
oooooooooo
oooaoooooao o oooo
O' OOO

oo
o

TOWARDSA NEW PROGRAMMING SWLE

A.A. Polllclnt

June 1978

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

CONTENTS

INTRODUCTION

REASONS FOR NEW PROGRAMMING TECH N IOUES
Programming Evolution
The lntended Goal

THE ERAOF STRUCTURED PROGRAMMING
General@nsiderations
A Survey of Several Technlques
AStyle as lntegration of DitferentTechniques

A TALK ABOUT PROGRAMMING LANGUAGES
The ldeal Programming Language
Using the Existlng Languages

REFERENCES

BIBLIOGRAPHY ORIENTED TO THE ON SITE LIBRARIES

collsvs
Text Box

collsvs
Text Box

TIMRODUETTON

lfhat, In fact, la Prognnning?
Actlvitre8 carried out durlng the pa8t yeara under the trame
'progranunrng' can be considered to be the frrat phase of
nan-computer coununlcatron, that rBr the phaae ln which man
speaka and the oomputer liatens.
As Donald E. trnuth has polnted out, progra[llng can be
consldered to be an art tll.
Dante and Shakeepeare uere artiBts Ln transmrttrng thoughts and
feellngs expressed by language and they are admired for thte
abllrty. H@ever, generatlona of people are stlll usrng the
same languagea to connuunicate dally rrith eaclr ottrer and rt is
only when the language nrle3 rre ob3erved that the resulting
expresalons aae @rrect and pleaoant and tbove all that
understandlng 18 unequinocal.

It ia therefore senslble to prorcte and deDrnd correctneaa ln
all, even humble, Ianguage appllcatlons.
Thls rule also appll,es to progra[nlng languages.

Itloreorrer, progroing languages are recent tool8, still in an
evolntionary phase. the use of these languages can therefore
be improved , by lnprovlng the langruages thenaelvee.
The nore the rules of the languagea are logically @fued and
rigorously applled the liore the resulting expresalone beconre
correct and intetllgtble.
The definltlon of grarirr, slmtax and aemrntlcs of programrng
languagea can ptoflt conslderably fronr an understanatlng of the
nechanlsms of hrurun tntelllgence lhtch also lneplred the blnary
logic on uhlch the cduputer rtself la based [21.

PAGE T

REASONS FUR NEW PIIOGRAITUING TECHNTQUES

Programlng Evolutaon

yrhen autqlattc conPutlng machrnes trrst appeared, users tound
themselves faced urith a larqel'y unrnot'rn tool , tne comrJuter,
wattrng for corrnanos to be executed.
The coilectron of rnstructrons needed to c.ornmunrcate lts tasks
to lt uas called a 'Program'.

In those early comPuter apPllcatlons, a progratrmer, llke a sort
of modern aLchemist, mlght otersee eftects rather than causes.
Indeed, he manrpulated the data controlllng tne results, r'h!'Ie
remarnrng unaware of the processes whlch generated them.
At that tlnE, the flrst property a Prograrn had to nave, htas

syntheslzed by tne Phrase 'provrded tnat r.t works'.

The cost of thrs -emprrtcal prograEtrtng' was heavy malntenance
due to the dlffrcultles t'n extendlng or rnodrfyrng the Prcgrans
and lrmltrng thetr .trtetrr|E. Brlefly a conalderable waste of
resources.

Gradually, however, a nunber of research actrvitres were begun
rn order i:o aevetoi a better und6rstandrng of what Progriunnung
really ra.

From a the functlonal pornt of vrer a Program la a sequence of
actions, each of then acconPlishrng a functron. At thls Polnt
a cgrre;E and unequr,tocal defrnrtron of eacn tuns3,rgn apPearg
as a Pre-requtarte thrt cannot be lgnored'
nor.over the effect of such a functlon rs the tran8fontratl0n of
sor data. If there ts any rtay to mak€ axlonatlc asaertlons
;;cer"fig the expectca traisformation, lt beoor'es poss1ble to
t erify rrh;ther or not a Progran performs the lntended function
t3!.By thls neans, aearchers aln
correctnesa.

for a prlorr, Proof of Proqram

Pron the forrral potnt of vlew a Prograrn is a serlea of symbols
reDroduclnq in I one-dimenslonal nanner the connected stePs of
tfrl two-arienaional inage ot an algorithrn.
The reduction fronr the planar representatron (flow-chart, to
the linear one (progran) necessrtates tlre introductlon of jutttps
wrthin the serles whrcn may rnvolve sdne loss of clarity in the
algorith! .l,ogic.
srice the flow-chart ls a directed graPh, a formal
representation of all its Paths by nathemattcal equatlon ma!,
pnivra" the linguistic neana to build uell-forcd progratns'
neqular expre8slons, as formulated by trleene tn 1956 l4l, could
be applied satrsfactorily to the purposes of flor-chart
forr[alizatron.

I'AGE 2

These Regular Expresarons connect Borne prrnrtlvea uarng only
three operators !

Btar whrch nEana 'any nrDber of trmeg. repreBented
by the symbol t

Juxtapo8itlon whrcn npans 'tollored by. repreaentect by tne
aDsence of any Symbor

alternatron whlch neana .or. represenceo Dy tne Eymbol v

Thelr applrcatlon to the analysrs of progranmlng repreaent8 the
nocles of a flqr-chart aB prtnrtrve8 and the oonnectronE aa the
allowed operatora.

Attetrpta to follow thls approach ahowed that rx)st of tlre
compllcatrona a prograE can lnclucle r{ere orlglnatecl wlth the
undiscipllned branches that the comDn progranmrng languages
freely al.l,ou. It rras thra tact that ted to the crusade agarnst
the GO TO l5r. lf rectuced to th18 queBtlon alone, the
controversy rculd be a stertle one.
The real problen, hotf,ever, graB to prcrvrde a generalrzed tnethod
of expreaslon, rhtch coul,cl arnu.!,ate any poBsrble path ln a
nearly llnerr t ay.
An rnPortant theoretlcal. contrrbutron rn thrs drrectlon was
made by tlre theoren of Bdhn-Jacopini t6l thrch stateBt

Any flow dlagran can be represented by a flow dtagran thrt
can be deeompoaed tnto concatenatlon, rteratron anal
Eelect1on.

Of oour8e, the practrcal inpact of thls on progrstrEllrg ls
Eom€what weakened because, aE the authorB reallzed, the derlted
flow dragran is not alrays strrongly equrvalent to ths onglnrl
oDe.
fndeed, wlth the tranafornatlon of structures of the typc Qn
(1..e. Ioops yith nulttple exit8) one nottoes r lo8s of, clanty
and elfecttvenes8o
What ls relevant le that the uae of closed atructurea,
delluited by one entry and one exlt, hortBtrcr neat€ct, catr Regu1t
Ln a deacendlng flou of control rlthtn tlre Progrul uht,cll
aa8tDa globally a llnear pattern.
In ProgratDrng practloe trpre @ntrot structurea are needed to
represent all general, sltuatlons etfectlt€ly, but the prrnclple
of dl8crpllned u3e of clo8eal control atructuaBa reDalna valld.

PAGE 3

The Intended Goal

The'Programrng' actlon Produce! obJects, usually called
Progra!, syaten or Packege acaordlng to the r'Dcrease ln alze
and-coDpleitty. But In coll[Dn parlance .ll theBe lterns can be
referrea to Uy the slngle tentr 'Softlrare- rhich rncludes any
codlfred knorledge to descrrbe to tne @mputer a taak we t ant

to cnang€ tne Prolrrtmrng Btyle, every
an llrprove[ent ln tne solteare

The crrtena for ttre vertftcatron ot ncs ProgrrDrng technlques
delr€nd u[,on one Prr,ncrPle.

Good rechnrques DuEt generate @od sottrtaro

The Gvaluatron of gooo uofwaae delrends on ParalEtera that aRe
the expectsd proPerBles of tlre plodrrct.
correctneag rs obvlously th€ essentlal Propercy rn the aense
that the sottYare nuat rnpllcitly glve a @rrect solutlon to
the probl€0.
Th€ other propertlea are drfferently wBrghted accordlng to
aeveral aslrects ol Softrrare productlon.
ror rnatanae, a claaslflcatlon of pre-emtnent propertles aa a
function of a onsrd€red aBpect, mlght ber

rt to PerforD.
lf there ra any neecl
rnnovatrosr nuat yreld
Productton.

- Ef, fectlcEneaE, tlelrabtlrty
- lGadablltty rAdaPtabtllty
- Portabrllty rAdaptaDr..l' rty

as a functlon of exPlortatron
as a functton of lralntenatrce
as a lurctron of dlscrlDutron

of oourse, aome ProPertlea aro eontradrctoEy, and cotiprocl3ea
wtlt th€refOne harre to b€ nrade rn Ordcr tO achreue tne beat
reaultsr so that each sotthtrre Packagc be@Ea the rcgt'
aatrsfactory aolutron for rts epecrfrc rcqur'rc[ent3.

