPf,t) of each firm (MW)

The total generation capacity is 1400MW, which falls 100MW short of peak demand

in period 5. Thus at least 100MW of investment will be required.

The strike price (SP ) in the reliability options mechanism is set equal to the marginal

cost of the most expensive unit, in this case the peaking units. The recommendation in

Vázquez et al. (2002) (in which reliability options were originally proposed) is that the

strike price should be 25% above the incremental cost of the most expensive unit, while

Cramton and Stoft (2005) recommends setting the strike price at the cost of the most

expensive unit. However, the strike price can be set at a higher (or indeed a lower) level

if desired.

The initial levels of reliability (Rf,t)of installed capacity are considered fixed for each

technology and firm. These reliability levels can be thought of as the forced outage rates of

the units and are based on forced outage rates of units found on the Irish system as per the

regulators’ validated model for studying the Irish system (CER and NIAUR, 2013). The

forced outage rate takes a value between zero and one, where zero indicates no reliability
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(i.e. the unit will be continually on forced outage) and one indicates guaranteed reliability

(the unit will always be available when required). In other words, Rf,t is the probability

of being available to generate at each period4. These initial levels are given in table 4.

Midmerit units tend to have slightly lower levels of reliability than baseload units as they

are cycled more frequently (Troy et al., 2010), which adds to wear and tear on the units,

and lower reliability than peaking units, as midmerit plants are online more frequently.

Peaking units are used least often and so have higher reliability.

Baseload Midmerit Peaking
Reliability 0.965 0.955 0.985

Table 4: Initial levels of reliability for each technology and firm

Given these initial levels of reliability for baseload and midmerit units, there are six

units with reliability of less than one. Hence, there are 26 = 64 scenarios which must be

considered, representing each possible combination of units available for generation. The

probability associated with each of these scenarios is a function of the units’ reliability.

The cost of refurbishment (RCOSTf,t) is a continuous variable given as a proportion

of the investment cost. Thus to increase a unit’s reliability from 0.4 to 0.5 costs one tenth

of the investment cost. While this is a simplification, the rationale for this is that no

increase in reliability should cost nothing, and to raise the reliability of a unit from zero

to one entails building a new unit5. The reliability of new investments is assumed to be

equal to one, i.e., a new build is as reliable as any unit can be expected to be.

The elasticity of demand on the island of Ireland is calculated in Di Cosmo and Hyland

(2013) as -0.16, which is in line with international estimates. Following the methodology in

Walsh and Malaguzzi Valeri (2014) we use the elasticity of demand (E) for the wholesale

electricity market of -0.11.

4 Results

The model is solved for both capacity payment mechanisms with and without the possi-

bility of investing in refurbishment. The generic algebraic modelling system (GAMS) was

used to solve the models, employing the PATH solver.
4Note that the reliability of each unit in independent of the period; i.e. the probability of being available

to generate in a given period is independent of its availability in the previous period
5Future work will examine this assumption in more detail
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 1: Results under both capacity payment mechanisms with no refurbishment

4.1 Results without refurbishment

The pot mechanism and reliability options models are first run without taking considera-

tion of potential refurbishments, i.e., they are run with the variable refurbf,t set equal to

zero for all firms and technologies.

4.1.1 Base case

Figure 1 depicts the electricity prices, investment, generation, market shares and profits

per megawatt installed capacity arising under both capacity payment mechanisms.

Figure 1a shows the expected electricity price at each period, i.e. the price at each

scenario weighted by the probability of the scenario (
∑

s probs ∗ γp,s). There is little

difference in the electricity prices arising under the two models with the exception of

period 5. In this period the market price is higher under reliability options, but due to the

rebate mechanism consumers are not exposed to this high price. The weighted average of

unserved demand in each period again only diverges in period 5, where there is slightly

higher generation (i.e. slightly lower unserved demand) under the pot mechanism.

