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IRTRODUCTION

What, in fact, is Programming?

Activities carried out during the past years under the name
“programming® can be considered to be the first phase of
man-computer communication; that 18, the phase in which man
speaks and the computer listens.

As Donald E. Knuth has pointed out, programming can be
considered to be an art {1}.

Dante and Shakespeare were artists in transmitting thoughts and
feelings expressed by language and they are admired for this
ability. However, generations of people are still wusing the
same languages to communicate daily with each other and it is
only when the language rules are observed that the resulting
expressions are correct and pleasant and above all that
understanding is unequivocal.

It is therefore sensible to promote and demand correctness in
all, even humble, language applications.
This rule also applies to programming languages.

Moreover, programming languages are recent tools, still in an
evolutionary phase. The use of these languages can therefore
be improved , by improving the languages themselves.

The more the rules of the languages are logically defined and
rigorously applied the more the resulting expressions become
correct and intelligible.

The definition of grammar, syntax and semantics of programming
languages can profit considerably from an understanding of the
mechanisms of human intelligence which also inspired the binary
logic on which the computer itself is based (2].

PAGE 1



REASONS FUOR NEW PROGRAMMING TECHNIQUES

Programming Evolution

vhen automatic computing machines tirst appeared, users tound
themselves faced with a largely unknown tool, the computer,
waiting for commanas to be executed.

The collection of instructions needed to communicate 1ts tasks
to it was called a "Program”.

In those early computer applications, a programmer, like a sort
of modern alchemist, might oversee eftects rather than causes.
Indeed, he manipulated the data controlling the results, while
remaining unawvare of the processes which generated them,

At that time, the first property a Program had to have, was
synthesized by the phrase “provided that it works®.

The cost of this “"empirical programming® was heavy maintenance
due to the difficulties in extending or modifying the programs
and limiting their litetime. Briefly a considerable waste of
resources.

Gradually, however, a number of research activities were begun
in order to develop a better understanding of what Programming

really 18.

From a the functional point of view a Program is a sequence of
actions, each of them accomplishing a function. At thas point
a correct and unequivocal definition of each tunction appears
as a pre-requisite that cannot be ignored.

Moreover the effect of such a function 1s the transformation of
some data. If there is any way to make axiomatic assertions
concerning the expected transformation, 1t becomes possible to
verify whether or not a Program performs the intended function
{3).

By this means, searchers aim for a priori proof of Program
correctness.

From the formal point of view a Program is a series of symbols
reproducing in a one-dimensional manner the connected steps of
the two-dimensional image of an algorithm.

The reduction from the planar representation (flow-chart) to
the linear one (program) necessitates the introduction of jumps
within the series which may involve some loss of cliarity in the
algorithm logic.

Since the flow=chart 1is a directed graph, a formal
representation of all its paths by mathematical equation may
provide the linquistic means to build well-formed programs.
Reqular expressions, as formulated by Kleene in 1956 {44, could
be applied satisfactorily to the purposes of flow-chart
formalization.
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These Regular Expressions connect Some primitives using only
three operators:

star which means ‘any number of times' represented
by the symbol *

juxtaposition which means ‘tollowed by® represented by the
absence ot any symbol

alternation which means ‘or' representea by the symbol v

Their appiication to the analysis of programming represents the
nodes of a flow-chart as primitives and the connections as the
allowed operators.

Attempts to follow this approach showed that most of the
complications a program can include were originated with the
unaisciplined branches that the common programming languages
freely allow, 1t was thas tact that led to the crusade against
the GO TO [(5). 1f reduced to this question alone, the
controversy would be a sterile one,

The real problem, however, was to provide a generalized method
of expressaion, which could simulate any possible path in a
nearly linear way.

An important theoretical contribution in this direction was
made by the theorem of B8hm-Jacopini 6] which states:

Any flow diagram can be represented by a fiow diagram that
can be decomposed into concatenation, 1iteration and
selection. .

0f course, the practical impact of this on programming 1is
somewhat weakened because, as the authors realized, the derived
flow diagram is not always strongly equivalent to the original
one.

Indeed, with the transformation of structures of the type Qn
(i.e. loops with multiple exits) one notices a loss of clarity
and effectiveness,

What is relevant is that the use of closed structures,
delimited by one entry and one exit, however nested, can result
in a descending flow of control within the Program, which
assumes globally a linear pattern.