PAGE 4

THE ERA OF STRUCN'RED PROGRAI.IMING

Stnctured ProgramtrlnE ls the happy slogan of the 70.a.
EverTone concerned rlUr corputer appltcatlong hag at leaet
heard thi8 tetrn.
A eerl,ea of artLclee, uorkehope and courses have been prouotlng
Structursd ProEramlng, nevertlrelees nany p€opl€ atlll ldentlfy
ttre toplc rlttr a set of control ltructureap nanely
fF-THEN-EISE, DO-?IHILE etc.
structur€d Progranrmlng la aonethlng rcre than thlc, but tt le
very dlfflcult to say what lt really le, because lt doee not
represent an unequlvocally deflned entlty.
It nay be considered to be a nurDer of approaches alnlng at the
lnrproverrent of Softrare structure.
Thus 'struetured Progratonl.ng' haa becone a cover-t€rm for
everyUrlng lntended to glve a stnrctured forn to a Softrrare
product. Because of ttrls tt ls preferable to talk about
different nethods and tedrnlques and thelr lnteqration ln the
progranrnLng practice.
It would be honever advlsable flrat of all to recall sone
general foundatlons.

General Conslderatlons

fn generll the Soft*rare production procese cln be subdivlded
into four phasee, characterlzed by the actlvltiea of analyslrl
dealgn, codlng and testlng.
Slnce dlfferent people nay be lnvolved ln theae four phaseel lt
ls lmportant to have avallable an adeguate rrnans of
coununlcatlon ln order to avold rnlsundergtandlng of thc
cotrcepts, on transltton from phase to phaae.
Purtheanore lt la lnportant that thc Btructure be outllned ac
soon as poaalble, Ln the rholc developnent procasa, ao tlre
dealgm phaae becora tlre pra-enlncnt one.
From the ment of the overall vler of. tlrc problcnl tlrc
sketdred progra[nugt be a frurcttonal rhole, cntlrcly apcclflcd
by a eqt of gencral functlonalLtlcc. Eadr functlonallty, at
Urla Elobal level, rtll be aubaequently dlcrcribed tn detallr
whlctr constltutes the nert reflncd lcvel.
Such a prociEss nust contlnue untll a 8et of strple frmctlonsl
called prlnitlves, ls deflned. lltrla ls ttrc lorsct level of
reflnenent.
Thus a hlerarchy of lcvels 1g eatabllehed. If eaclr lcvcl ls
exprcaeed by a rlgorous descrlptlon and lf one supposes that a
fantly of abstract machlneg exlste, then eaeh lcvel nay be
assl,milated to a versl.on of the progretn.
Suctr verslona can be verlfled ln ttre loglc, ll.ncc the control
ftow Ls easy to follo. Furthetilore one can dreck rhether or
not the descrlbed actl.ons contply wltlr thc orlglnal
specifl.catl.ons.
In thls ray the lntegratlon of dlfferent parts of tlre proqrarn,
durlng the testlng phase, oceura wlth fa conrtral.nts.

PAGE 5

?hra hlerarchtcal Procedure
organrzation rmpllcatlona.

also rnvolves some data

Data nu6t also b€ atnrctured ln auch a way that all functlons
defined at one lenel only have accesa to the data flelds
belonglng to tlre sare rank rrlthln the organlzatlon, creatlng a
vi8ibllity by letel whlch can be extended to all reaourceB the
ptrogran requlres.
ine- concept of lenels of viBlblllty makes for easy
nodlflabtllty of any printtlve of a certaln level, t lthout
lnplrcatlons at dlfferent level3.
In addltlon, a i,oglcal dl8tlnctlon can ocaur between global and
local varl,ables.
The axtended uae of local varlable8 lncreaaea the protectlon of
the data agarnat unuanted acceaaea in the case of bugs or
failurea.
Anotlrer general aepect of a atructured softrrare 13 the clanty
of tlre context expreesed bY the code that becones trcre
readable.
The readablllty la mar,nly obtained by uslng cloged control
structurea.
HouEt€r a crl,tlcal exanlnation of the rnatter reveals tuo
unfanourable Bituations that need aPproprlate rerredtes.
riiJt or allr there ariae nany- altuatlons rhich call for
nultrple ex,.t Polnts from a looP.
The tiangtatlo; of auch altuattons lnto a forsr that resorta
only to strictly closed structures, requlres the introductlon
of auxilrary virlables rrhlch comb11'e several conditlonal
et ents.
To obvlate thiS drawback, addrtlonal control structures nust be
provrded, preservlng externally a closed control environment,
ina affiring speciit exit falitrties at drfferent sgages of
thelr lay-out.
secondly, aegmenta of a prograln tnat are comrcn to nore than
one path, catrnot be reached tron-atr!'where b€cauae of the lack
oi- iiiC6rents provlding the Junp poselblllty. Thus these
clomn aegmnts Eust be duPltcated a3 nany tltEa aa the Jorned
Pauls are.
ihrs ertuacron tneol,ue! a wastage ot core.
A convenrent soluglon C.n be supPlled by a Prroce.lural feature
Provldrng.llntedtranBterotcontrotgrthouttheconputrng
6vernead-of the subroutlne callB.

PAGE 6

survey of sevenl Teclrnrgues

ToP-Ewn Technrque

Th18 la a ter? lnsrsrve technigue drrectly derrtcd lrcn the
oonoept of hierarchteal levels. Top-doun phlloEophy can be
applled egually uell to the desrgrn, the irplenrntrtlon and the
te8ting pha8e3.
Startlng fton the top letEl, that la a Berlea of general
stateDenta whlch deflne the global problenr, the destgn proceed8
down and Bupplles a nore detalled deflnitlon at each lower
level.
According to thi8 descenaung devetopnent of the dealg'n, the toP
unlt of the psogratn, uhich accompllshea nonltorlng functlons,
can soon be c.oded and rnplernented.
lhla unlt can aleo be test€d provrded that tne functtons
perforned at the lorrer level are attrulated by dtrrmy unrts, aleo
called Btubg.
Such a stub 18 quickly lDplerented coding erther an eDpty unlt
or a unrt perfoining only a contaol trace by arnply wrltrng a
nEaaage.
No further gpecifrcatrons are needed to do thra, because the
desrgm of thil top letel already rncluded all detarie @ncernrng
data exchange to uterface urth each loqter unlt (1.e. the
calllng sequence ln the crBe of subrloutrne caUB).
At the next level I one unrt at a tlme can be rmPlerentecl and
te8ted replactng, rn the exratrng frare, the rdentrctuy naned
Btub. I|hlr cycle nust be repeated unttl all unlts of the l@est
level are lmplerented and the rrhole dettlofEnt ProeesB ie
completed.
Such step by step rntegratlon lntolve8 only one unit enterrng
the ertabllahed franeyrork at each nerd test, and thrs nee unlt
rB first inspectld to locallze any detected error.
Moreover lncoEect unite are generally locat€al at Urelr
lntroductton lnto che evolvrng envrrotrnent, cletected Duga
aeldon rnvolve rcdlfrcatron of atready checkecl unrts, hrgher
level unlts have been wrdely te8ted onGe the Cotal
rnplgrntatlon 18 ftnr,shed.
?he topdorn appBorch can be flerrbly adaptGd to Bpecral
requlrenenta. h partrculaEe ! vanatton knoua a!-hardeat-out' colrsrstE ln tlrst de\reloptng aor crltrcat
functtons on uhrch the probleln teaslbtlrty may delrend, for
rnatance r 8et ot ttle-nandlrng RoutlneB at the loy1eat teuel,.

De819n uedra

ln general a deargm Ecllun rs a uhatever tool, uaeo durlng the
dealgm Pnase and Producrng a docuDented lay-out of the aoftflrre
Btnrcture rn form of chaata or rePorta.
These docurents constltute a ro€ana of @munrcaCron betfleen
PeoPle cooPerattng rn the aoftrrare prtoductlon proceaa, grth the
reaultrng advantage of lncreaaed undeastandlng of tne globrl
process and rryaoeed lntcr?retatron of the drstributed taara.
It is evrdent thet auch meanB, sultably adapted and ecllted, can
also prove useful tn u8er8' traulnE.

PAGE 7

Becau8e of thrs t't ra llPlacrtly shorrr that a careful atrd
detarled desrEn brlng8 a tnetnodlcal contrrbutron to software
docun€ntatlon and tt la not surprrBtng tnat aome of the rtems
revleued are both a desrgn alt uell as a docuDentatron tool.
,lDng the destgm redra ue flnd 8o!E gyst€D.Gtc aPProachea wnr'cn
r€t the atandardrzatlon exrgencres of large worktng
envtloNcnta.
Sor ottrera aas rcRe rnfomal and can be adapted to drfferent
Practlqea and sltuatlotrs.
sG rteE of both types are reviewed lreloir.

- The lttchlel Jackaon Desrgm Methodology [71
ThiE nethod la blsed on the conatructron ol data structures
@verlng all uput and output, as the neanll for a vl3ual
repreaentatlon of the problet!, aften ards the progran deelgn
ls rcdelled on the attluctured data.
The Dcthod develoPa ln three stePsr
- step t Structure Problen ro91c. Startrng fron regutrenent

Bpecrflcatlona, this gRouPs data corPonents and deflnee
Felattonshlps beheen theni vlsulllzes one-to-one
correspondenqgs beh{een lnput and outPut data structures:
in other worda, the existence of a dlrect relatlonshlp
b€treen a block of needed rnput data rnd a block of
expected relul,ta, rn the 3en3e that the later can be
d€rllred fron the fomer by a deflned trangfornatrgn.