The reason for this difference in unserved demand in period 5 may be explained by

figure 1c, which shows the total generation investments by each firm6. Given the initial
6All firms invest in peaking capacity only. A multi-period analysis may see investment in baseload or
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1400MW of installed generation capacity, and the 1500MW of reliability options available,

there is only 100MW of investment under the reliability options model. Given the fact that

units do not have 100% reliability, this brings about scenarios where there is insufficient

generation available to meet all demand. Under the pot mechanism, however, there is a

higher level of investment, leading to a more reliable system overall and thus less unserved

demand. This is in spite of the fact that the pot was chosen to induce the same amount

of total investment - indeed, the capacity price arising from the reliability options model

is equal to the cost of peaking units, and so the total payout from consumers for capacity

is equal to the size of the pot under the pot mechanism. Thus, a pot mechanism may lead

to overcapacity relative to the reliability options model.

No exit of existing generation takes place under this scenario and so the generation

capacity market shares are determined on the basis of the existing capacity and the 100MW

of new generation. As firms two and three are the only firms to invest the dominant

position of firm one is lessened somewhat under both models. This is because firm one can

earn the same revenues without incurring the cost of investment, and so by not investing,

firm one earns higher profits per MW installed capacity than the firms that do invest. The

profits of firm four are equal to those of firm one, as firm four also does not invest and so

has no investment cost.

In terms of the cost to consumers, the prices and the capacity pots are similar. How-

ever, the rebate mechanism under reliability options leads to lower final costs, as the

difference between the cost of the most expensive unit (e83 per MWh) and the price in

period 5 is repaid to the consumer. Thus from our initial position of slight underinvest-

ment, the reliability options model leads to a lower consumer cost, but the pot mechanism

induces higher investment, which brings about more reliability and lower levels of unserved

demand, while reducing profits for the firms in question.

4.1.2 Varying market concentration

The simulation was repeated with the same amount of total installed capacity, but chang-

ing the proportions of capacity held by each firm as per tables 6 and 5. The results are

shown in figure 2.

The results in this scenario exhibit the same patterns as the base case and concentration

in the market does not appear to have an impact on the arising prices and generation

midmerit technologies
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Firm 1 Firm 2 Firm 3 Firm 4
Baseload 200 400 0 0

Mid merit 100 0 300 0
Peaking 100 0 0 300

Table 5: Initial capacity endowments (CAPf,t) with low market concentration (MW)

Firm 1 Firm 2 Firm 3 Firm 4
Baseload 400 200 0 0

Mid merit 300 0 100 0
Peaking 300 0 0 100

Table 6: Initial capacity endowments (CAPf,t) with high market concentration (MW)

(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 2: Results under both capacity payment mechanisms with varying levels of initial
concentration
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 3: Results under both capacity payment mechanisms with varying levels of initial
reliability

levels. This is due to the fact that entry is not restricted, and so the possibility of new

entry mitigates against the incumbants’ opportunity to exercise market power.

4.1.3 Varying reliability

The analysis is repeated varying the initial levels of reliability according to table 7. The

results are shown in figure 3.

Reliability (Rf,t) Baseload Midmerit Peaking
Low 0.95 0.84 0.98
High 0.985 0.98 0.1

Table 7: Sensitivity analysis on the initial levels of reliability for each technology and firm

Unsurprisingly, expected market prices in period 5 rise under decreased reliability, as

the probability of a unit being unavailable, and hence the probability of the associated

scenarios arising, is increased. The expected unserved energy also increases, particularly

in the case of reliability options. The investments undertaken under the reliability options

model are the same in both cases (100MW in total), but there is increased investment by

the pot mechanism under low reliability. This again shows that, as argued in the base

case, higher levels of investment prove optimal in order to allow generators to provide
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 4: Results under both capacity payment mechanisms with initial over and under
capacity

generation in spite of the unreliability of their generators. Thus the increased investment

improves the reliability of the system without imposing extra costs on consumers. This

again leads to lower profits for firms two and three under the pot mechanism relative to

the reliability options model.

4.1.4 Varying initial capacities

The analysis is repeated for initial levels of over and under capacity according to tables 8

and 9. The resuls are shown in figure 4.