In programming practice more control structures are needed to
represent all general situations effectively, but the pranciple
of disciplined use of closed control structures remains valid.
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The Intended Goal

The “"Programming” action produces objects, usually called
Program, System or Package according to the increase in size
and complexity. But in common parlance all these items can be
referred to by the single term "Software” which includes any
codified knowledge to describe to the computer a task we want
1t to perform.

1f there 18 any need to change the programming style, every
annovation must Yyieid an amprovement 1in the sSoftware
production.

The criteria for the verification ot new programming techniques
depend upon one principile:

Good ‘fechniques must generate Good Sottware

The evaluation ot gooa Software depends on parameters that are
the expected properties of the product.

Correctness 18 obviously the essential property 1in the sense
that the Sottware must implicitly give a correct solution to
the problem,

The other properties are differentiy weighted according to
several aspects of Software production.

For instance, a classification of pre-eminent properties as a
function of a considered aspect, might be:

- Effectiveness,Reliabilaty as a function of exploitation
- Readability,Adaptabality as a function of maintenance
= Portability,Adaptability as a function of distribution

Of course, some properties are contradictory, and compromises
will therefore have to be made 1n order to achieve the best
results, so that each Software package becomes the most
satisfactory solution for its specific requirements.
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THE ERA OF STRUCTURED PROGRAMMING

Structured Programming is the happy slogan of the 70°'s,
Everyone concerned with computer applications has at least
heard this term,

A series of articles, workshops and courses have been promoting
Structured Programming, nevertheless many people still identify
the topic with a set of control structures, namely
IF=-THEN-ELSE, DO-WHILE etc,

Structured Programming is something more than this, but it is
very difficult to say what it really is, because it does not
represent an unequivocally defined entity.

It may be considered to be a number of approaches aiming at the
improvement of Software structure.

Thus "Structured Programming® has become a cover-term for
everything intended to give a structured form to a Software
product. Because of this it 1is preferable to talk about
different methods and techniques and their integration in the
programming practice,

It would be however advisable first of all to recall some
general foundations.

General Considerations

In general the Software production process can be subdivided
into four phases, characterized by the activities of analysis,
design, coding and testing.

Since different people may be involved in these four phases, it
is 4important to have available an adeguate means of
communication in order to avoid misunderstanding of the
concepts, on transition from phase to phase.

Furthermore it is important that the structure be outlined as
soon as possible, in the whole development process, so the
design phase becomes the pre-eminent one.

From the moment of the overall view of the problem, the
sketched program must be a functional whole, entirely specified
by a set of general functionalities. Each functionality, at
this global level, will be subsequently described in detail,
which constitutes the next refined level.

Such a process must continue until a set of simple functions,
called primitives, is defined. This is the 1lowest level of
refinement.

Thus a hierarchy of levels is established. If each level is
expressed by a rigorous description and if one supposes that a
family of abstract machines exists, then each 1level may be
assimilated to a version of the program,

Such versions can be verified in the logic, since the control
flow is easy to follow. PFurthermore one can check whether or
not the described actions comply with the original
specifications,

In this way the integration of different parts of the program,
during the testing phase, occurs with few constraints,
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Thas hierarchical procedure also involves some data
organization implications.

Data must also be structured in such a way that all functions
defined at one level only have access to the data fields
belonging to the same rank within the organization, creating a
visibility by level which can be extended to all resources the
program requires,

The concept of levels of visibility makes for easy
modifiability of any primitive of a certain level, without
implications at different levels.

In addition, a logical distinction can occur between global and
local variables,

The extended use of local variables increases the protection of
the data against unwanted accesses in the case of bugs or
failures.

Another general aspect of a structured software is the clarity
of the context expressed by the code that becomes more
readable.

The readability is mainly obtained by using closed control
structures.

However a critical examination of the matter reveals two
unfavourable situations that need appropriate remedies.

First of all, there arise many situations which call for
multiple exit points from a loop.