- step 2 Strtrcture Prcgran logrc. Thts shapes a Progran
component for each thosn rnput/output corresPondence.
rnere such correaPondenceg do not exlst, lt defrnes
rddltronal bl@ks of lntemedrate data to obtarn a chaln of
one-to-one correaPondence betrreen data Structurea, Jornrng
tnput and output. For each generated correaPondence a nes
prograD conponent 18 added.

- Step 3 Allocate Progrrar oPeratr,ons. Por each prcrgrar
coElronent, this ltats the operations to ue perfoned on the
data.

Other gencral characteristics are: independence frcn both
progrurng langtuages_ and hardearrer - sinplierty- of the'8tr6cture3i eas; -of rutderstandug for every level of
PrograrErs.

- Itre Lrry Constantln€ Structured freslgn [81
The approach follored here rs the functlonal decofiposrtlon of
the probten rn order to glv(E the Btructure a hrgn nodularrty.
R€gurreEnt Bpeclflcatrona are repaegented rn graPhrcal tonr
uslng Data Fl.ou Graphs.
the rnfonation strea[flors from]eft to rrght croasrng solte
nodes denotrng traroE tranlfonatron!.
tsach node repreaents a Prrtlal Prtoce8s ot lncdtr,'ng arrohrB to
produce outgorng ones and potnts out a tunctlonaltty of cne
prcblem.

PAGB E

The structure of the prcgram lB ahobrn by structuae chrrta
whrch hrte the form ot a descBnctlng tree that ptcturer ttre
lrnk! urong boutrdad rcdule8 3

- bore! represent the unrtE of the progran,
- @nnectlon8 between DoxeB Ehow thc comtunrcatrng unlts,
- cllrectecl aaRorE tndlcate ure trrnafer of shared

rntonltron.
After thta rn evaluatlon of tne oeargn t! earrt'ed out on the
ba8r8 0t ttrno crlterlar
- coupllngr thra neanr the degree of clnnGctrvlty of a trpdule

and depelrdr on the nrDber and corylexrty of
cqtnectronS.

- cohearonr thta neana the hdnogenerty of the actton! ure
noctule performs. It clepends both qr Ure ntu6€r of
tark! atrd on thc rcl,atlonshlp bettEQn theD.

A
-
(rood de8tgn ta obtarned when both loy coup.l,tng and lt8ong

cohealon are conbrned.
The de8tgm crn be partral,ly aBrorr.Gd rn ordor to aclrreeg thtrgorl.
Thrr qrttDtzatton ctcle l! one peculiartty of the nethod.
lloroot er thc orrentatlon towards f unctrqral doco@orr,tron
favourg effectlve solutlon8r oviBlt lf Urr! approacfr la
lntultlqr-balcd end dependa on lnallvlclual lkllltufnlar rathsr
than on Ure objsctlve faellltleg of ttre nethod.

- The Paeudo-Codea
The paeudo-code la a slmple atrd nrnrgeable tool tor rewrltlng
ltr algonurm ln a Btructured and unu6tgoua natural language.
The structured pltt€rrr la grven by keyrrorda (uaually -ln
capltal lett€E, xhlch are tarcen froD closed cSntrol
ltructurea reproduclng the aonnectlte paths b.trscn thealgorlthD prlmlthr€s, in their turn represented by rtatsnentg
in a natural language (usuau,y rn loner-caae letters).
llhen a ltructure rs nested withln a [ore external ona, rts
entlre t€xt can be lndented so that tlrs lnternal Etructure l,g
Iglgeq_rt the right of the pre-exlstlag alrgmlEnt.
ThiE ldentatron introduces a aort of trro illnenslonrl plolllc
whrch r! an aid ,,n the Btructuae vlauallzatlon, ao that the
Pseualo-code theeta lllustrate tlre rcproE€nted algorltlrn e!
does the classrcal flow-chart.
The lr8eudo-eode rs elalely appll.cablc and can D€ eryloyGd a!
flnal reane ln any dleaign tEthod.

PAGE 9

- the ProgrrD Deugn Languagea
Ttrere arG ln etfect an uPl€rentatron of a rEll-cl6f1ned
paeudo-code. Flrat a aet of surtaDle control gtructurea la
tlxed atrcl a Preprrocgaaor check! the text f,or tne coDPleteneaa
of tlr€ rtructurea and edrts ure deargm rn a cteatr and tloy
rePort.
The relevant aapect of auch a Destgn Language rs tnat rt
mrght DE ttre frr8t atep ln the tuture t,rend ot Automatrc
soltsare DetElopnent.
Indeed tne output of Bucn a paepr'ocea8or nrght aerve as the
tunctronal specrflcatrons for a Program Generatoa equaPPecl
wlur poserful capabrlrtles an the freld of language rnalysrg
and tttacro generatlon.

- Th3 HIPO Desrgn and lr,ocurentatron Technrgue l9l

BIPo, shrch stands tor Hrerarcny plus lnput-Procesg-outPut,
ra the Btatrdarclrzaglon of a t ay to tllustrate a proceas that
r.nvolvea data trangformattone.
The Hlerarchy dragram repreaenta aB a tree atructure tne
hrerarchlcal lerrela rnto whrch the Program dellgm r,s sPlrt.
The Input-Proce8a-Output dragran! r.llustrate each lunctron of
the whole tre€ by rneans of three srde by slcle boxea frll,ed by
coEEntE.
The central box deacrrbea the actron6 perfonned by the
concerned functron. The left-hand box rePresenta the
atructurc ol the rnput datr needed by tne functron aa nestecl
aquarer, rhrL resultlng output data are reProaented t'n ths
rrght-han l box.
Dr,rected arr(ou! connect data wrtn tlre r€Iat€.1 actton of the
central bor.
HIPO drrgrrD! ard data-proeeaai,ng docunentation and nay be of
uae tn exchangrng the represented context betlreen dltfer€nt
people.
H@ever tlre extenslon of EIPO diagran3 to the lower levela
lNrollre! r conllderabl€ aDount of uork upatatlng a lot of
dltgrr[. accordrng to th€ evolvug rttuatlon.
It DUlt be neDtloned that autonated productron and
uatntcnance of, HIPO dlagrans can be provlded by atl IBll
paclcage nared HIPODRAI|. ttol

PAGE 10

Closecl Control tttructures

Durrng tlte codrng phrBe each statetEnt tn natural lengtrage
procluceo by tre deEtgm wrll be @dect tn on3 or [ore rtrtsn€nE!ot a progra[irng language.
The clrosen progr.nrrrng lrnguage muat provrde a nunber of closed
control ltrtrcturas to oode the fl,ow ot eontrol ln the ray
supPlrec by the deatgn.
theae ltructure8 rre not atandarotzed and tne teaturea rllot ed
change tron langurge to lrnguage tnus the specrtrc slmtax nust
be obaerved.
some general conalcleratlons on the rcst
conatructa arE reported later.It ls clear that the f,orma preaented do not
Partrcular language.

uaed lrnguratrc
refer to any

- Salectron structurea
The selectton of the control betreen two altenratrte t ays rB
co!@nly allowecl by the IP conrtruct rtrreh can aa8unedrtferent forms accorclrng to wheurer the Et SB clause tB
ablent or preasnt or optronal.
A torD rhrch lynurosrrea aLl tnese altuatron8 rls
lf <conc[tlon> l'ltBlt <blocr(l> JErsE <bloctz> t ENDrF

A vanrtron t! poaarDle, rncludrng rtry nunbcr of clruEe!
BLSEIF betore ths cl,ause El8E. lhrB fot'D titault! rn a rrngle
ltnrctnae urtsad of a scnct of ncat€d IF ttructures.
IF<coadrtrqD THBI<blocID ELSBIF <blockz>. . . IEf,sE<DlocI n>t
EIfDIF

Por rnttatrcc the tt o Godr! of Eia[plc I rryl4nt tlrr !D
rlgonthn.
EXII,IPI.E I

Cod. A

IFP
IABI|

t
ELSE

IFq
TEEN

b
EISE

IFr
IBEN

c
EI.SE

d
BIDII

EITDIF
ErfDIT

eodc B

IfD
lEIN-

I
IISEII

b
BISBTF

e
EAI

d
ENDII

tI

r

PAGI IT

Tha tclactton ol ona eng seuBral rayr 1! allovsd Dy a CtlsE
conatruct.
Ihe lrrylclt toE! ol thrr conltruct l! GonEonly rsprolcnted bys