Firm 1 Firm 2 Firm 3 Firm 4
Baseload 200 200 0 0

Mid merit 100 0 100 0
Peaking 100 0 0 100

Table 8: Initial capacity endowments (CAPf,t) with undercapacity (MW)

Firm 1 Firm 2 Firm 3 Firm 4
Baseload 400 400 0 0

Mid merit 300 0 300 0
Peaking 300 0 0 300

Table 9: Initial capacity endowments (CAPf,t) with overcapacity (MW)
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The effect of under and overcapacity on prices and unserved demand is as one would

expect. Interestingly, the unserved demand does not fall to zero even with significant over-

capacity. There is no new investment in the case with overcapacity and the pot mechanism

sees slightly more investment relative to reliability options with undercapacity, in keeping

with the pattern observed above. In the undercapacity scenario, the capacity price falls

to e22 per MW, leading to much lower costs for consumers and much lower profits for

generators. Generators’ profits per MW installed capacity fall under overcapacity relative

to undercapacity with the pot mechanism, as the same pot must be spread over a smaller

number of generators. However this was not enough to induce market exit by firms, either

under the pot model or the reliability options model, as firms were still making a positive

profit per MW of installed generation.

A further sensitivity with an extremely high level of overcapacity (ten times the initial

amount) was performed. There was still no exit under the pot mechanism, as the payment

per MW installed was still higher than the maintenance cost. However exit did take place

under the reliability options model, leaving a total of 2703MW installed. Thus initial

overcapacities of more than this amount would see exit (depending on the initial reliability

of the units).

The reliability options were distributed evenly across the technology types and firms

according to figure 5. The rebate mechanism operates such that a generator holding

an option must repay the rebate to the system operator regardless of whether the unit

was scheduled. Thus it is in firms’ interest to hold both reliability options and back-

up generation, to reduce the probability of their being called on to repay the difference

between the strike price and the reference price while being unable to generate due to

being on forced outage. This may explain the lack of exit by firms under the reliability

options model.

4.1.5 Varying elasticities

Finally the analysis is repeated for different levels of price elasticity of demand of 0.05 and

0.2. The results are presented in figure 6.

The results under varying elasticities follow the same patterns as above, with prices

and unserved demand rising as elasticity decreases. The investment decisions again see

the reliability options model investing only in the generation necessary to reach the total

target amount of capacity.
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Figure 5: Reliability options held by each firm with over-capacity

(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 6: Results under both capacity payment mechanisms with varying levels of elasticity
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 7: Results under both capacity payment mechanisms with refurbishment

In general it seems that in the absence of refurbishment options, a pot mechanism

leads to lower costs to consumers along with a slightly lower level of unserved demand and

a more reliable system. Even in the case of overcapacity, no market exit takes place.

4.2 Results with refurbishment

We repeat the analysis including the refurb variable and equations; all other inputs are

as per section 4.1.1 above.

4.2.1 Base case

The results under the base case are shown in figure 7. All firms invest in refurbishment

of midmerit and baseload units to the maximum extent possible, bringing their reliability

levels to one. Refurbishment does not take place of firm one’s existing peaking capacity

under the pot mechanism; however firm 4, the firm with investments in peaking capacity,

does refurbish its units. Under reliability options, maximum refurbishment takes place.

The increased reliability of the units on the system reduces the peak prices seen in period

5, which were being influenced by the capacity investment cost in the previous models

without refurbishment. This lowers costs to consumers under the pot mechanism (as

consumers were not exposed to the costs under the reliability options mechanism in any
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 8: Results under both capacity payment mechanisms with refurbishment and vary-
ing initial levels of concentration

case) relative to the non-refurbishment model. This decrease in prices in period 5 means

that the total costs to the consumer is equal under the two mechanisms, as the capacity

price in the reliability options model again clears at the cost of investment in peaking

capacity.

The levels of unserved demand have also fallen, confirming that the forced outage of

units was to some degree responsible for unserved demand. Given the refurbishment of

all baseload and midmerit units, the unserved demand in periods 1-4 is not due to forced

outage, and is instead the firms’ optimal level of output given the elasticity of demand.

Investment under each model is now 100MW, as the refurbishment reduced the need

for surplus investment to meet demand. The profits for each firm reflect their investment

decisions.

