GRAPHIT:

A DEVICE INDEPENDENT GRAPHIC OUTPUT SYSTEM

Herman I. de Wolde, Aurelio A. Pollicini

December 1978
The GRAPHIT system has been designed to make different plotting devices accessible for computer programs with graphic output for one particular device.

The present version has been written for a large collection of scientific and technical programs which are using the subroutine library for a Calcomp 1136 penplotter. Through GRAPHIT, these programs have now also access to a GOULD 5200 electrostatic plotter and a BENSON 1102 penplotter.

The connection to a Tektronix 4015 will be developed later. Any other device may be linked to the system by a simple FORTRAN program, for which the flowscheme is given in this report.
INTRODUCTION

The basic idea of GRAPHIT is to store the calls from the main program to graphic subroutines in an Intermediate File and to interpret these calls afterwards when a particular plotting device has been chosen. To achieve this, the actual plotting routines are replaced by dummy routines which take care of the link to the Intermediate File.

![Diagram](image)

The Intermediate File has a compressed format. The new plotting routines in the graphic library pass the calls from the main program to a routine called BUFFER, which compresses the data and, when the buffer is complete, writes the record to the Intermediate File.

Reversely, the routine READB decompresses the data and informs the device oriented programs on the tasks which have to be performed.

Some devices, like the CALCOMP 1136, use hardware characters. For the time being, this has been solved by transferring the hardware character callings to the software character generator.

However the definition of the Intermediate File, as will be explained hereafter, offers enough room to treat each character request as a separate call.

The whole design of GRAPHIT is based on flexibility and transparency, which means that not always the most economic solution has been chosen.
STRUCTURE OF THE INTERMEDIATE FILE

The basic elements of the Intermediate File are expressed in bytes. The shortest element is one byte. Other functions need up to nine bytes. The general configuration is as follows:

Fig.2

The N-byte contains a fixed number which indicates the particular meaning of the function and defines as such also the number of associated bytes. There are thus 255 different functions possible of which, for the here presented configuration, only 5 are used.

* N=1 The function defines a pen movement from the present position to a position as specified by the x,y coordinates.

The first bit of the k-byte is called the "mode-bit". If the mode bit is zero, the coordinates are specified incremental.

If the mode bit is one, the coordinates are given as absolute values in relation to the lower-left angle of the drawing surface.

The value of K, without the mode-bit, defines the pen mode:

K=2 pen down (writing)
K=3 pen up (no writing)
K=0 no modification in pen mode

The LL code in the third byte defines the number of bytes for respectively the x coordinates and y coordinates. If the coordinates are defined as incremental (mode bit in K byte is zero), the LL code contains also the sign according to the following table

Fig.3
The following bytes contain either the absolute x and y coordinates or the incremental distances.

The coordinates are specified as integer numbers with an accuracy of 0.001 cm. To save space and maintain the accuracy, one in ten values is given as absolute value and the following nine are specified incremental. However, this ratio may be changed easily; see the description of the routine BUFFER.

* N=3 Defines the end of the Intermediate File. This function does not contain other arguments.

* N=4 Closes one buffer record. This function does not contain other arguments.

* N=6 Other pen colour is wanted. The K byte contains the number of the new pen.

* N=7 Initiates a new picture segment. The following K byte contains the number of the segment, K<256. This feature allows for partial graphic output. One may instruct the device oriented programs to draw only specific pictures from the Intermediate File.

Any other functions can be added with other positive values of N, with the limitation that a complete set of values is of the format:

\[N, X, Y, K \]

in which

N and K are of integer*4 type and
X and Y are of real*4 type

Depending on the significance of the N value, some of the other arguments may be omitted.

Additional options, specified by N, need modifications of the routines BUFFER and READB.

The compressing of the data as explained before, is performed by the routine BUFFER.

Presently the Intermediate File is composed of records of 800 bytes. Each record is ended with one byte of value 4. The Intermediate File recognizes only one coordinate system; the (0,0) point is always the lower-left point of the drawing surface and cannot be replaced.

The units of lengths are centimeters.

The maximum field for a single distance is 3 bytes, which corresponds to a maximum value of 16777 cm, that limits the size of the drawings in both directions.
SUBROUTINE BUFFER

The subroutine BUFFER takes care of the transfers from the calling routines to the Intermediate File and compresses the data according to the previous description. The present version gives error messages and halts the executions of the job for:

N<0
N=2
N=5
N>7

Consequently, any of these values may be used for future options. The calling sequence to the routine is:

CALL BUFFER (N,X,Y,K)

in which some of the arguments may be without significance, depending on the value of N.

The present version is based on records of 800 bytes. The length of the records may be changed by modifying the statements:

DIMENSION NBUFF(200),LB(800)
DATA LBUFF,LLB/200,792/

in which:

LLB=4*LBUFF-8

An equivalent correction has to be applied in the routine READB, which reads the Intermediate File. Presently, BUFFER writes to the Intermediate File the coordinates one time in ten as absolute values and nine times in ten, the incremental values. This feature has been included to save space and maintain the accuracy. However, other proportions may be defined by modifying the statement:

DATA COUNT,NCOUNT/10,10/

For example, if one defines these values both equal to one, the Intermediate File contains only absolute coordinates. The routine READB does not require any related modifications.
SUBROUTINE READB

The subroutine READB reads the Intermediate File and supplies the calling program each time, with a series of arguments in the form:

\[N, X, Y, K \]

in which not all the arguments are always present. However, if the coordinates \(X \) and \(Y \) are specified, these are always given as absolute values; the incremental values are converted into distances in relation to the lower-left point of the drawing surface.

The routine keeps track of the last pen position. The coordinates of this point are always represented by \(XOLD \) and \(YOLD \).

If during the creation of the Intermediate File a program or system failure occurs, resulting in an abnormal closing of the file, READB will try to correct this by inserting a normal exit. This feature allows for the recuperation of partial graphic output.
SUBROUTINE PICTNO

A new routine called PICTNO is available to accommodate the users of a permanent Intermediate File who want to apply segmentation of the drawings. One may, for example, produce a large number of drawings on the quick Gould plotter, then select a few elements on the accurate Calcomp and Benson plotters. The calling statement to this routine is:

CALL PICTNO(K)

in which K is a consecutive element number. PICTNO is called before the related segment. The programmer has to take care that each of the pictures has sufficient drawing space available when previous pictures are omitted. The easiest way is to organize the drawings in a series of rectangles and to place the pen at the lower left corner of each following segment before calling PICTNO(K).