CASE<lnthEt,'c sxpralllon> <block l) (block 2>... <block n>
ENE.NSE

Strsh a construct operatos a! fol,lowa. Thc <arlthnGtrc
erprersrotD ra evaluatcd, ruppostng that tne rnteger paEt of
tneralultra I , Il 13la nthsn the <blocf l, of
stat€rentr urll b€ axecuted otierrulBe nonc of thc l18ted block!
of ltatrDntt wul De orGoutcd.
A rcre genetallr.d fot!tr tllot ! Ghe aeleetron of a Dtoctr to bc
eaecutco rncn tha rcaulc of any cxpre8lron .l,ta! Det]rg€n a eatc
ltrt.
The keysord u!3d tor tnr! to8! r! cr,ther uAltE or sELEclr

CAAE <er(Proi8toll> <caae llat 1> <blocl(l)
<caa€ lrlt 2> <block 2>

"'<ca8e lrst tD <Dlocr n> IELSE <br.ocr n+l>l
tsNDCASE

uherB <caae lrst b ls a Itst of possrbla value! that
<erfrrreasroru can a88rm, cauaurg <b.locl3 1> to be executedo
coDyrraron rs allougd between c@PattDle t!te8 of th€ resutt ol
<erprcasron> anal thg cago vll'u€o
Ll, tlrs reault do€. not natch rltn tny caae ulChrn all caBe
list!, tho blocl3 lnclucled rn an oPtlonal ELSE clauae wrll De
exccuted.
A further devqlopDnt ot Uu8 atructure r'a rBpra8entsd b8, an
-9V!nt-drlt sn' casB tiat ra a very powerful conatruct Delng a
co[DrnatroNr of rt€racron and selectron 0t control. ror thrr
reaaon lt rrll be delcrrbcct after cha rtaratlue conatructao

- lteratrotr Sgructura!

Th. balrc ltcrattqr ttaucEura la thc IIHILE-DO ehrch nay be
PRlaenccd Ln ttrc tont
rBILE <sondrtron> DO <blocf> BNIIIHILE

In aG rqrLEntatronr ure Leyuord u, rr onttted.
Thr! atrtrcture tnpllG! ttro follorrng operatron! l lr'rltly thc
<@ndrtloD> ra teat€d, rf prot€d fal!6 thc entlE! conltrueE
rr lkrpped oth.rya3e tho <block> of strtacntt wrll bc
cxccutad rnd thq rholc pRocla! rcPeated.
Thr! c,yclrc op.Etron 1,. tlnl.hcd and thc conltruct lett at
thc l1r8t l[lurG of ttrc <condttlon>.
That r,r to lay uhat r,r clerrly c:(pRe.!ed by th. kGl&tordt of
thc qdlstnrct, tho <blocl> of atatenBnt! l. reFatedly
orocuted lhtlf tlre <condrtrorD rcnunr truc.
fB sG care! thc pararet€rs ol thc condltloa hatB to be
dctln d by a pravr,oua ex€cutton ol tlrc bloclc of .tat€rnBts
<block> lfilll! <condltron> m <btock> El[DntrlEA

PAGE 12

This situation is better represented by a variant of the
construct known as DO-tNTIL:

DO <block, UNTIL <condition>

where the postpoeition of the keyword UNrIL rrermits the
onl.ssion of an ending keprord. It should also be observed
that the kelnrord DO is replaced by REPEAT ln many
irnplementatlons.
Thls construct works in the follorring way; the <block> of
statenents ls executed and afterward the <condition> is
tested, if proved true the construct is left othemise it ls
entered again with a new execution of the <block> and eo on.
The cycle ls broken off once the <condition> is achieved.
Briefly the <block> of statenents is executed repeatedlly
gg!!I the <condition> becdnes true.

The repetition of some operations on array elements, implying
the increase of a subscrlpt variable is facilitated by the
following structure!

FOR (variable> <valuel> <va1ue2t [<value3>] Do <block, ENDFOR

where lvaluel> is the initial value assigned to <variable>,
<value2> is the upper liml.t that <variable> may assume and
<value3> ls the increment to be adlded to <variable> at each
new cycle. tlhen <variable> must be Lncreased by one,
<value3t may be omitted. Some inplenentationB omit the
keynord DO.
But none of these constructs allows the condition test
betneen two blocks of statenents to be executedl repeatedly,
without duplicatlon of code.
A generalized LOOP structure has been proposed as belng the
beet solution for thisr tl1l
LOOP <block1, I{HILE <condlition> <block2> REPEAT

lloreover thls structure eimulates the WHILE construct when
<blockl> ia omitted andl the UNTIL construct when <bIock2> is
in its turn onltted.
Exa.mple 2 shorrs a comparison of the three structures Ln the
case of exit betrreen tilo blocks, while Example 3 shows the
use of the LOOP structure in the classical 'WHILBT and
'ITIITIL' situatlons.

PAGE 13

EXAIIPT,B 2

Cod€ A

L(x)P
a

tfiIItE not(p)
b

REPEAT

Code A

Ld)P I'HII.E q
a

REPBAA

LOOP
a

!{HTLB not(r) REPBAT

Code B

a
WHILE not(p) DO

b
a

ENDWHTLE

Code C

DO
a
Ip not (pl
TITEII

b
EIIDIF

UI{TIL P

SlncG th€ prcdicatc p reprcsents thc erlt condltlonr lts
complemcnt lr uacd to rnan the 'rtay-1n-loopt condltion.

EXAIIPT.B 3

Code B

WHILB q DO
e

EIIDWHTLE

DO
a

I.IIITIL r

- Junrp Capabllltles

Slnce ttre blocks of statenrents nay be ae conplex as possible,
lncludlng multlple nested control structures, condltional
eventB through this path may nake it necesgarT to leave the
construct before the end of a block ls reached. Such a
situatlon le marked by the nunrber n of potentl,al exlt
condltlons.
en effectlve repr€sentatlon of thls generic gn path lnplles
the need of some dlsclpllned Jump capabllity.
9lhlle the use of closed Btructurea for the lteration of the
control has lntroduced a dlsclpllne for Junps backrards, thle
ner requLred capabllity must govern Jups fonrards.
A prlnary golution was the introductLon of an EXIT clause
wlthln the iteration construct. Such a clause, wherever
l.necrted, allor.rs the transfer of the control to the flrst
statenent after the endlng keyvord of the lnner Lteratlve
gtnrcture that contains lt.
A n€w problern arises when nestlnq two or nore structures of
thls type. fndeed the elmple EXIT nakes lt posslble to leave
one Lterative path, that is a level of the control flon. But
aome events (e.9. the detection of severe errors) nray lnply
leavlng an outer lteratlve structure, ln other t ords to Jump
through more than one level.

PAGE 14

To tltis purpoae a multi-level jump nae included in some
proposals Ly means of an EXIT (n> clause.
Such an extension of the demonstrated need for a jurnp is not
exempt from negative impllcations. Indeed nultllevel EXIT is
extreneiy dangerous becauge it establichee a static jump
without any contextual relationship.
Thls fact precludes any corFrile-time verification, therefore
modificatlons and extensLons to the softrrare mav become
difficult, if not lnposslble, as happened before.
Por instance, in the case of data manipulation by levels,
eactr of them involves a clear definition of data fields,
prlnitive functions and operators, all detailed in
homogeneous parts of a structured code. Data conslstency is
checked and any detected failure causes the interruption of
the currgnt operation. If, at any moment a ne!, intermediate
level has to be added, all the pre-_exlsting EXIT n
clauses in the lorrrer levels must be revised to avoid troublee
at execution tine.
Analogous trouble ls caused by the suppression of an existing
Ievel.
Another solution ls represented by the lntroduction of a
LEAVE clauee that allot s some labelled closed structure to be
Ieft transferring the control to the first statement after
the ending keytrord of the referred entity.
This clause may be va1J.d only ln a portion of code which
represents a functional unit (procedure, block or similar
trnits) and hae the form

LEA\,E <label>
whose semantics is related to the occurrence and the location
of <label) within the unit.
Thus the causes of errors such as duplicated, misplaced or
nissing labels can be checked at cornpllation time. fo
explain the different behaviour of the two clauses, let us
imagine a block of statements conrposedl of three neoted cloeed
structures labellecl ralphar, rbetat, tga[utrat from outside to
inside and representing as many hierarchical levele. The
inmost structure rgarrunar performs a valldlty check and when
an error occurs the control must leave the whole block.
The desired jump may be obtained by a clause

LEAVE alpha
whose effect is equivalerrt to EXIT 3 in a fixed
situation and will not be affected by any adilition or
suppression of internediate levels.
Since the LEAVE clause involves a restricted uEe of labels,
namely a closed structure label, it appears rather natural
that the needed iump capability may also be provided by a
restricted use of a co TO clause within the iteration
constructs.
Indeed the relevant thing is the ability to make a jump, and
not the linguistic means to provide it. Ilo{ever, it is
necessary to ernphasize the exceptional nature of the Jumps,
and to recommend restricting them to the control of abnormal
paths.

PAGE 15

Jumps must never exceed the scooe of a rrrocerlure, therefore
vhe-n levels are implemented as procedures, since- such units
nust not make assumntions upon the external environment, the
most reliable solution is Lne use of a rcase varlablet as
parameter. This variable records the casual occurrence of
one Ermong some possible events, and returns this value which
will be tested outsitle the procedure in a CASE structure.