4.2.2 Varying market concentration

The analysis is repeated with a higher level of concentration in the market, as per section

4.1.2 above. The results are shown in figure 8.

The investments in refurbishment are the same as the base case for baseload and

midmerit units. However, in the case of peaking units, firm one does not invest in refur-
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 9: Results under both capacity payment mechanisms with refurbishment and vary-
ing initial levels of reliability

bishment in the low-concentration input set, while firm four does not refurbish its peaking

units in the high-concentration input set. The unserved energy is therefore about 1MW

higher in period five under the pot mechanism. The energy prices in period five under

the pot mechanism are slightly higher for both higher and lower concentration than that

seen under the base case. However the total increase in costs to consumers relative to the

reliability options scenario, is less than 0.3% (while in the basecase the difference in costs

to consumers was 0.06%).

The integrated firm does not invest in new capacity under either sensitivity, and so

earns highest profits in both cases. The profits of other firms reflect their investment

decisions.

4.2.3 Varying reliability

The analysis is repeated with a higher level of initial reliability, as per section 4.1.3 above.

The results are shown in figure 9.

Maximum refurbishment once again takes place in all technologies, as in case 4.1.3

above. The prices seen under the pot mechanism are higher than those under the reliability

options model for low initial levels of reliability. The increase in costs to consumers is still
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 10: Results under both capacity payment mechanisms with refurbishment and
initial over and undercapacity

low however, less than 0.8% of total costs compared to the reliability options case.

The unserved demand is the same for the pot and the reliability options mechanism

under both input sets, although the unserved demand is much higher under the input set

with high initial reliability.

There is slightly higher investment under the pot mechanism with low reliability, with

110MW of investment overall. Thus, we again see higher levels of new investment to

compensate for low reliability, and this gives rise to the increase in prices in period 5. The

reliability options mechanism and the pot mechanism with high reliability see 100MW

investment each. The investments under reliability options are spread over firms 2-4 while

the investment under the pot mechanism is by firms 2 and 3 only, leading to different

investment costs and thus profits.

4.2.4 Varying initial capacity

The analysis is repeated using initial over and undercapacity, as in 4.1.4. The refurbish-

ment decisions are the same as under previous input sets.

Under the reliability options model, market exit takes place according to figure 11,

leaving only 1500MW of installed capacity. There is no exit under the pot mechanism.
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Figure 11: Market exit with initial overcapacity

Under the overcapacity input set, the capacity price in the reliability options model

collapses to e7 per MW. For the first time with refurbishment, there is a different final

resulting cost to consumers under the two models, with the reliability options model

resulting in a 25% decrease in costs to consumers. This also leads to significantly reduced

profits for generators with the reliability options model and overcapacity. The price and

unserved demand follow the same patterns as observed in previous input sets.

4.2.5 Varying elasticity

Finally the analysis is repeated for varying levels of elasticity, as per section 4.1.5.

The refurbishment decisions follow the same pattern as before. Under the lower elas-

ticity of demand of 0.05, the probability-weighted price in period 5 increases from e83

per MWh to e136 per MWh under the pot mechanism. Consumers are exposed to this

increase in price, and so total consumer payments under the pot mechanism increase by

approximately 1% compared to the reliability options mechanism (the cost of the reliabil-

ity options mechanism again clears at the same cost of the pot). The unserved demand is

also slightly higher under this input set.

Low elasticity of demand induced higher overall investment under the pot mechanism.

As before, reliability options lead to exactly 100MW of investment under both models.

The integrated firm again fails to invest, and so sees higher profits than its competitors.

5 Discussion

In the models that omit refurbishment, the higher levels of prices seen in peak periods

mean that the pot mechanism imposes a higher cost on consumers relative to the reliability
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(a) Expected electricity prices in each period (b) Expected total generation each period

(c) Investment in new capacity by each firm
(d) Expected profits per megawatt installed ca-
pacity

Figure 12: Results under both capacity payment mechanisms with refurbishment and
varying initial levels of elasticity

options mechanism - between 2% and 7%, depending on the input set. This is due to the

forced outages of units increasing the price in the peak period, and under the pot mech-

anism this increase in price is passed on to the consumer. However, the pot mechanism

also induces higher levels of investment, and therefore lower levels of unserved energy.