![Diagram of picture numbers]

Fig.4

A more sophisticated routine will be developed later.
DEVICE ORIENTED PROGRAMS

Each plotting device needs a separate main program with the following functions:

- Read special input depending on the type of device. For example: scale factors, line weights, erase option
- Read requested segment numbers
- Read the Intermediate File through the routine READB
- Analyse each task element and decide if it is relevant for the particular device
- Apply multiplication factors
- Skip not requested elements
- Close the graphic output file
- Submit messages

All the different main programs have the same structure as is illustrated in the following flowscheme.

Any additional option, specified by a positive value of N other than 1, 3, 4, 6 or 7 may be inserted at the indicated place, without disturbing the general flow of the main program. However care must be taken that in the case of a real pendiplacement of a deleted segment, the values XDEL and YDEL have to be corrected.
THE APPLICATIONS OF GRAPHIT

This chapter describes shortly the applications of GRAPHIT, together with the necessary control cards. The here specified configuration is only valid for the computer installation of the JRC, Ispra Establishment. Modification and streamlining of the procedures might be necessary in the future.

The present plotting devices are:

- Calcomp 1136 3 pens
 axial pen movement about 9 cm/sec
 increment size 0.05 mm
 plot size in y-direction 83 cm

- Benson 1102 3 pens
 axial pen movement 5 cm/sec
 increment size 0.05 mm
 plot size in y-direction 32 cm

- Gould 5200 electrostatic plotter
 200 points/inch, resolution 0.13 mm
 linear paper speed 4 cm/sec
 plot size in y-direction 28 cm

From these specifications it is clear that the Gould plotter is most fit for test runs: The device is very quick but the accuracy is not very high. The turnaround time is favoured by a cutting device which makes the drawings immediately available.

The Benson plotter may be used for accurate drawings of limited size as the plotting area is only 32 cm high. This size is sufficient for a large part of the production and it has the advantage that the user needs not to bother about economic paper use in the y-direction.

For the time being, all these plotters are used off-line.

The next diagram gives the relations between the hardware and software components. The letters point to the related paragraphs.
Fig. 6

GRAPHIT SYSTEM

Applications based on the present graphic library

GINO-F

New graphic library

Intermediate File

Tektronix 4015

Calcomp plotter

Gould plotter

Benson plotter

PAGE 9 - 8
A. Existing applications directly to Calcomp

The Calcomp plotter may be used as normal, without the services of the intermediate file. The system library SYS1.EURLIB contains the calcomp routines as are described in the manual which may be obtained from the Installation Notes by the job:

```
//......... job ........
$ LINES 003
// EXEC LITNO,MEMB=PCAL
```

The output file is created on private tape as always. The DD statement for this file is:

```
//GO.FT16PO01 DD UNIT=TP9,LABEL=(,OUT),DISP=(NEW,PASS),
// VOLUME=(PRIVATE,SER=EUxxxx),DSNAME=PICT,
// DCB=(RECF=V,S,BLKSIZE=488,LRECL=484,DSN=EUxxxx)
```

in which EUxxxx is the tapenumber.

B. Existing applications to Intermediate File

The graphic output of programs which are using the standard Calcomp calling modes may be stored in an intermediate file. This file has to be created by the user and may be temporary or permanent and may be stored on disk or tape. If the file is temporary normally on scratch disk, the preparation of the graphic data, for a specific device, has to be executed in a second jobstep (see par. C). The next example gives the deck composition for the creation of a temporary intermediate file on scratch disk:

```
// EXEC FTGCLG,PRN=GRAPH,VLB=COPICA,UL3=DISK
//CMP.SYSIN DD *
fortran deck
//GO.FT16PO01 DD DSN=8INTERP,SPACE=(CYL,(2,2)),
// DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(RECF=V,S,LRECL=800,BLKSIZE=804)
//GO.SYSIN DD *
input data
/*
```

The called procedure may also be FTL or FTLG. Programs which exist as load modules have to be re-linkededited. The plot command routines PLOT, FINTRA, FACTOR, FINIM, WHERE, NEWPEN and SYMPHI are replaced by pseudo routines with the same names out of the library SYS1.LIBGRAPH. These pseudo routines take care that the plot commands are stored, through the routine BUFFER, in the Intermediate File. Normally this job step has to be followed by a second step which creates the devices oriented tape file. (See par. C).
The following example gives the DD statement for a permanent file on a private tape, with density 3:

```
//GO.FT16F001 DD DSN=dsnname,DISP=(NEW,PASS),UNIT=TP9,
//   LABEL=(1,SL),VOL=(PRIVATE,SER=EUVyyy),
//   DCB=(RECFM=VS,LRECL=800,BLkszE=804)
```

Problems concerning the scales of the drawings when programming for the Calcomp plotter and testing an other device are solved on the level of the device oriented programs (see D and E). When a system or program failure occurs during the creation of the Intermediate File, the system closes the file with an EOF and the existing part may still be plotted.

C. Intermediate File to Calcomp plotter

If the intermediate file is temporary and will be processed in the same job as it was created, the control cards are:

```
//STEP2 EXEC CALCOMP,TAPE='EUxxxx'
//CLP.SYSIN DD *
/*
   picturenumbers which are read as (12I6)
/*
in which EUxxxx is the output tape identification.

The input data give the number of the pictures which are to be processed. These numbers need not to be oriented and may contain blank fields. If you want to draw all the images or when the picture numbers are not defined, it is sufficient to insert a blank card here.

If the Intermediate File has been stored on tape, the card configuration becomes:

```
// EXEC CALCOMP,TAPE='EUxxxx'
//CLP.FT15F001 DD DSN=dsnname,DISP=(OLD,PASS),
// UNIT=TP9,LABEL=(1,SL,,IN),VOL=(PRIVATE,SER=EUVyyy)
//CLP.SYSIN DD *
/*
 picturenumbers
/*
```

D. Intermediate File to Gould plotter

If the Intermediate File has been defined as temporary and will be processed in the same job as it was created, the control cards become:

```
//STEP2 EXEC GOULD,TAPE='EUxxxx'
//GLD.SYSIN DD *
FACTOR,IFORM,NCOPY,INT,MAX (P6.2,4I6)
INP (1) (12I6)
/*
```
in which

FACTOR is the scale factor. If not specified the program takes a default value of 0.32. This is the ratio between the paper height of the Gould plotter and the Calcomp plotter.

IPORM is the background pattern number
- 0 blank background
- 1 squared background
- 1 black background with erased lines

NCOPY is the number of copies wanted

INT is the line intensity
-2 triple
-1 double
0 normal
1 half
2 one-third

MAX is the maximum length of the plot in x direction

INP(i) are the desired drawing segments. If omitted all segments will be processed.

If the Intermediate file has been stored on tape, the card configuration becomes:

```c
// EXEC GOULD,TAKE='EUxxxx'
//GLD.FT15F001 DD DSN=dsname,DISP=(OLD,PASS),UNIT=TP9,
// LABEL=(1,SL,IN),VOL=(PRIVATE,SEF=EUyyyy)
//GLD.SYSIN DD *
data
/*
```

in which

EUyyyy is the identification of your Intermediate File tape
EUxxxx is the identification of the output file tape.

E. Intermediate File to Benson plotter

The temporary Intermediate File may be processed in the same job as it was created, with a tape file output for the Benson plotter, by the following jobstep:

```c
//STEP2 EXEC BENSON,TAPE='EUxxxx'
//BNB.SYSIN DD *
FACTOR (P6.2)
INP(i) (12I6)
/*
```
in which

\( \text{FAcToR} \) is the scale factor, if omitted the program multiplies all the input values with 0.37 being the ratio between the Benson plotter y-size and the Calcomp plotter y-size.

\( \text{INP}(i) \) are the desired picture segments. If omitted the program processes the complete intermediate file.

If the Intermediate File is a permanent one stored on tape, the job becomes:

```// EXEC BENSON,TAPE='EUxxxx' //BNS.FT15F001 DD DSN=dname,DISP=(OLD,PASS),UNIT=TP9, // LABEL=(1,SL,,IN),VOL=PRIVATE,SER=EUyyyy) //BNS.SYSIN DD *

data
/*
```

F. GINO-F to Calcomp Plotter

The subroutines of the GINO-F package are available for direct drawing on the Calcomp plotter by the next job:

```// EXEC FTGCGLG,PRN=GINOF,VLB=COPICA,ULB=DISK //Cmp.SYSIN DD *

fortran deck
/*
//GO.FT16F001 DD UNIT=TP9,LABEL=(),OUT),DISP=(NEW,PASS), // VOLUME=(PRIVATE,SER=EUxxxx),DSNAME=PICT, // DCB=(RECFMT=VS,BLKSIZE=488,LRECL=484,DEN=2) //GO.SYSIN DD *