- Ilvent-Driven Structure

The concept of this recent structure [12] may be represented
in the forr^r:

UNTIL <event 1> OR <event 2> OR...OR <event n>
<block 0>

REPE.4T
THEII <event 1> <blockl)

<event 22 <block 2>

<""i"t n> <block n>
ETID

The <block 0> will be repeatedly execu+-ed until the
occurrence of one of the foreseen n events, then the
occurred <event i> determines the selection of the <block i>
to be executed and finally the control leaves the structure.
!t must be noticed lhat one of the n events must assume
a special meaning, namely the avoidance of the loop ior ever'
Thii safety evenf ma1, be t-iecl to the execution of a finite
number of iycles or, .ln the case of parailef execution of
concurrent processes, it may be an external signal.

Softrrrare Production Libraries

A software system being implemented by the top-dotrn method
evolves continuousllz.
The task of fixing a set of homogeneous versions is made
possible by using some production libraries to store both
soo."" code and iest data. The essential requiremen: is to
have:

- a Master Library which contains the overall up-to-date
version of the .system

- a Development Library containing some newllz implemented
system components or modifiecl ones

- a fest Libiary containing the case data used to test the
system

Each fully tested com'.ronent wilI replace the j-dentically nameC
stub in Lne !.laster Librarv in the same way tlrat nodified
components replacel Lheir previous version. The data used for
testing will be added to Lire Test Lilrrarv-

PAGE 1 6

It is advisable, at each nodification, to run again all case
data stored in the Tesg Library.
Furthermore som€! old versions of the systen at well tested
Etages roay be stored as a family of static librarres.
The management of these production libraries ls performed
automatically by various information filing systems or
lr'brarians.

t{anageri al Franerrork

In the case of large scale proJects, the improvement of
progranming productivity also depends on the standardization of
tne nretirods and tools employed as well as a ratronal
organization of the programmersr activities.

- Chief Prograrurer Team
Tnrs is the mo.st well-known nanagement approach in the
prografl[ing envi ronment.
It consists of task separation, trigh specializatlon and
disciplined relationships anongst tean members.
It is inportant to individuallze the following taks:
- Dii:ection: tne responsrollity of design and implementation

of the most critical conrponents as well as the supervision
of the development and the integration of the systeni

- Assistance: the need to cooperate in the developnrent of
critical componentsi

- tlaintenance: the updating of the support libraries and
docunentatiou, together with the annotation of the project
progress in journals;

- Cperation: development, ccding and testing of sLngle
cor.rPon4it3 -

These specialized tasks nay be asstgne<l to dlffer.lnt mernbers
of a team or grouped to be carrierl out by a few people or one
individual accordlng to the manpower available.
In the pilot stage [13t the progrrumer team was managed by a
nucleus of three members:
- the chief progra[lner, who assures the direction and is the

prinary decis ion-maker;
- the back-up programer, responsible for assistance, havlng

also a share in all inportant deelslons, and who may
replace +-ire chief prograturer lf need be;

- the prograrmring secretary, lrho attends to maintenance and
coordinates all routine work sueh as run requests and
listtng registration.

The other teanr members, up to three n!:o(rralnmers, are
resg:onsible for operation anC report direc+-Iy to the chief
progranrmer.

The first achiever:ren--s announ:ed were very nromisirg and a
generalization oi? this anproach would be suitable for the
promotion of a Softlare factorl'.

PAGE 17

Structured llalk-throughs
This is a nanagenent control based on periodic reviews during
the design phase. At each revLew a well defined component of
a project is focused.
The person reeponsible for the develonment of thls component
relrorts on specifications, assumptions and interfaces with
o'-her components of the project. Everyone involved in the
syatem development as well as managerg concerned vrith the
project may attend the meetings and discuss the details of
the review.
These critical discussions increase the project awareness
among participants and will promote a better lmpact of the
software at production tine.
This practice may also be continued during the coding phase,
but in this case the participation ls restrlcted mainly to
the programmers.

PAGE 18

A Style aa Integration of Different TechnLques

Although deyeloped almost lndependently, the technigues
revj.ewed share the corurrc,n goal of contributing to -the
improvement of Software Etructure.
Some-of them partially overlap as far as eLther the explored
dorain or the adlopted solution are concerned.
In thiE perspective some perplexity nay exist in the choice of
the method beet suited to any sJ.ngle case.

A balanced solution consists in the integration of some
selected techniques, according to the extent of the planned
Software product.
+n_-a!!empt at integration is propoeed for application by the
individual progr.rmmer.
Of course, there is no point J.n making a list of strict rulee
to be followed blindly.
Programning nust be an imaginative activity, therefore
programnerB muat carry out their creative task ln a maDner
based on functional principles and tailorecl to their own
capabilities. Pereonal intuition must be stimulated to invent
origlnal alternatives in finding the solution to a given
problem.

The topice preaented from now on are intendled as suggestlonE toguide-people, firstly in formulating a solution and-iecondly in
choosing between the different poesible approacheo to a
solution,'so that the beet one will be adlopted.
fhls iB the way to establl.sh a Bound programing style.
The- proposal. is explalned by a einple example. Itrough theproblen is trivial, the operating method can be extended up to
mediun sLze Software products.

"9lhat is tnedium size?' ie the obvious question at this point.
A- subjective.classification of Software producta depending on
their size night be:

- the snall ones concern trivlal or didactlc probleme;
- the medium ones concern complex probleae developed wlthln a

reaeonable time by one prograruleri
- the }arge onea concern probleurs worked out by a team because

of thelr. extent or urgency.

Let us suppoBe that we are faced with a problenr lnvolving eomegeneric computations on an unpredictable number of caees] each
of then represented by a set of input data.
The last input information of each set being an indlcator which
tells whether another set follot s or not.
In additlon to the speeific input dlata the computationa require
some reference lnfomation contained in a data llbrary.
Either the results or an appropriate error report- wlll beprintedl for each case.

PAGE 19

In the early Btagea it is neceseary to coneider the ilata
organization.
Since any Infor:matl.cs process nay be seen as a transformatlon
upon aome lnfomation, the delimitatlon of self-contalned
f,unctlona may be deduced fron logical connectione withln the
informatlon.
Therefore the iatentiflcation of such connectiona aB well ae therecogmitlo! of relatLonships between J.nput data and output
resulte, allowa a ratlonal data organization, on whlch Lne
frame of the-clesign will be based. (See the concept of the
arackaon nethod I7l).

Our example deale with:

- Reference data atored in an egtabliehed llbrary.
Piret of all the extent of the llbrary governs the core
requirenent aa well as the choice between a-single accesa tothe whole libraryz or periodlcal retrleval of one needed
subset of it.
Secotrdly, its content affectg both the attrLbute8 of the
variableg rhlch are gol,ng to recelve the data, and the node
of readlng them ln.

- Specific lnput,/output data, whose compositlon and complexlty
w111 be a gruide to the choice of proper variable atructureato store then.

- Error typea, on whl.ch the message texts will depend.

we a8aume that:

- the- library ie ghort enough to be kept entlrely ln core,
- each Eet of input data contains: a deecriptlve tltie, ahlerarchy of numeric fields, a loglcal indicator,
- the r€sulta ensuing from each input set are requested in formof a table,
- errols are grouped in two clagseg that are:

- Lnconsistent input
. - computatlon failures

A preliminary analysis of the requireaente points out:
- the nature of the proceaeing (computatlon on an unpredictable

number of cases)
- the informatj.on reguired (speclfic data contained in eachipnut set in conJunction lvlth reference data always valid)
-'the expec!,ed Lnformation (printout of results or irror report

obtained by the proceBel.ng of each input set)

The broad linee of the desJ.gn emerge fron these general
elements. sorne actlons atand out as well as thelr relitional
occurence.

PAGE 20

Action

get reference data
get specific input data
check data consistency
make computationE
check for completion

Occurrence

once, before all other actions
for each set
for each set, after data are got
only for valid sets

of computations after conputations on a valid set
print resulta only for correctly processed sets
prepare and print message when any error has occurred
stop the processing at the end of the last set

The reported actions must be linked according to the logic
emerging fron the relationships between their occurrences.
Such linked actions constitute a picture of the top level of
the problem solving process.
The suggested tool to describe thiE abstract process is a
pseudo-code.
A relevant considerati.on must be made before defining or
choosing the pseudo-code to be used. It is generally
adnitted that a distinctive feature of a good design is to be
language independent. Horrever, it is an undeniable advantage
if the same control structure layout is present in both the
pseudo-code and the progr.rmling language.
Indeed, in this case, the coding activity will mainly consist
in replacing action descriptions with statements of the
prograrming language, while the control flow is already
settled, the pseudo-code kepvords being valid also in the
progralruning language. So this derogation to the principle of
language independence seems to be acceptable.

PROGRAI.{
Cet reference data fron Library
DO

Get one input set and check data consistency
IF consistent data
THEN make conputations

IF computations completed
THEN print results
ENDIF

ENDIF
IF any error
THEN prepare and print messages
ENDIF

UNTIL no input set follows
END PROGR.A!,I

The progr.rm in pseudo-code shows some statements in natural
language that describe the logical functions into which the
progr.un itself is decomposed.