The translation of such situations into a form that resorts
only to strictly closed structures, requires the introduction
of auxiliary variables which combine several conditional
events,

To obviate this drawback, additional control structures must be
provided, preserving externally a closed control environment,
and allowing special exit facilities at different stages of
their lay-out.

secondly, segments of a program that are common to more than
one path, cannot be reached from anywhere because of the 1lack
of statements providing the jump possibalaity. Thus these
common segments must be dupiicated as many times as the joined
paths are.

This situation 1nvolves a wastage ot core,

A convenient solution can be supplied by a procedural feature
providing a linked transter ot control without the computing
overnead of the subroutine calls.

PAGE ©



Survey of Several Techniques
Top-Down Technique

This 18 a very incisive technique directly derived from the
concept of hierarchical levels. Top-down philosophy can be
applied equally well to the design, the implementation and the
testing phases.

Starting from the top level, that 18 a series of general
statements which define the global problem, the design proceeds
down and supplies a more detailed definition at each lower
level.

According to this descending development of the desagn, the top
unit of the program, which accomplishes monitoring functaions,
can soon be coded and implemented.

This unit can also be tested provided that the functions
performed at the lower level are simulated by dummy units, also
called stubs,

Such a stub is quickly implemented coding either an empty unit
or a unit performing onily a control trace by simply writing a
message,

No further specifications are needed to do thas, because the
design of the top level already included all details concerning
data exchange to interface with each lower unit (i.e. the
calling sequence in the case of subroutine calls).

At the next level, one unit at a time can be implemented and
tested replacing, in the existing frame, the identically named
stub. This cycle must be repeated until all units of the lowest
level are implemented and the whole development process is
completed.

Such step by step integration involves only one unit entering
the established framework at each new test, and thas new unit
18 first inspected to localize any detected error.

Moreover incorrect units are dgenerally located at their
introduction into the evolving envaironment; detected bugs
seldom i1nvolve modification of aiready checked units; hagher
level units have been widely tested once the total
implementation 18 finished.

The top-down approach can be fiexaibly adapted to speciail
requirements, JLn particular, a variation known as
“hardest=-out” consists an first developing some craitical
functions on which the problem teasibility may depend, for
instance a set ot tile-handiing routines at the lLowest level.

Design Media

in general a design medium 1S a whatever tool, usea during the
design phase and producing a documented lay-out of the software
structure in form of charts or reports.

These documents constitute a means of communication between
people cooperating 1n the software production process, with the
resulting advantage of 1increased understanding of the global
process and improved interpretation of the distributed tasks.
It is evident that such means, suitably adapted and edited, can
also prove useful in users® training.
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Because of this it 18 amplicatly shown that a careful ana
detailed design brings a methodical contribution to software
documentation and i1t 18 not surprising that some of the 1items
reviewed are both a design as well as a documentation tool.
Among the design media we find some systematic approaches which
meet the standardization exigencies of large working
environments,

Some others are more informal and can be adapted to different
practices and situations.

Some 1tems of both types are reviewed below.

- The Michael Jackson Design Methodology [7)

This method is based on the construction of data structures

covering all input and output, as the means for a visual

representation of the problem; afterwards the program design
is modelled on the structured data.

The method develops in three steps:

- Step 1 Structure Problem Logic. Starting from requirement
specyrfications, this groups data components and defines
relationships between them; visualizes one-to-one
correspondences between input and output data structures:
in other words, the existence ot a direct relationship
between a block of needed input data and a block of
expected results, in the sense that the later can be
derived from the former by a defined transformation.

= Step 2 Structure Program Logic. Thais shapes a program
component for each shown ainput/ocutput correspondence.
where such correspondences do not exist, it defines
additional blocks of intermediate data to obtain a chain of
one-to-one correspondence between data structures, joining
input and output. For each generated correspondence a new
program component is added.

- Step 3 Allocate Program Operations. Por each program
component, this lists the operations to be performed on the
data.

Other general characteristics are: independence from both
programming languages and hardware; simplicity of the
structures; ease of understanding for every level of
programmers.

- The Larry Constantine Structured Design (8]
The approach followed here 1s the functional decomposition of
the problem in order to give the structure a high modularaity.
Requirement specifications are represented in dgraphacal torm
using Data Filow Graphs.
The information stream flows from left to right crossing some
nodes denoting major transformations.
Each node represents a partial process of incoming arrows to
produce outgoing ones and points out a functionality of the
problem.
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The structure of the program 1i8 shown by structure charts

which have the form ot a descending tree that pictures the

links among bounded modules:

- boxes represent the units of the program,

~ connections between boxes show the communicating units,

- directed arrovs indicate the transfer of shared
intormataion.