input data
/*
```

G. GINO-F to Intermediate File

The link of the GINO-F package to the Intermediate File is available but it will be explained in a following report on the Extended Graphic Library.

J. Calcomp Subroutine Library

The Standard Calcomp subroutine library remains available as it has been described in paragraph A.
H. Gould Subroutine Library

The use of the Gould Subroutine Library will be limited to its function as a back-end to the Intermediate File. Only in special cases a user may request for a direct access to this library. The special functions of the Gould plotter, for example the surface grey levels, will be embedded in the general graphics library.

K. Benson Subroutine Library

Also this library is generally not accessible for the users; the use of the Benson plotter is only possible through the Intermediate File.

L. Tektronix and the Intermediate File

It is planned to apply the Tektronix display for the scanning of the Intermediate File. However this link is not yet available.

SURVEY OF LIBRARIES

The GRAPHIT system makes use of the following libraries:

SYS1.EURLIB which contains all the present Calcomp routines
SYS1.LIBGRAPH which contains:
  BUFFER(*), PLOT(*) (with entries FACTOR, FINIM, WHERE), FINTRA(*), NEWPEN(*), PICTNO(*), SYMBL4(*)
SYS1.LIBPROG which contains:
  READB(*), CALCO(*), BENSON(*), GOULD(*)
SYS1.LIBBENS which contains the BENSON library
SYS1.LIBGOULD which contains the GOULD library

(*) The routines marked with an asterisk are listed in the appendix.
SUBROUTINE READKN(X,Y,K)

VERSION WITH COMPRESSED STORAGE - JAN. 1978 BY HERMAN IOE WOLDE
THE CONSTRUCTION OF THE BUFFER IS EXPLAINED
IN THE COMMENTS OF ROUTINE 'BUFFER'.

DIMENSION NBUF(200), LB(800), KB(4)
LOGICAL LB, KB
EQUIVALENCE (NBUF, LB(1), KB(1), KFULL)
DATA LBUFF, LLB, IBUFF/200, 792, 0/
DATA XOLD, YOLD/0.0, 0.0/

IF(IBUFF.GT.0) GO TO 100
READ (15, END=250) (NBUF(I), I=1, 200)
IBUFF = 1

100 KFULL = 0
    KB(4) = LB(IBUFF)
    IBUFF = IBUFF + 1
    N = KFULL
    IF(N.GT.0) GO TO 125

C----ERROR EXIT-------------------------------------------------------------

110 WRITE (6, 121) N
120 FORMAT (IH/ 'ERROR AT READING BUFFER N= ', I10/)
    WRITE (6, 122)
122 FORMAT ('HEXADECIMAL CONTENTS OF ERRONEOUS RECORD'/)
    WRITE (6, 123) (NBUF(I), I=1, 200)
123 FORMAT (2X, 10X, 10X, 2X, '111')
    STOP

C----N=1 CALCULATE ABSOLUTE COORDINATES X, Y--------------------------------

125 IF(N.GT.1) GO TO 220
    KFULL = 0
    KB(4) = LB(IBUFF)
    IBUFF = IBUFF + 1
    K = KFULL
    ICO = 0
    IF(K.LT.128) GO TO 128
    ICO = 1
    K = K - 128
128 CONTINUE
    KFULL = 0
    KB(4) = LB(IBUFF)
    IBUFF = IBUFF + 1
    LLCODE = KFULL
    IY = 1
KY=0
IF(LLCODE.LT.80) GO TO 130
Y=-1
LLCODE=LLCODE-64
130 IF(LLCODE.LT.32) GO TO 140
KY=2
LLCODE=LLCODE-32
140 IF(LLCODE.LT.16) GO TO 150
KY=KY+1
LLCODE=LLCODE-16
150 IX=1
IF(LLCODE.LT.4) GO TO 160
IX=-1
LLCODE=LLCODE-4
160 KX=LLCODE

C----SECURITY CHECK-------------------------------------------------------------
C
IF(KX.LT.1.AND.KY.GT.3) GO TO 170
IF(KY.GT.0.AND.KY.LT.4) GO TO 190
170 WRITE (6,180) KX,KY
180 FORMAT (1H1/'ERROR IN READ KB=','IS,' KY=','IS/)
STOP
C
190 KBFULL=0
DO 200 I=1,KX
IR=I+1-KX
K IRA=LB(IBUF)
200 IBUF=IBUF+1
IF(LLCODE.EQ.0) GO TO 202
X=0.001*FLOAT(KBFULL*IX)
GO TO 204
202 CONTINUE
X=0.001*FLOAT(KBFULL*IX)+XOLD
204 CONTINUE
XOLD=X
KBFULL=0
DO 210 I=1,KY
IR=I+1-KY
K IRA=LB(IBUF)
210 IBUF=IBUF+1
IF(LLCODE.EQ.0) GO TO 212
Y=0.001*FLOAT(KBFULL*Y)
GO TO 214
212 CONTINUE
Y=0.001*FLOAT(KBFULL*Y)+YOLD
214 CONTINUE
YOLD=Y
RETURN
C
C----N=3 CLOSES FILE------------------------------------------------------------
C
220 IFN.EQ.2) GO TO 110
IFN.EQ.3) RETURN
C
C----N=4 READ NEW BUFFER---------------------------------------------------------
C

IRN.GT.4) GO TO 230
READ (15,END=250) (NBUFF(1),I=1,200)
IBUF=1
GO TO 100
C

C------N=6 NEW PEN---------------------------------------------
C
230 IRN.EQ(0,5) GO TO 110
IRN.GT.8) GO TO 240
KFULL=0
KB(4)=LB(IBUF)
IBUF=IBUF+1
K=KBFULL
RETURN
C