PAGE 21

fn the continuation of the text, euch functlons w111 be
referred to by more conciee idlentifl.catione. The table below
gives the correspondences.

Get library - Get reference data from library
Get and check - cet one input set and check data

consistency
- llake computations
- Print reBults
- Prepare ancl print messagea

At thls polnt we deal with the problen of data visibtlity, that
is the need to control the accesa to data that must be shared
by different functions.
fhe follouing eumary shows the situation in our problem:

Acceseed data

reference data

Functione

from:

Cdrpute
ReBuItg
llesaageB

specific input clata frur:
- Get ll.brary,
- Compute
- cet and check,
- Compute
- Coqrute,
- Results
- cet and check,
- Corqrute,
- the top unit
- Get and check,
- the top unit

output reaults
error indicatora

etop indicator

programming language.
The work to be done
features of the chosen
will be given here.

from:

from:

frorn:

In this way the interfaces between cotmunicating functions are
clearly defined.

Now the deeign will proceed from the top level which is
cmpletely expressed, down to the more detal.led 1evels,
operating in the aame way on each Beparate function.
At thie point one cannot 90 lnto dletaile, because of the
generic formulation of the problem. We can only remember that
existlng data structurea are a tangible element on which the
archltecture of the functlon Ltself nray be based. For instance
the function rGet and checkt will be tailored to the hierarchy
of input data.
When the design is conpleted the problem must be coded in a

in this phase greatly depends on the
language, so that only some suggestions

Some implementation decisions nust be taken before starting to
code the program.
Provided that the language allows independent conpilations, a
modular scheme of the progratl must be planned. Thii means thatgeneralized and cloae functions are identified as independentunits -to be corpiledt separately. (Procedures or subprograms
according to the terminology of the langruage)

PAGB 22

Although it is not a general rule to coneider each function as
an independent unit, we do choose this yray to enphasize the
concept of-program segmentation ae well as the need to keep the
top unlt alnple and clear.

Thue all existlng functions become independent unlta and we
Juet add to them a top unit called XAIN that simpllz monitors
the other oneg, and the progran schene gtands out as lollors:

LIBRARY

DO

AND CHECK

IF coneistent data

IF conputations completed

IP any error
rrrEN l**^"* I
ENDIF

LTNTIL no input set follows

Nor, for each unit, one muat provide:
- declaration of all local variables,
- declaration of the variables shared rrith

thE facilitles allowed by the language to
other units using
set up interfaces

betrreen units,
- executable statements performing the required actions.

Applying the top-down technique the testing may start as soonas the MAIN unit is irnplenented and proceeds to each new unitimplenentation. Thus the problem wilt be tested step by step.

At the first step only the I{AIN unit exists, while aII other
functions are temporarily simulated by stubs that are dumny
units whose only goal is to show a trace of the control.
'fherefore the first action of a stub is to write a message toprove that the unit has been entered; noreover the stub willprint the value of any parameters transferred to the simulated
unit by the calling one.
Thus the first run only pro<luces a figure of the chronological
Iink of the different units.
The next steps must provide the test of one unit at a time.

PAGE 23

The functions to be tested first are, regpectively, reading
input data and editing the reeults. Indeed transiormatl.oni
upon data cannot be verified wlthout the certainty that data
are correctly accesged and that the reBults are printed
exactly.
The firet verification on data ie to print the valuee that havejuet been read.

ObvLously the unit GET LIBRARY wlll always read the same data,
therefore the operatione to wrlte the icceeeed valuee may be
removed as aoon aB the test is euccessful. However iL is
aclvisable to rnaintain such operatlons also ln the flnal version
of the unit cET AIIID CHECX, because this may also be useful for
the-debugging of anomalous behaviour of the program in the
exploitation phase.
The test of the unit RESULTS implies the availability of a aetof suitable values atored in some arrayB. This nay be
obtained, for inatance, by a series of aseignment statemenLs inthe COI.iPUTE stub. In this way, also the access to the arrays
Ehared by the two units will Le tested.
l'he units GET AllD cEacK and col'tpurE that involve artelnativeeituations must be tested both for the valid alternative, andfor all the foreseen errors.
The te8t of the unit ITTESSAGES nust Just be focused on the dtata
which represent theee abnormal Bituitiona to be sure that theproper measage is iesued for any foreseen error.
The simulation of a conplete Bet of error condl.tions is veryinportant for obtaining reliable diagnostice during the real
work of the program.
The evolution of the progratn during the testing phase is
repreaented by the fotlowing ateps:

Step 1

coded unit
MATN

stubs to aimulate:
GET LTBRARY
GET AIID CEECK
couPurE
RESULTS
ITESSAGES

Step 2
coded unite

MAIN
GET AIID CEECK

stubs
GET LIBRARY
COI,TPUTB
RESULTS
UESSAGES

to teat:
- loop over nultiple input sets

- library tranefer
- input trangfer
- coputatione
- edittng of reEuItB
- issue of error meagagea

to test already te8ted functiona plus:

- transfer and validatLon of lntrnrt data

to slmulate:
- library transfer
- computations
- edl.ting of reaults
- iasue of error Deaaagea

PAGE 2O

Step 3

coded units to test already tested functiona plus:
IIAIN
GET LIBMRY - library transfer
GET AIID CHECK

stubs to s.tmulate:
COIIPUTE - computatlons
RESULTS - editlng of resultsITESSAGES - lssue of error nesgages

Step tl

coded unlts to test al.ready tested functlons plus:
MAIN
GET LIBRAAY
GET AI{D CHECK
RESULTS - e<Iiting of results

stubs to sirnulate:
COUPUTE - conputations
IIESSAGES - issue of error messages

Step 5

coded units to test already tested functions plus:
MAIN
GET LIBR,ARY
GET AI.ID CHECK
COilPUTE - conrputatione
RESULTS

stub to simulate:
MESSAGES - lssue of error meaeagea

Step 6

coded unlts to teBt already teated functions plus:
MAIN
GBT LTBRARY
GET AltD CEECK - reJection of lnput inconsistencies
COIIPUTB - failures in cornputatlons
RESULTS
UESSAGES - issue of error mealragea

PAGE 25

After the last step all the units are lntegrated and the whole
program is tested.

The peculiarity of such a descending path is that the
monitoring of the global logic ie the nost tested part of the
progtam.

In conclueion, some key euggestions may be sumnarlzed.
During the dlesign phase:
- always have in nind the global view of the problem,
- outllne the organizat,ion and vislbility of all data before

thinking about their transformation,
- tlivlde complex functione up lnto simpler primitives,
- describe the actions to be performed, using concise and

unequivocal statements in naturel language.

During the coding phase:
- find the best segmentation into independent units,
- declare all variables and restrict the use of global

variables to essentials.

DurJ.ng the testing phase:
- for each level of abstraction, implement crucial units

beforehandl, so that they can be tested nrore thoroughly,
- store all test cases and each tirne a unit has been nodified,

rework all cases pertainl.ng to it.

PAGE 26

collsvs
Text Box

A TALK ABOUT PROGRAIiTMING LANGUAGES

The development of the languages for conputer programming has
passed from the machine level to stages that more closely match
the user's need.
So we have had several classes of languages called fron tinE to
time, high level languages, problem-ori.ented langruages, very
high level languages etc., and the number of languages is
continuously growing, especially in the acadenric environrEnt.
Because of the size of the subjeet, a general discuEsion on
progranming languages exceeds the scope of this paper, and
consequently this chapter will only concern general-purpose
languages widely used for scientj-fic applications.

The fdeal Programming Language

It frequently happena that prograrnmers are restricted by some
Iack of the language used.
By collecting such negative observations, it is possible to
infer a set of the desirable features that a suitable langruage
should have.
First of all the syntax of a progralrning language should be
formally defined.
This preliminary qualification allor^rs a coherent implementation
of compilers by different clotllputer manufacturers. Moreover a
formal definition represents an unequivocal basis for
systematic approaches in teaching computer programming.
A lot of important features foIIow.
Their natures differ widely, so it is more convenient to group
them according to some general subjectB.

a) Syntactical and editing facilities:
- extended character seti
- free format for the source statementsi
- Iong identifiers for the symbolic elerEnts of the

language, rdj.th a connecting character like hyphen, dot or
underscore. By this, meaningful names are easily allor,red
giving more understandable codes;

- both in line and interspersed comments. The former are
for concise explanations of slngle operations, the latter
for descriptiris documentation of blocks of code;

- automatic indentation which illustrates the logic by
showing up nested levels.

The last three features are very useful in obtaining a
self-documented source code.

PAGE 27

b) Data representation:
- parameter variables, i.e. symbolic names for constants,

may improve readability;
- flexible facilities to handle character strings of

variable length;
- extendable data type definition to Bupport data

abstraction creating convenient new typesi
- multidilensional arrays for effective representation of

cornpact matricea of homogeneous datai
- conposite structure for flexible representation of chains

of heterogeneous data, as lrell aB aparse matricesi
- dynamic allocation may be a useful option, intleed it is a

powerful feature, but its thoughtless uae should be
avoided because it involves time-consurning algorlthms for
core management.