After this an evaluation of the design i1s carried out on the

basis of two criteria:

= Coupling: this means the degree of connectivity of a module
and depends on the number and complexity of
connections.

= Cohesion: this means the homogeneity of the actions the
module performs. 1t depends both on the number of
tasks and on the relationship between them.

A good design 18 obtained when both low coupling and strong
cohesion are combined.

The design can be partially reworked 1n order to achieve thas

al.

g:xs optimization cycle 1is one peculiarity of the method.
Moreover the orientation towards functional decomposition
favours effectaive solutions, even if this approach is
intuition-based and depends on individual skillfulness rather
than on the objective facilities of the method.

The Pseudo-Codes

The pseudo-code is a simple and manageable tool tor rewriting
an algorithm in a structured and unambigous natural language.
The structured pattern 1is gaven by keywords (usually in
capital letters) which are taken from closed control
structures reproducing the connective paths between the
algorithm primitives, in their turn represented by statements
in a natural language (usually 1n lower-case letters).

when a structure 18 nested within a more external one, its
entire text can be indented so that the internal structure is
ranged at the right of the pre-existing alignment.

This identation introduces a sort of two dimensional profile
which 18 an aid in the structure visualization, so that the
pseudo-code sheets illustrate the represented algorithm as
does the classical flow-chart.

The pseudo-code 1s widely applicable and can be employed as
final means in any design method.
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- The Program Design Languages

These are 1n effect an 1mplementation of a well-definea
pseudo-code., First a set of suitable control structures 1s
tixed and a preprocessor checks the text for the completeness
of the structures and edits the design 1n a clean ana tiay
report.

The relevant aspect of such a Design Language 1S that 1t
might be the first step 1in the future trena ot automatic
software Development.

Indeed the output of such a preprocessor might serve as the
tunctional specifications for a Program Generator equipped
with powerful capabilities in the fielda of language analysis
and Macro generation.

- The HIPO Design and Documentation Technique [|Y)

HIPO, whach stands for Hierarchy plus input-Process-Output,
18 the standardization of a way to illustrate a process that
invoives data transformations.

The Hierarchy diagram represents as a tree structure the
hierarchical levels into which the program desidn 1s split.
The Input-Process=-Output diagrams illustrate each function of
the whole tree by means of three side by side boxes filied by
comments.,

The central box describes the actions performed by the
concerned function. The left-hand box represents the
structure of the input data needed by the function as nested
squares, while resulting output data are represented in the
raight-hand box.

Directed arrows connect data with the related action of the
central box.

HIPO diagrams aid data-processing documentation and may be of
use 1n exchanging the represented context between different
people.

However the extension of HIPO diagrams to the lower levels
involves a considerable amount of work updating a 1lot of
diagrams according to the evolving situation.

It must be mentioned that automated production and
maintenance of HIPO diagrams can be provided by an IBM
package named HIPODRAW. [10}
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Closed Control Structures

During the coding phase each statement in natural language
produced by the design will be coded in one Or more statements
ot a programming language.

The chosen programming language must provide a number of closed
controli structures to code the flow ot control in the way
suppliea by the design,

These structures are not standaraized and the teatures alliowed
change from language to lLanguage thus the specific syntax must
be observed.,

Some generai considerations on the most used linguistic
constructs are reportea iater.

It is clear that the forms presented do not refer to any
particular language.

= Selection Structures
The selection of the control between two alternative ways 1s
commonly allowed by the IF construct which can assume
different forms according to whether the ELSE clause 18
absent or present or optional.
A form whaich synthesizes all these situations 1s:

1F <condition> THEN <block1l> [ELSE <block2> ] ENDIF

A variation 21s possible, including any number of clauses
ELSELF before the clause ELSE. This form results in a single
structure 1nstead of a series of nested IF structures.