C------N=7 PICTURE NUMBER-------------------------------------
C
240 IRN.EQ(7) GO TO 110
KFULL=0
KB(4)=LB(IBUF)
IBUF=IBUF+1
K=KBFULL
RETURN
C

C------IN CASE OF EOF, READB SETS N=3 AND RETURNS---------------
C
250 WRITE(6,260)
260 FORMAT (IH/" ERROR CONDITION EOF ON INTERMEDIATE FILE/
1' THE SYSTEM GRAPHIT TRIES TO SAVE THE CURRENT OUTPUT/
2' PLEASE CHECK THE OCCURRENCE OF FINAL MESSAGE/
3' REGULAR EXIT......")
N=3
RETURN
END
C

//STEPB EXEC FTL,NC=NCAL
//LKED.SYSLIN DD OSN=SYSLIBPROG,UNIT=DISK,VOL=SER=COPICA,
// DISP=OLD,KEEP
//LKED.SYSLIN DD OSN=LOADSET,DISP=OLD,DELETE
//
DO * 
NAME READER!
/
/
$ TIME 002
$ LINES 003
$ CLASS 2
// EXEC FTGC
/
/
/* CMPSYSIN DD *
C------PROGRAM CALCOM BY HERMAN I. DE WOLDE-----MAY 1877---------------
C
CALCOM READS THE INTERMEDIATE GRAPHIC FILE
AND TRANSLATES THE ARGUMENTS INTO ACTUAL SUBROUTINE CALLS
THE PRESENT VERSION RECOGNIZES THE FOLLOWING SITUATIONS
N=1 CALL PLOTOXY,KJ
N=2 ERROR CONDITION
N=3 CALL FINTRA
N=4 CLOSES ONE BUFFER RECORD
N=5 ERROR
N=6 CALL NEWPEN(IK)
N=7 CALL PICTNO(IK)
N=GT.7 ERROR

DIMENSION NPIC(100),INP(I2)
C XDEL AND YDEL ARE THE SUM OF ALL DELETED PICTURES
DATA XDEL,YDEL/0,0,0/
NREC=0
C
C------READ THE PICTURE NUMBERS, IF ANY.-------------------------------
C
NAP=0
40 READ (55,50,END=70) (INP(I),I=1,12)
50 FORMAT (12I6)
DO 65 I=1,12
IF(INP(I).LE.0) GO TO 65
IF(INAP+1).LE.100) GO TO 60
WRITE (6,55)
55 FORMAT (IH1// REQUESTED NUMBER OF PICTURES.GT.100/
I' ONLY FIRST HUNDRED WILL BE DONE.'/)
GO TO 70
60 NAP=NAP+1
NPIC(NAP)=INP(I)
65 CONTINUE
GO TO 40
70 CONTINUE
IF(INAP.LE.0) GO TO 90
WRITE (6,80) (NPIC(I),I=1,NAP)
80 FORMAT (1HI/' LIST OF REQUESTED PICTURES'/120I8)/
90 CONTINUE
C
C------READ BUFFER----------------------------------------------------
C
100 CALL READBIN(X,Y,K)
IF(N=GT.0) GO TO 120
105 WRITE (6,110) NREC
110 FORMAT (IH1/ ERROR MAIN CALC=N'=\'110/ NUMBER OF CALLS NREC='1
110/)
STOP
C
120 IF(N=GT.1) GO TO 130
CALL PLOTEX(XDEL,YDEL,K)
XPIC=X
YPIC=Y
NREC=NREC+1
GO TO 100
C
130 IF(N=EQ.0.2) GO TO 105
140 IF(N=GT.3) GO TO 150
NREC=NREC+1
CALL FINTRA
GO TO 220

C
150 IF(N.EQ.4) GO TO 105
   IF(N.EQ.5) GO TO 105
C
160 IF(N.LE.6) GO TO 170
   NREC=NREC+1
   CALL NEWPENK(I)
   GO TO 100
C
C---- K IS PICTURE NUMBER---------------------------------------------
C
170 IF(N.LT.7) GO TO 105
   XPICA=XPIC
   YPICA=YPIC
   XPICB=XPIC
   YPICB=YPIC
180 IF(N.EQ.0) GO TO 100
190 DO 200 I=1,NAP
   IN.N.EQ.NPIC(I) GO TO 217
200 CONTINUE
   CALL READBN(X,Y,K)
   IF(N.EQ.1) GO TO 219
   XPICB=X
   YPICB=Y
210 CONTINUE
   IF(N.EQ.3) GO TO 140
   IF(N.GT.7) 210,190,105
C
217 XDEL=XDEL+XPICB-XPICA
   YDEL=YDEL+YPICB-YPICA
   GO TO 100
C
220 WRITE (6,230) NREC
230 FORMAT (1X//"REGULAR EXIT PROGRAM CALCOM/"
   1' NUMBER OF CALLS =",10/1"
   STOP
END
*
EXEC FTL,PRN=PROGM,VLB=COPICA,ULB=DISK
//LKED.SYSLMOD DD DSN=SYSLIB,UNIT=DISK,Vol=SER=COPICA,
// DISP=OLD,KEEP)
//LKED.SYSLIN DD DSN=LOADSET,DISP=OLD,DELETE)
// DD =
NAME CALLCO(R)
*
//STEPA EXEC AHC
//CMPSYSIN DD =
INDICA CSECT
USING m,11
STM 14,12,12(13)
LR 11,15
LR 4,13
LR 13,SAVET
ST 4,4(13)
ST 13,041.
L 12,001

EXTRACT ATIOT,'S',FIELDS=('TIOT')
L 2,ATIOT
MVC JBNM0(JBNM1,012)
LM 15,1,PARRM
SVC 255
B m+L,'m'(15)
B m+L,'m'+1
B HASP
MVI PRM,C' '
MVC PRM+1L,'PRM-1',PRM

HASP L 15,AGIO
CNP 0,4
BAL 1,CALL0
DC AJHHEURE)
DC AJHDATE)

CALL0 BALR 14,15
MVC 013,121,PRM+1
MVI 3(12),X'40'
MVC 4(6),121,PRM+4
L 13,4(13)
LM 14,12,12(13)
MVI 12(13),X'FF'
BR 14

SAVE7 DS 18F
PRNM DS CL20
DC C' '
JBNM DS CL8
DC C' '
JDATE DS 0C
JAN DS CL2
DC C'/
JMO DS CL2
DC C'/
JJO DS CL2
DC C' '
JHEURE DS 0C
JHE DS CL2
DC C' '
JMI DS CL2
DC C' '
JSE DS CL2
ATIOT DC A(0
AGIO DC V(GIORNO)
PARRM DC F'8
DC 0F',CAROS'
DC A(PARM)

END

//STEP8 EXEC PGM=IEWL,PARM='LIST,MAP,NCAL'
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYS50,SPACE=CYL,(1,1)
//SYSMOD DD UNIT=DISK,DISK=SER=COPICA,DSN=SYSLLIBPROGMINDICAL
// DISP=(OLD,KEEP)
//SYSLIN DD DSN=LOADSET,DISP=(OLD,DELETE)
I
.$. TIME 003
.$. LINES 004
.$. CLASS 2

// EXEC LIBRARY, A='SYSU2LIBMF2', E='COPICB', X='DISK'
// INS.SYSIN OD DATA
-OPT INDEXDEVIDE
-ADD GRAPHITLIST