ManagetrEnt of contr,ol :
- a conplete aet of closed structures, avoiding both

uncontrolled branching structures and multiple entries;
- a tnacro generation rechaniem for in-line expansion of a

short portion of code needed in several places. Thia
feature is eepecially euitable for tirne optimization
because it involves only a seguential execution of the
ernbedded inetructions i

- internal procedures to be referred to from everlmhere
within a program unit by a sirnple link mechanisn and
wj.thout epace duplication. Since the linkage nay be
implemented rrithout any noticeable overhead, this feature
may be an alternative to the previous one, but more
oriented to space optimization;

- external procedures allowing independent compilation.
This feature permits a physical decotnposition of theprogram into distinct modules and, in epite of the
exesution overhead involved, iE of wide application to
support external libraries;

- recursive proceduree as an optional feature is of great
interest. Indeed recursion ie a very clear and synthetic
means of expressing algorithns. But userB must be very
careful not to fall into abuse of it becauee the procegB
cannot be irnplemented efficiently. On this subject, it
must be remembered that advanced techniques for program
optimization comprise transformation'frotn recursion to
iteration [11].

Debugging facilities:
- a complete Bet of lntelligible diagnostics of the.slmtax

errora detected by the cornpiler;
- a porerful aet of error handling procedureB to igeue

explanatory measages and explicit report of recovering
actione if any, uhenever the nrnning code is diecovered to
be behaving abnormallyt

- a wide set of tracing facilitLes to prompt significant
information aa aoon as a definite bug occure.

c)

d)

PAGE 28

e) Cost-effective facilities:
- a data management system supporting a wide range of

peripheral devices and able to cover any access mode,
aining at both efficiency and device independence;

- specialized public libraries that must be efficient,
reliable and weII protected;

- private libraries to be concatenated to the public ones
and easily extendable by user-defined procedures or
macros i

- official definition of a standardized subset to guarantee
reliable performances on different compilers;

- standard conventions for interface definition as weII as
the recognition of linkage conventiong of other languages,
sc that conngctions between ezternal rnodules coded in
different languages become possible.

I- should be observed that points a) to c) include the most
profitable features in order to produce a readable, lnodifiable
and maintainable code which is expected to be as little error
prone as possible. Hovrever the last tlro points must not be
neglected because they respectively makt: provability easier and
allow efficiency. Experience has also shown that the success
of a progranrning languaEe greatly depends upon these features.

Using the Existing Languages

Unfortunately the best knovrn languages, and naybe any
general-purpose l.rnguage, do not combine all the features r,re

need trJ apply the described tachni(jues. So ere must adaPt our
habits to the adopted tool.

Algol-like languages, for instance SIMUL,A 67, ALGOL 68, P-ASCAL
etc., provide extended means for data rePresentation but in
some cases the implicit mechanism of global variables may hide
unexpected side-ef fects.
control structures are generally well suited to build closed
control environments and nest them properly, but unc"ontrolled
branches are to be avoided.
The program segrmentation is mainly achieved by internal
procedures, including recursion. A syEtematic verificacion of
data type conpatibility concerning actual and formal Parameters
is performed. Furthermore scalar Pararneters may be transferred
by value, increasing data protection.
However the use of external procedurea is made possible in gome

cases. For instance ttre CDC 5000 PASCAI compiler includes two
declarations to refer to external libraries [14]: E]CIERN for
PASCAL procedures and FoRTRpN for library subprograms compiled
by a FOSOP.AN processor. This later possibility might make of
PASCAL the rodern progranrring language which can enrich its
range with th.1 patrimoni, of decades of programming efforts.

PAGE 29

Due to its supple and powerful data tyPe definition mechanism,
PASCAI may be considered an extendable language and its growing
significance is confirmed by the fact that the U.S.A.
DefJartrilent of Defence is supporting a stLldy to define a new
conmon scicntific oriented programning language based on PASCAL
t1sl.
Tvro negative points must be noted however, for this family of
languages: Input-output facilities are rather poor and
debugging is not always well supported.

The PL/I checkout and optimizing crompilere provide good data
representation, clear control structures and the full set for
program segmentation: macroB plus internal, external and
recursive procedures.
In spite of this excellent equipment trouble j-s \tery freguently
met.
The user must be ar.rare that side-effecte against data security,
may occur by use of global variables and because of the
tranafer of parameter8 lrhich takes place by address.
In addition unclosed control structurea aa well. as multiple
entries should be avoided.
Irrput-output offers extended possibilities, whiie thc
sophisticated recovery facilities are of help only to highly
experienced ueers.

A special word will have to be given on FORTRN{ Iv.
lhis language is lacking in several features which are
indispensable to the building of well-structured programs.
Indeed, data structure are limited to arrays and closed control
structures are inexistent. l{Dreover scalar parameters are
transferred in a hybricl rray which does not assure data
protection, i.e. they are passed by valuer returning result
when the eubprcaran terminates.
Nevertheless FOIORAI{ cannot be ignored, because of its
importanee from an econcrmic point of view, ensuing from
execution tine optimization, independent conpllation,
si:nplified but efficient input-output and cffective debugging.
The use of a precomniler has been propoeed as a remedy.
But the proliferation of such Lools has pointed- nut the
weakness of the enterprise.
The overall precomPiler tangle can be sulmarizetl by the
sentence 'ft is a good thing they exist, but it is a pity we
needed them to exist". In fat:t these tools have made it
possible, and still do, fcrr peopie in enviror.ments lacking in
proirer languagea, to be intiated to and trained in structured
coding. Some of them iirEt implerr.errted automatic iedentation,
still missing in prograrnming languages. Above al1 ttreir
existence engendered in the FO8fRAN rdorld tlre need fcr closed
structurea and con8equently protioted analytical studies to
clefine coherent and standardized proposals [16] nhich should
hopefully result in an extension in this direction of the
Language and the compilere as well.

PAGE 30

But their generalized use is causing us to lose sight of the
primary benefits of a compiler: effectivness, direct path in
debugging, comPatibility with the operatrng system and
maintenance supported by the nanufacturers, etc.

In conclusion the best approach, using FORSRAII IV, seems to be
a great effort to emphasrze a clear and lrell-structured design,
follot'red by a disciplined use of fixed control construct which
simulate closed structures by means of the control statements
of the language.
Proposals ilong these lines can be found in the literature
1171, [18], but any Progranmer can devise clever solutions,
iead-ttris text with-ciiticism and hopefully find something to
his profit.

Acknowledgements.

f wish to thank Mr. Jean Pire whose suggestions helped me to
improve the text and make it clearer.
Furthermore I am greatly indebted to Mr. Grancarlo Gaggero, who
gave me the opportunity, late in 1974, to learn and after:r,,rards
to apply the structured techniques, and to all cited authorE
uhose papers brere a continuous guide in my work.

PAGE 31

collsvs
Text Box

REFERETICES

t1] KNUTH, Donald E. ncomrruter Progranuting as an Art"
Comm.AClt 17,12(Dec 1974) pp 667-673

I2l BOOLE, George nAn Investigation of the Laws of Thought,
on which are t'ounded the Mathematical Theories
of Logic and Probabilities" (1354)

t3l ;IoARE, C. Anthony R. "An Axiomatic Basis for Computer
Progranuning'
comm.AcM 12,10(oct 1969) pp 575-580,583

ttll KLEENE, Stephen C. iRePresentation of events in nerve
nets and finite automatan
Automata Studles (Annals of l{athematics Studies,
n.34) Princeton (1956)

t5] DIJKSTRA, Edsger W. "Go To Statement Consldered Harmful"
Conn.ACU 11r3(Mar 1968) pp 147-148

t61 BOHEII, Corrado; JACOPINI, Giuseppe iPlot, Diagrams, Turing
!.tachines And Languages vfith Only trro Formation Rules'
Coiun.ACH 9,5(May 1965) pp 366-371

l7l Infotech International Limited "The Jackson Design
llethodolog],n - ?ublication of the series Infotech
Structured Design Division

t81 S?EVENS, Wayne P.; rlYDRS, Glenford J.; CONSTAIITTIIE, Larry L.
"Structured Design" IB!! System Journal 1312(197'll
pp 115-139

t9] STAY, James F. tIIIPo and Integrated Prograrn Design"
IBtl systens Journal 15,2(1976) pp 143-154

t10l International Business l.tachines Corporation
"HIPODRAI{ A Productivity Aid for automated production
of IIIPO diagrams"
IB!4 order number G320-5545

t111 KNUTII, Donald E. "structured Programming with Go To
statements" Conputing surveys 5,4(Dec 197a) pp 261-301

t12l ZAHN, Charles T. "A Control Statenent for Natrrral Top-Dolrn
Structured Programming" presented at Symposium on
Programming Languages, Paris, April 9-11 r197tI.
Published in Lecture Notes in Computer Science
n.19 Springer-Verlag (1974) pp 170-180

t13l BAKER, F. Terry; MILLS, Harlan D. "Chief Programer Teams"
Datamation 19,12(Dec 19?3) pp 58-61

t14] I4OHILNER, Patricia R. "Using Pascal in a Fcrtran Environment"
Software-Practice and Experience 7,3 (.run,/Jul 1977)
pp 357-362

t15l Denartment of Defense U.S.A. "Requirements for tligh Order
Computer Prograrmning Languages" Revised IRONMAN
(Jul 1977)

t16] IIEISSNER, Loren P. "Proposed Control Structures for Extended
Fortran" SIGPLAN Uotices 11,1(Jan 1976) pp 15-21

t17] TEIINY, Ted C. "Structured Programming in Eortran"
Datamation 20,7(Jul 197a) pp 110-115

t181 International. Business !{achines Corporation
"An introduction to Structured ProoramminE in Fortran"
rBll Order Number GC20-1790-0