IF<condation> THEN<block > ELSEIF <block2>,.. {(ELSE<block n»)
ENDIF

For instance the two codes of Example 1 implement the same
algorithm,

EXAMPLE 1
Code A Code B
IP p IF p
THEN THEN
a a
ELSE ELSEIF q
IF q b
THEN ELSEIF r
b c
ELSE ELSE
IF r d
THEN ENDIF
c
ELSE
d
ENDIF
ENDIF
ENDIF
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The selection of one among several ways is allowed by a CASE
construct.
The simplest form of this construct 18 commonly represented by:

CASE<arithmetic expressiony <block 1» <block 2>... <block n>»
ENDCASE )

Such a construct operates as follows. The <arithmetic
expression) 18 evailuated; supposing that the integer part of
the result is i1 , it 1<£1<£ n then the <«biock 1i> of
statements will be executed otherwise none of the listed blocks
of statements will be executed.

A more genefalized form allows the selection of a piock to be
executed when the resuit of any expression lies between a case
list,

The keyword used for this torm 18 either CASE or SELECT:

CASE ¢expression> <case 118t 1> ¢biock 1>

<case list 2> <block 2>

LN 3

<case 118t n> <block n> [ELSE <block n+1>)
ENDCASE

where <case 1list i»> 1s a list of possible values that
<expression> can assume, causing <block 1> to be executed.
Conversion 18 allowed between compatible types of the resuit of
<expression> and the case vaiue,

1£ the resuit does not match with any case within all case
lists, the block included in an optional ELSE clause will be
executed.

A further development ot thas structure 18 represented by an
“avent~driven® CASE that 1s a very powerfuli construct being a
combanation of iteration and selection ot control. For this
reason it will be described after the iterative constructs.

= Iteration Structures

The basic iteration structure 1s the WHILE-DO which may be
presented in the form:

WHILE <condition> DO <block> ENDWHILE

In some i1mplementations the keywora DO 1s omitted.

Thas structure implies the following operations: Firstly the
¢condition> 18 tested, 1f proved false the entire construct
18 skipped otherwise the <block> of statements will be
executed and the whole process repeated.

Thas cyclic operation is finished and the construct left at
the first failure of the <condition>.

That 18 to say what is clearly expressed by the keywords of
the construct; the <block> of statements 18 repeatedly
executed while the <conditiony remains true,

In some cases the parameters of the condition have to be
defined by a previous execution of the block of statementss

<block> ﬁHILE <condition> DO <block> ENDWHILE
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This situation is better represented by a variant of the
construct known as DO-UNTIL:

DO <block>» UNTIL <condition»

where the postposition of the keyword UNTIL permits the
onission of an ending keyword. It should also be observed
that the keyword DO is replaced by REPEAT in many
implementations.

This construct works in the following way; the ¢block» of
statements is executed and afterward the <condition» is
tested, if proved true the construct is left otherwise it is
entered again with a new execution of the <block» and so on.
The cycle is broken off once the <conditiony is achieved.
Briefly the <block» of statements is executed repeatedly
until the <condition» becomes true.

The repetition of some operations on array elements, implying
the increase of a subscript variable is facilitated by the
following structure:

FOR <¢variable> <valueil>» <¢value2> [¢value3>] DO <block> ENDFOR

where ¢valuel> is the initial value assigned to c¢variabley,
¢value2» is the upper limit that «variable» may assume and
<value3d» is the increment to be added to ¢variable» at each
new cycle. when <«variabley must be increased by one,
<value3y may be omitted. Some implementations omit the
keyword DO.

But none of these constructs allows the condition test
between two blocks of statements to be executed repeatedly,
without duplication of code.

A generalized LOOP structure has been proposed as being the
best solution for this: [11]

LOOP <block1>» WHILE <condition» <block2> REPEAT

Moreover this structure simulates the WHILE construct when
<block1> is omitted and the UNTIL construct when <block2> is
in its turn omitted.

Example 2 shows a comparison of the three structures in the
case of exit between two blocks, while Example 3 shows the
use of the LOOP structure in the classical "WHILE" and
"UNTIL" situations.

PAGE 13



EXAMPLE 2

Code A Code B Code C
LOOP a DO
a WHILE not(p) DO a
WHILE not(p) b IF not (p)
b a THEN
REPEAT ENDWHILE b
ENDIF
UNTIL p

Since the predicate p represents the exit condition, its
complement is used to mean the ‘stay~-in-loop' condition.