-DESC GRAPHIT VERSION JUNE 1978
-PCMR DEVIDE
$. TIME 002
$. LINES 002
$. CLASS 2
// STEPS       EXEC FTGC
// CHP.SYSIN OD =

C
SUBROUTINE PLOT(X,Y,I)

C
MOVE PEN TO COORDINATES X,Y WITH RESPECT TO CURRENT AXIS SYSTEM.
I=2 PEN IS DOWN, I=3 PEN IS UP.
TRANSLATE X,Y INTO ABSOLUTE COORDINATES XX AND YY.
XCUR AND YCUR IS ZERO POINT OF CURRENT AXIS SYSTEM
IN RELATION TO ABSOLUTE AXIS SYSTEM.
DATA XTOT,YTOT,XCUR,YCUR,FAC/0.0,0.0,0.0,0.0,0.0,1.0/

C
100 XTOT=X
   YTOT=Y
   XX=X+FAC+XCUR
   YY=Y+FAC+YCUR
   N=1
   CALL BUFFERN(XX,YY,I)
   RETURN

C
ENTRY FACTORIA
FAC=F
RETURN

C
FINIM SETS NEW CURRENT AXIS SYSTEM
AND MOVES PEN TO NEW ZERO POINT
ENTRY FINIM(X,Y)
XX=X+FAC+XCUR
YY=Y+FAC+YCUR
N=1
I=3
CALL BUFFERN(XX,YY,I)
XCUR=XCUR+FAC
YCUR=YCUR+FAC
XTOT=0.0
YTOT=0.0
RETURN

C
WHERE GIVES THE PEN POSITION IN RELATION TO THE CURRENT AXIS
ENTRY WHERE(X,Y,F)
X=XTOT
Y=YTOT
F=FAC
RETURN

PAGE 21
END

//STEP6 EXEC FTG, NC=NCAL
//LKED.SYSMOD DD DSN=SYS1LIBGRAPH,UNIT=DISK, VOL=COPICR,
// DISP=(OLD,KEEP)
//LKED.SYSIN DD DSN=&LOADSET, DISP=(OLD,DELETE)
// DO *

ALIAS FACTOR
ALIAS FININ
ALIAS WHERE
NAME PLOT( )

//STEP9 EXEC FTGC
//CMP.SYSIN DD *

SUBROUTINE FINTRA
N=3
CALL BUFFER(N,XX,YY,IA)
END FILE 16
RETURN
END

//STEP10 EXEC FTG, NC=NCAL
//LKED.SYSMOD DD DSN=SYS1LIBGRAPH,UNIT=DISK, VOL=COPICR,
// DISP=(OLD,KEEP)
//LKED.SYSIN DD DSN=&LOADSET, DISP=(OLD,DELETE)
// DO *

NAME FINTRA( )

//STEP13 EXEC FTGC
//CMP.SYSIN DD *

SUBROUTINE NEWPEN(IA)
N=6
CALL BUFFER(N,XX,YY,IA)
RETURN
END

//STEP14 EXEC FTG, NC=NCAL
//LKED.SYSMOD DD DSN=SYS1LIBGRAPH,UNIT=DISK, VOL=COPICR,
// DISP=(OLD,KEEP)
//LKED.SYSIN DD DSN=&LOADSET, DISP=(OLD,DELETE)
// DO *

NAME NEWPEN(IA)

$ TIME 002
$ LINES 002
$ CLASS 2

//STEP15 EXEC FTGC
//CMP.SYSIN DD *

SUBROUTINE PICTNO(IA)
N=7
CALL BUFFER(N,XX,YY,IA)
RETURN
END

//STEP16 EXEC FTG, NC=NCAL
//LKED.SYSMOD DD DSN=SYS1LIBGRAPH,UNIT=DISK, VOL=COPICR,
SUBROUTINE SYMBOL(X,Y,SIZE,THETA,BCD,NA)

DIMENSION BCD(I)

LOGICAL=1

CALL SYMBOL(X,Y,SIZE,THETA,BCD,NA,BETA)

RETURN

END

SUBROUTINE BUFFER(N,X,Y,K)

VERSION WITH COMPRESSED STORAGE - JAN. 1970 BY HERMAN I. WE WOLDE

N=1 MOVE PEN TO COORDINATES X,Y, BOTH IN CM

K=2 PEN DOWN

K=3 PEN UP

N=2 NOT USED, ERROR CONDITION

N=3 CLOSES FILE

N=4 CLOSES ONE BUFFER RECORD

N=5 NOT USED, ERROR CONDITION

N=6 NEW PEN

N=7 K IS PICTURE NUMBER

N.GT.7 NOT USED, ERROR CONDITION

ONE CALL (N,X,Y,K) IS COMPRESSED AS FOLLOWS

FIRST BYTE CONTAINS N

SECOND BYTE CONTAINS K, IF ANY

NEXT HALF BYTE CONTAINS NUMBER OFBYTES OF DELTA X, IF ANY

NEXT HALF BYTE CONTAINS NUMBER OFBYTES OF DELTA Y, IF ANY

NEXT BYTE(S) CONTAIN DELTA X, FIXED, IF ANY

NEXT BYTE(S) CONTAIN DELTA Y, FIXED, IF ANY

ALL VALUES POSITIVE

DIMENSION NBUF(I),LB(IO),KB(I)

LOGICAL=1, LB,KB

EQUIVALENCE (NBUF(I),LB(IO),KB(I),KB(FULL))
DATA LBUFF, LLLB, IBUF/200,792,1/
DATA XOLD, YOLD/0.0,0.0/
DATA ICOUNT, NCOUNT/10,10/

TO INCREASE BUFFER SIZE CHANGE DIMENSIONS OF BUFF AND LB
AND CONSTANT LBUFF AND LLLB=4=LBUFF-8
SAME MODIFICATION IN SUBROUTINE 'READ'

IRN,ET.0) GO TO 120
100 WRITE (6,110) N
110 FORMAT (IH/) ERROR AT LOADING BUFFER N= ',I10/
   WRITE(6,500) (NBUFF(I),I=1,200)
500 FORMAT(SX,10Z3/)
STOP

LOAD N IN ONE BYTE

120 KBUFF=N
   LBIUBA=KB(I)
   IBUF=IBUF+1
   IFN.GT.1) GO TO 160

-----N=1 MOVE PEN TO ABSOLUTE COORDINATES X,Y-----------
PRESENT PEN POSITION IS XOLD,YOLD
CALCULATE XDELTA AND YDELTA
PEN ADJUSTMENT IS K

KBUFF=K
ICOUNT=ICOUNT+1
IF(ICOUNT.LT.NCOUNT) GO TO 125
ICOUNT=0
KBUFF=KBUFF+128

125 CONTINUE
   LBIUBA=KB(I)
   IBUF=IBUF+1
   IF(ICOUNT.GT.0) GO TO 126
   IX=IFX(1000.0m(X+0.0005))
   IY=IFX(1000.0m(Y+0.0005))
   GO TO 127

126 CONTINUE
   IX=IFX(1000.0m(X-XOLD+0.0005))
   IY=IFX(1000.0m(Y-YOLD+0.0005))

127 CONTINUE
   XOLD=X
   YOLD=Y
   IX=IBRSGIX
   KX=1
   IFX.LT.256) GO TO 130
   KX=2
   IFX.LT.65536) GO TO 130
   KX=3

130 IY=IBRSGIY
   KY=1
   IFX.LT.256) GO TO 135
   KY=2
   IFIY.LT.65536) GO TO 135

PAGE 24
KY=3

---COMPOSE THE LLCODE AND LOAD INTO BUFFER-------------------------

135 LLCODE=LX
IRIX.LT.0) LLCODE=LLCODE+4