Thus it appears that the rebate penalty used here is not sufficient to induce investment in

new capacity to ensure security of supply in the case of reliability options, and only the

target level of investment occurs. This is in spite of the fact that the strike price is set at

the marginal cost of the most expensive unit, while the literature recommends setting the

strike price at up to 25% above this level. There may therefore be a case for introducing

extra penalties during period of non-delivery in order to encourage refurbishment of units.

In the case of over-capacity, however, market exit does not take place under the relia-

bility options mechanism, and unserved energy declines. Therefore a system with overca-

pacity will see higher levels of reliability and lower prices. However, the reliability options

mechanism clears at a very low price, reducing total costs for consumers by 20%, indicating

that if a system has overcapacity a reliability options framework may lower costs.

In summary, when considering the case of nonrefurbishment, there is a tradeoff between

higher costs to consumers and higher levels of unserved demand in choosing the capacity
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payment mechanism.

When refurbishment is included, high levels of refurbishment take place, reducing the

need for overinvestment. The total capacity on the system is therefore 1500MW for all

scenarios (apart from the case of overcapacity under the pot payment), electricity prices are

equal to the marginal costs of production in most periods and the payouts from consumers

under reliablity options and the pot mechanism in general are the same.

The two exceptions regarding the costs to consumers are in the case of low elasticity

of demand, where prices rise in period five, increasing costs to consumers in the pot case

only, and again in the case of overcapacity, where the reliability options payment clears at

a low level. In these cases the consumer payment under reliability options is 1% and 25%

lower than in the case of the pot mechanism, respectively.

If policy makers place a high premium on having sufficient capacity to meet demand

but no more, and if a system has significant overcapacity, reliability options may be the

best choice for the system in question. However, the results suggest that, when refurbish-

ment of units is possible, there is no reason as to why overcapacity would occur in the

first place as overinvestment does not take place in equilibrium under either mechanism.

Overcapacity may arise due to generators earning extra rent from energy markets through

some other mechanism which is leading to overcompensation and therefore excess capac-

ity. It is not clear that choosing a capacity payment mechanism to induce exit, correcting

for overcompensation in some other market mechanism, would bring about the optimal

solution.

It should be noted that the assumed maximum reliability level of 1 may be unrealistic;

however the relevant point is to assume that refurbishment can raise the reliability of a unit

to that of a new build. The relevant result is that maximum investment in refurbishment

takes place, which suggests that there is an incentive for generators to ensure their units

are as reliable as possible under both capacity payment mechanisms.

There are several potential extensions for this work. The first is to refine the assump-

tions surrounding refurbishment costs. Another possibility is to relax the assumption

around unlimited competition from new entrants, either by imposing extra costs on new

entrants or by employing a repeated game framework which we anticipate would alter

the results presented here. Finally a dynamic analysis, wherein we model multiple years,

would see the investment decisions change. We anticipate investment in baseload units

rather than peaking units would take place, as the extra hours of operation earning higher
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inframarginal rents would justify their capacity costs. We also anticipate investment by

firm one rather than seeing investment restricted to smaller firms.

6 Conclusion

This paper presents a stochastic mixed complementarity model with endogenous proba-

bilities to investigate the impacts of two different capacity payment mechanisms in elec-

tricity markets. We compare a capacity payment on the basis of a fixed central pot

with a market-based reliability options method. We consider one integrated firm, holding

baseload, midmerit and peaking capacity, and three firms specialising in one technology

each. Generators are subject to forced outages and can refurbish their units to reduce the

probability of same.

We find with no refurbishment decisions allowed, total costs to consumers are lower

under a reliability options mechanism. However, both investment and generation are

higher under the pot mechanism. When refurbishment is allowed, consumer costs are

equal under both mechanisms. The exception is the case of initial levels of overcapacity

and low elasticity of demand, where consumer costs are slightly and significantly higher,

respectively.