BIBLIOGRAPHY OP.IE}ITED TO TIIE OI{ S]IIE LIBRAP.IES

A) Programning Forr:ralization

- CLII'IT, M.; HOARE, C.A.R. "Proqram Proving: Jumps and
Functionsn
Acta Inforntatica 1,3(19721 pp 214'224

- ELGoT, C.C. "structured Proctramming I'Iith and i{ithout
GO TO Statements"
IDEE Transactions on Softrrrare Engineering SE'2,1
(l-tar 1975) Pn 41-53

- IIAIITLER, S.L.; KING, J.C. "An Introduction to Proving
the Correctness of Programs"
corflputi.ng Survel,s 8,3(sep 1975) r,P 331-353

- IIOARE, C.A.R. "Proof of a Program: FINJ"
Conm.ACtl 14,1 (Jan 1971) PP 39-45

- I(ATZ,S.; rr.At{NArZ. "Logical Analysis of Programs"
Comm.ACll 19,4(Apr 1976) np 188-206

- Ltu'IzARollE, G-A. i ORIIAGIII, i'I. "Prograrn construction
by Refinements Preserving Correctness"
conputer Jotrrnal 18,1(Feb 1975) pp 55-52

- ll\iilllA, Z.; PNUELf , A. "Axiomatic Approach to Tota1
Correctness "
Acta Informatica 3,3(1974) pp 243-253

- rrL4I.llIA, Z.; SIIAIIIR, A. "The optimal Approach to Recursive
Programs"
Comm.AC!t 20,11(Nov 1977) pp 824-831

- SOKoLot{sKI, s. "Axioms for Total Correcness"
Acta Informatica 9,1(\9771 PP 61-71

See also references t3l and I5l

B) Program Design

- COHEN, A. "ller,r Trsnds in Program ltesign"
Computer world 6,9(1975) pp 2-5

- FRoST, D. "Psychology and Program Design"
Datamation 21 ,5 (May 1 975) pp 1 37-1 38

- GEORGE, R. "Eliminate Flowchart Dra,lings"
Software-Practice and tlxperience 7 16 (I'Iov,/Dec 1977)
pp 727-732

- I{oLTOt{, J.B.; BRYAl,l, B. "structured Top-Down Florcharting"
Datamation 21,5(May 1975) pp 80-84

- JAcKsoN, lt. "Structured Program Design"
Software tforld 7,3(1976) pp 2-5

- t-tccLURE, C.L. "Top-Down, Bottom-Up, and Structured
Programming"
IEEE Transactions on Software Engineering SE-1,4
(Dec 1975) pp 397-403

- tlILLS, H.D. nSoftware Developmentn
IEBE Transactions on Software Engineering SE-2,4
(Dec 1976) 9p 265-273

- MYERS, c.J. "Composite design facilities of slx programming
Languages"
IBlt System Journal 15,3(1976) pp 212-224

- MYERS, G.J. nCharacteristics of comnosite design"
. Datamation 19,9(sep 1973) pn 100-102

- PARNAS, D.L. "A Technique for Software rlodule Specification
w5.th Examples"
Comn.ACU 15,5(May 19721 pp 330-335

- PARNAS, D.L. "On the Criteria To Be Used in Decomposing
Systems into Modules"
Corun.ACFt 15,12(Dec 1972) pp 1053-1.058

- PETERS, L.J.; TRIPP' L.L. "Is Software Design "tlicked"?-
Datamation 22,5(iray 1976) pp 127-136

- VAIil LEER, P. nTop-donn development using a program
design Languagen
IBll Systems Journal 15,2119761 pp 155-170

- WIRTH, N. 'Program Development by steprlse Reflnement'
Conm.ACM 10,0(APr 1971) PP 221'227

- !|ITTY, R.vl. "Dlmenslonal Plowchartlng-
Software-PractLce and Experlence 7,5(Sep/Oct 19771
PP 553-580

See also referencee t8l and t9l

C) Analyaie of Control Environments

- ADAllSr_J.tl. rA General, veriflable Iteratlve Control Structure'
IBEB Transactions on Softrrare Bnglneering SE-3,2
(llar 1977) PP 1tl4-1t9

- BOCHHAIfN, G.v. 'Hultlple Bxlts from a Iroop rithout the GORor
Conm.ACm 16,7 (irul t9?3)

- DONALDSON, J.R. 'Struetured Programing'
Datamatl.on 19,12(Dec 1973) pp 52-54

- cooDENOUctI, J.B. rBxceptlon Eandlln|: Iaauea and a Proposed
Notatlon'
Comn.ACM 18,12(Dec 1975) pp 683-696

- IBDGARD, H.P., }IARCOITy, H. 'A Genealogy of Control Structurea'
Cqin.AcH 18r1t(Nov t975, pp 629-639

- ITIPTON, R.{I.l BfSBNSTAT, S.C.l DE}IILI,o, R.A. 'Space and 81ne
lllerarchles for Classea of Control Structures'
Journal ACg 23,t1 (Oct 1976) op 7ZO_712

- llIf,LER, B.F.Jr, IJINDAIOOD, G.B. "Structured Prograirlng:
Top-dorn APProach"
DataratLon 19,12(Dec 1973) pp 55-57

- PBTBRSON, Yl.w., KASAII, T., llOXtRA, N. 'On thg Capabllltlea of
tfhlle, Repeat, and Bxlt Staterenta'
Corm.ACu 16,8(Aug 1973) pp 503-512

- tlEGNEiR, B. 'Tree-btructured Progrars'
Co6.ACH 15,11(lfov 19731 pp 700-705

- wfRfH, U. ron the Corposltlon of llell-Structured Prograna'

.
Cqrutlng Suttrreyo 6rl(Irec 197t1) pp 2q7-239

' see also references t5l and tlll

. D) Appltcatlon of Cloaed Envlronmente

- EI^slloFF, ir.L. 'The Influence of Structured Prograrunl'ng on
PL,/f Program Profllesi
IEBB Transactlons on Software Englneerlng SE-3,5
(sep 1977) PP 360-368

- fnternatlonal Buslness llachlnes CorPoratlon
"An fntroductlon to gtructured Prograrmlng In PL,/I'
IBlt Order Nunber cC2O-1777'1

- LEDGRADT H.P. I CAVB, W.C. 'Cobo1 Under Control"
Cornm.ACtit 19,11 (tfov 1976) pp 601-606

- IrlIzE, J.L. 'StructurEd Programing ln COBoL'
Datatnatlon 22,6(Jun 1975) PP 103-105

- NOOtfAlf, R.8. rstructured Programlng and Ponul Speclflcatlonr
IBRB Transactions on Softrrare Engineerlng SE-lr0
(Dec 1975) 1P 021-125 '

- RALSSOII, A.r llIIGBtfBR, J.L. 'structured Fortran - An Bvolutlon
' of Standard Fortnn'

IBBB [ransactlons on Softwaro Englneerlng SB-2.3
(seP 1976) PP 150-175

- RIBXS, G.E. 'structured Progranmlng ln Aseenbler Language'
Datanatlon 22,7(Jul 1976) pp 79-80

- RoGBRs, ir.G. 'structur€d Progranurlng forvlrtual storage
syetems-
IBrl Syst€ms Journal 10,0(1975) pp 385-006

- vllll GBLITBR, A. -structured Programlng ln Cobol: An Approach
for Appllcation Programera'

.cdn.Aclt 2011(ilan 19771 .W 2-12

See llso referencea ltTl and tlSl

E). Inrpact on SQftware Production

- BAtrER, F.t. 'Chlef programer team nanagement of productlon
progralnrning"
IB}l Systems arournal 11,1119721 pp 56-73

- cooxB, L.H.Jr 'The Chlef Programner Tean Adnlni8trator'
Datanatlon 22,6lJun 1976) pP 85-86

- FAGAN, il.B. 'Design ancl code Lnspectlons to reduce errors
tn program develo;rnent
IBil systems Journal 15,3(1976) 9p 182-211

- LUCAS, H.C.Jr, NAPLAN, R.B. "A Structured Programlng
Experlment-
CoNtrputer arournal 19,2(l.Iay 1976) pp 136-138

- PEIBRS, L.J. 'Managlng the Traneltlon to structured Programlng'
Datamatlon 21,5(Hay 1975) pp 89-95

- Y(xrRD(x, B. 'uaking the ilove to structured Prograrmlng'
Datamatlon 21,6(ilun l9?5) pp 52-56

see also reference t13l