LLCODE=LLCODE+KY*16
IRIX.LT.0) LLCODE=LLCODE+64
KBFULL=LLCODE
LBU=BUF=LBU+1
KBFULL=IIY
DO 150 I=1,KY
IA=4+I-KY
LBU=BUF=LBU+1
150 CONTINUE
GO TO 180

---N=3 END OF FILE--------------------------------------------------

160 IFN.EQ.2! GO TO 100
IFN.EQ.3! GO TO 130
IFN.EQ.4! GO TO 100
IFN.EQ.5! GO TO 100

---N=6 NEW PEN------------------------------------------------------

170 IFN.LT.6! GO TO 170
KBFULL=K
LBU=BUF=LBU+1
GO TO 180

---N=7 K IS PICTURE NUMBER------------------------------------------

180 CONTINUE
IFN.LT.7! LLB RETURN
190 KFULL=4
LBU=BUF=LBU+1
WRITE (16) (NBFR(I),I=1,200)
BUF=1
RETURN
END

/*
EXEC FTNL,NC=NCAL
//LKED.SYSLMOD DD DSN=SYSLLIBRARY,UNIT=DISK,Vol=SER=COPICA,
// DISP=(OLD,KEEP)
//LKED.SYSLIN DD DSN=LOADSET,DISP=(OLD,DELETE)
// DD *
/*
NAME BUFFER(R)
/*
GOULD READS THE INTERMEDIATE GRAPHIC FILE
AND TRANSLATES THE ARGUMENTS INTO ACTUAL SUBROUTINE CALLS

THE PRESENT VERSION RECOGNIZES THE FOLLOWING SITUATIONS

N=1 CALL PLOT
N=2 ERROR CONDITION
N=3 END OF FILE, CALL PLOT (0.0,0.0,999)
N=4 CLOSES ONE BUFFER RECORD RESOLVED BY SUBROUTINE READB
N=5 NOT USED ERROR CONDITION
N=6 NEW PEN IS IGNORED BY GOULD
N=7 START OF A NEW PICTURE
N.GT.7 ERROR

DIMENSION NPIC(100),INP(12)
        DIMENSION AREA(3)
XDEL AND YDEL ARE THE SUM OF ALL DELETED PICTURES
DATA XDEL,YDEL/0.0,0.0/
DATA SHIFT/5.0/
SHIFT IS THE DISPLACEMENT OF THE ORIGIN TO MAKE ROOM FOR
JOB IDENTIFICATION
XDEL=XDEL-SHIFT
XOFF=0.0
YOFF=0.0
XLAST=0.0
FACTOR=0.32

---THE NEXT STATEMENT IS ONLY FOR METRIC INPUT COMBINED WITH
THE GOULD LIBRARY IN INCHES
FACTOR=0.125984
XMAX=-100.0
YMAX=-80.0
IFORM=0
NCOPY=1
NREC=0
NAP=0
READ (5,30,END=70) FACTOR,IFORM,NCOPY,LINE,MAX
30 FORMAT (F6.2,F16.16)
IRMAX.NE.0) XMAX=FLOAT(MAX)
---THE NEXT STATEMENT IS ONLY FOR METRIC INPUT COMBINED WITH
THE GOULD LIBRARY IN INCHES
XMAX=XMAX/2.54
---THE NEXT STATEMENT IS ONLY FOR METRIC INPUT COMBINED WITH
THE GOULD LIBRARY IN INCHES
FACTOR=FACTOR*0.3937
IF (NCOPY.EQ.0) NCOPY=1
---THE NEXT STATEMENT IS ONLY FOR METRIC INPUT COMBINED WITH
THE GOULD LIBRARY IN INCHES
IF (FACTOR.EQ.0.0) FACTOR=0.125984
IF (FACTOR.EQ.0.0) FACTOR=0.32
---READ THE PICTURE NUMBERS, IF ANY.-----------------------
C
40 READ (5,50,END=70) (INP(I),I=1,12)
50 FORMAT (12I6)
   DO 65 I=1,12
      IF(NP(I).LE.0) GO TO 65
      IF(NAP(I).LE.100) GO TO 60
      WRITE (6,55)
55 FORMAT (HI/' REQUESTED NUMBER OF PICTURES GT.100'/
           I' ONLY FIRST HUNDRED WILL BE DONE.'/')
      GO TO 70
60 NAP=NAP+1
   NPIC(NAP)=INP(I)
65 CONTINUE
   GO TO 40
70 CONTINUE
   IF(NAP.LE.0) GO TO 90
   WRITE(6,80)(NPIC(I),I=1,NAP)
80 FORMAT (HI/' LIST OF REQUESTED PICTURES'/12I6/) 
90 CONTINUE
C-----PLOT INITIALIZATION AND JOB IDENTIFICATION---------------------
C
   CALL PLOTS(XMAX,YMAX,IFORM,NCOPY)
   CALL LINEW(TLINE)
   IF (IFORM.EQ.(-1)) CALL ERASE(I)
   CALL INDICA(AREA)
   CALL SYMBOL(0.0,10.0,0.2,AREA,270.0,50)
C
C-----READ BUFFER-----------------------------------------------------
C
   100 CALL READBIN(X,Y,K)
      IF(N.GT.0) GO TO 120
   105 WRITE (6,110) N,NREC
   110 FORMAT (HI/' ERROR MAIN GOULD N=',I10,' NUMBER OF CALLS NREC=',I10'/')
      STOP
C
   120 IF(N.GT.1) GO TO 130
      XA=(X-XDEL)*FACTOR
      YA=(Y-YDEL)*FACTOR
      IRX,GT,XLAST) XLAST=XA
      XPIC=X
      YPIC=Y
      CALL PLOT(XA,YA,K)
      NREC=NREC+1
      GO TO 100
C
   130 IF(N.EQ.2) GO TO 105
   140 IF(N.GT.3) GO TO 150
      NREC=NREC+1
      CALL PLOT(XLAST+10.0,0.0,3)
      CALL PLOT(0.0,0.0,999)
      GO TO 220
C
   150 IF(N.EQ.4) GO TO 105

PAGE 28
IFN.EQ.5I GO TO 105

C
160 IFN.EQ.6) GO TO 170
NREC=NREC+1
GO TO 100

C
170 IFN.EQ.71 GO TO 105
XPICA=XPIC
YPICA=YPIC
XPICB=XPIC
YPICB=YPIC

C----K IS PICTURE NUMBER------------------------------------------
C
180 IF (NAP.EQ.0) GO TO 100
190 DO 200 I=1,NAP
IRK.EQ.NPIC(I) GO TO 217
200 CONTINUE
210 CALL READBIN(X,Y,K)
IRN.NE.1 GO TO 215
XPICB=X
YPICB=Y
215 CONTINUE
IFN.EQ.3) GO TO 140
IRN=71 210,190,105
C
217 XOEL=XOEL+XPICB-XPICA
YOEL=YOEL+YPICB-YPICA
GO TO 100
C
220 WRITE (6,230) NREC