Reliability options may reduce costs to consumers in the case of overcapacity in the

short run. However once the target level of capacity is achieved, they are likely to arrive

at a similar cost to consumers but with lower levels of generation. The pot mechanism

does not induce overinvestment, nor does it induce exit with overcapacity. Therefore the

reasons for overcapacity in a given system cannot be attributed to a pot mechanism alone

but rather a conflation of factors, of which a pot mechanism may be one. We leave the

identification of these factors for further research.
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Appendix

6.1 Capacity pot mechanism

The Karush-Kuhn-Tucker optimality conditions for all firms are given below using “perb”

notation, where 0 ≤ a ⊥ b ≥ 0 is equivalent to a ≥ 0, b ≥ 0 and a.b = 0.

0 ≤ invf,t ⊥ −cp+ ICOSTt −
∑
p,s

λ1
f,t,p,s ≥ 0, ∀f, t, (14)

0 ≤ genf,t,p,s ⊥ −prsBf,t,s(γp −MCt) + λ1
f,t,p,s ≥ 0, ∀f, t, p, s, (15)

0 ≤ exitf,t ⊥ cp−MCOSTt +
∑
p,s

λ1
f,t,p,s ≥ 0, ∀f, t, (16)

0 ≤ refurbf,t ⊥ −
∑

s

∂prs

∂refurbf,t

(
Bf,t,sgenf,t,p,s(γp,s −MCt)

)
+RCOSTt + λ2

f,t,p,s ≥ 0, ∀f, t, (17)

0 ≤ λ1
f,t,p,s ⊥ −genf,t,p,s + invf,t + CAPt − exitf,t ≥ 0, ∀f, t, p, s, (18)

0 ≤ λ2
f,t ⊥ −Rf,t − refurbf,t +Rf,t ≥ 0, ∀f, t, (19)

where

∂prs

∂refurbf,t
= (−1)1−Bf,t,s

∏
f̂ ,t̂

f̂ 6=f
t̂6=t

(Rf̂ ,t̂ + refurbf̂ ,t̂)
Bf̂ ,t̂,s(1−Rf̂ ,t̂ − refurbf̂ ,t̂)

1−Bf̂ ,t̂,s , (20)

where f̂ and t̂ are dummy indices representing each firm and technology respectively except

firm f and technology t. Equations (14)-(19), along with market clearing conditions (5)

and (6), represent the full mixed complementarity problem for the capacity pot mechanism

problem.

6.2 Reliability options mechanism

The Karush-Kuhn-Tucker optimality conditions for all firms in the reliability options mech-

anism are
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0 ≤ invf,t ⊥ ICOSTt −
∑
p,s

λ1
f,t,p,s − λ3

f,t ≥ 0, ∀f, t, (21)

0 ≤ genf,t,p,s ⊥ −prsBf,t,s(γp −MCt) + λ1
f,t,p,s ≥ 0, ∀f, t, p, s, (22)

0 ≤ exitf,t ⊥ −MCOSTt +
∑
p,s

λ1
f,t,p,s + λ3

f,t ≥ 0, ∀f, t, (23)

0 ≤ refurbf,t ⊥ −
∑

s

∂prs

∂refurbf,t

(
Bf,t,sgenf,t,p,s(γp,s −MCt)− cap rof,trebatep,s

)
+RCOSTt + λ2

f,t,p,s ≥ 0, ∀f, t,(24)

0 ≤ cap rof,t ⊥ −cp+
∑
p,s

prsrebatep,s + λ3
f,t ≥ 0, ∀f, t, (25)

0 ≤ λ1
f,t,p,s ⊥ −genf,t,p,s + invf,t + CAPf,t − exitf,t ≥ 0, ∀f, t, p, s, (26)

0 ≤ λ2
f,t ⊥ −Rf,t − refurbf,t +Rf,t ≥ 0, ∀f, t, (27)

0 ≤ λ3
f,t ⊥ −cap rof,t + invf,t + CAPf,t − exitf,t ≥ 0, ∀f, t. (28)

Equations (21)-(28), along with market clearing conditions (11) - (13), represent the full

mixed complementarity problem for the reliability options mechanism problem.
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