230 FORMAT ('IHI/ 'REGULAR EXIT PROGRAM GOULD'/
'NUMBER OF CALLS =',I10/1'
C ONLY FOR VERSION IN INCHES
C ONLY FOR VERSION IN INCHES
FACTOR=FACTOR*2.54
WRITE (6,232) FACTOR
232 FORMAT ('SCALING FACTOR IS ',F6.2/
STOP
END
/
//STEP2A EXEC FT1,PRN=GOULD,VLB=COPICA,ULB=DISK
//LEDSYSLMOD DD DSN=SYSLIBPRG,UNIT=DISK,VOL=SER=COPICA, //DISP=(OLD,KEEP)
//LEDSYSLIN DD DSN=SLOADSET,DISP=(OLD,DELETE)
// DO =
INCLUDE SYSLMOD(READS,INDICA)
ENTRY MAIN
NAME GOULD(R)
/
//STEP2 EXEC FT2C
//CMPSYSIN DD =
C------PROGRAM BENSON BY HERMAN I. DE WOLDE------NOV. 1977--------------
C
JUN. 1978---REVISED
C
C BENSON READS THE INTERMEDIATE GRAPHIC FILE
AND TRANSLATES THE ARGUMENTS INTO ACTUAL SUBROUTINE CALLS

THE PRESENT VERSION RECOGNIZES THE FOLLOWING SITUATIONS

\( \text{N}=1 \) CALL TRAXX(XA,YA,K)
\( \text{N}=2 \) ERROR CONDITION
\( \text{N}=3 \) CALL PNUMA(0.0,0.0,NB,0.0,0.0,0.0)
\( \text{N}=4 \) CLOSES ONE BUFFER RECORD
\( \text{N}=5 \) ERROR
\( \text{N}=6 \) CALL PLUMA (K-1)
\( \text{N}=7 \) SKIP TO PICTURE K
\( \text{N}=8 \) ERROR

DIMENSION NPIC(100),INP(12)
DIMENSION BUF(275)
DIMENSION AREA(13)

\( \text{XDEL} \) AND \( \text{YDEL} \) ARE THE SUM OF THE DELETED PICTURES
DATA XDEL,YDEL/0.0,0.0/
\( \text{XMM}=0.0 \)
\( \text{LBUFF}=275 \)
\( \text{NC}=16 \)
\( \text{NBLOC}=1 \)
\( \text{REC}=0 \)
\( \text{NAP}=0 \)
\( \text{FACTOR}=0.37 \)
CALL IBEN(A,BUFF,LIBF,NC)

C-----PLT Initialization : 1) REACH THE ORIGIN; 2) IDENTIFY THE JOB.

\( \text{NB}=1 \)
CALL PNUMA(S,0,-30.0,0.0,0.0,0.0)
CALL INDICA(AREA)
\( \text{XA}=5.0 \)
\( \text{YA}=16.0 \)
CALL PCTA (XA,YA,0,AREA,50,0.3,0.5,0.0,-1.0)

READ (5,30,END=70) FACTOR
30 FORMAT (12F6.2)
IF (FACTOR.EQ.0.0) FACTOR=0.37

C-----READ THE PICTURE NUMBERS. IF ANY.-------------------------------

40 READ (5,50,END=70) (INP(I),I=1,12)
50 FORMAT (12I6)
DO 65 I=1,12
   IF(INP(I).LE.0) GO TO 65
   IF(NAP+I.LE.100) GO TO 60
WRITE (6,55)
55 FORMAT (1H1/' REQUESTED NUMBER OF PICTURES.GT.100'/
      1' ONLY FIRST HUNDRED WILL BE DONE.''/)
GO TO 70
60 NAP=NAP+1
NPIC(NAP)=INP(I)
65 CONTINUE
GO TO 40
70 CONTINUE
C IF (NAP.GT.0) GO TO 78
   WRITE(6,74)
   74 FORMAT(I1) / ALL PICTURES WILL BE PROCESSED/1
   GO TO 80
   76 WRITE(6,78) (NPIC(I),I=1,NAP)
   78 FORMAT LIST OF REQUESTED PICTURES/1(2016)/1
   CONTINUE

C----------------------------------READ BUFFER-----------------------------------
C
100 CALL READBIN(X,Y,K)
   IRN.GT.0 GO TO 120
105 WRITE (6,110) N,NREC
   110 FORMAT (1X) / ERROR MAIN BENSON N = ,110/ NUMBER OF CALLS NREC = ,I
   STOP

C
120 IF (IRN.GT.1) GO TO 130
   XR=X-XDEL1*FACTOR
   YR=Y-YDEL1*FACTOR
   XPIC=X
   YPIC=Y
   KA=0
   IF (XR.LT.3) KA=1
   IRNJ.RT.XMM XMM=XR
   CALL TRANKA(YA,KA)
   NREC=NREC+1
   GO TO 100

C
130 IRN.EQ.2) GO TO 105
140 IF (IRN.GT.3) GO TO 150
   NREC=NREC+1
   NB=999
   CALL PNUMA(XMM+5.0),0.0,NB,0,0,0,0,0
   GO TO 220

C
150 IRN.EQ.4) GO TO 105
150 IRN.EQ.5) GO TO 105

C
160 IF (IRN.GT.6) GO TO 170
   NREC=NREC+1
   KA=K-1
   CALL PNUMA(KA)
   GO TO 100

C
170 IF (IRN.GT.7) GO TO 105
   XPICA=XPIC
   YPICA=YPIC
   XPICB=XPIC
   YPICB=YPIC

C---------------------------------K IS PICTURE NUMBER-----------------------------------
C
180 IF (NAP.EQ.0) GO TO 100
190 DO 200 I=1,NAP
IF (EQ, NPICU)) GO TO 217
200 CONTINUE
210 CALL READBN(X,Y,K)
C
IF (NE,1) GO TO 215
XPICB=X
YPICB=Y
215 CONTINUE
IF (EQ,3) GO TO 140
IF (EQ,7) 210,190,105
C
217 XDEL=XDEL+XPICB-XPICA
YDEL=YDEL+YPICB-YPICA
GO TO 100
C
220 WRITE (6,230) NREC
230 FORMAT (I11/' REGULAR EXIT PROGRAM BENSON/
' NUMBER OF CALLS =',I10/
' WRITE (6,232) FACTOR
232 FORMAT (' SCALING FACTOR IS ',F6.2/)
STOP
END
/*
//STEP2A EXEC FTL,PRN=BENS,VLB=COPICB,ULB=DISK
//LKED.SYSLMOD DD DSN=SYSLLIBPROGM,UNIT=DISK,Vol=SER=COPICA,
// DISP=(OLD,KEEP)
//LKED.SYSLIN DD DSN=&LOADSET,DISP=(OLD,DELETE)
// OD =
// INCLUDE SYSLMOD(READ,INDICA)
ENTRY MAIN
NAME BENSON(R)
/*
// EXEC COMPRESS,DSN='SYSLLIBPROGM',Vol=COPICA,UNI=DISK
// EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//ODI DD UNIT=DISK,Vol=SER=COPICA,DISP=OLD
//SYSIN DD =
//LISTPDS DSNAME=SYSLLIBPROGM,Vol=3330-1=COPICA
/*