FXAMPLE 3
Code A Code B
LOOP WHILE q WHILE q DO
a a
REPEAT ENDWHILE
LOOP DO
a a
WHILE not(r) REPEAT UNTIL r

Jump Capabilities

Since the blocks of statements may be as complex as possible,
including multiple nested control structures, conditional
events through this path may make it necessary to leave the
construct before the end of a block is reached., Such a
gituation is marked by the number n of potential exit
conditions,

An effective representation of this generic £n path implies
the need of some disciplined jump capability.

wWhile the use of closed structures for the iteration of the
control has introduced a discipline for jumps backwards, this
new required capability must govern jumps forwards,

A primary solution was the introduction of an EXIT clause
within the iteration construct., Such a clause, wherever
inserted, allows the transfer of the control to the first
statement after the ending keyword of the inner iterative
structure that contains it.

A new problem arises when nesting two or more structures of
this type. Indeed the simple EXIT makes it possible to leave
one iterative path, that is a level of the control flow., But
some events (e.g. the detection of severe errors) may imply
leaving an outer iterative structure, in other words to jump
through more than one level.
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To this purpose a multi-level jump was included in some
proposals by means of an EXIT <n» clause.
Such an extension of the demonstrated need for a jump is not
exempt from negative implications. Indeed multilevel EXIT is
extremely dangerous because it establishes a static jump
without any contextual relationship.
This fact precludes any compile-time verification, therefore
modifications and extensions to the software may become
difficult, if not impossible, as happened before.
For instance, in the case of data manipulation by levels,
each of them involves a clear definition of data fields,
primitive functions and operators, all detailed in
homogeneous parts of a structured code. Data consistency is
checked and any detected failure causes the interruption of
the current operation. 1If, at any moment a new intermediate
level has to be added, all the pre-existing EXIT n
clauses in the lower levels must be revised to avoid troubles
at execution time.
Analogous trouble is caused by the suppression of an existing
level.
Another solution is represented by the introduction of a
LEAVE clause that allows some labelled closed structure to be
left transferring the control to the first statement after
the ending keyword of the referred entity.
This clause may be valid only in a portion of code which
represents a functional unit (procedure, block or similar
units) and has the form

LEAVE <labely
whose semantics is related to the occurrence and the location
of <label>» within the unit.
Thus the causes of errors such as duplicated, misplaced or
missing labels can be checked at compilation time. To
explain the different behaviour of the two clauses, let us
imagine a block of statements composed of three nested closed
structures labelled ‘alpha', 'beta', 'gamma’ from outside to
inside and representing as many hierarchical levels. The
inmost structure 'gamma'’ performs a validity check and when
an error occurs the control must leave the whole block.
The desired jump may be obtained by a clause

LEAVE alpha
whose effect is equivalent to EXIT 3 in a fixed
situation and will not be affected by any addition or
suppression of intermediate levels.
Since the LEAVE clause involves a restricted use of labels,
namely a closed structure label, it appears rather natural
that the needed jump capability may also be provided by a
restricted use of a GO TO clause within the iteration
constructs.
Indeed the relevant thing is the ability to make a jump, and
not the linguistic means to provide it. However, it is
necessary to emphasize the exceptional nature of the jumps,
and to recommend restricting them to the control of abnormal
paths.
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Jumps must never exceed the scone of a vrocedure, therefore
when levels are implemented as procedures, since such units
must not make assumptions upon the external environment, the
most reliable solution is the use of a 'case variable' as
parameter. This variable records the casual occurrence of
one among some possible events, and returns this value which
will be tested outside the procedure in a CASE structure.

- Event-Driven Structure

The concept of this recent structure [12] may be represented
in the form:

UNTIL <«event 1» OR «<event 2> OR...OR «<event n>
¢<block 0O»
REPEAT
THEHN ¢event 1» <block1>
<event 2» <block 2>
<event n» <¢block n>
IMe)s]

The <block 0> will be repeatedly executed until the
occurrence of one of the foreseen n events, then the
occurred <event i> determines the selection of the <block i>
to be executed and finally the control leaves the structure.
It must be noticed that one of the n events must assume
a special meaning, namely the avoidance of the loop for ever.
This safety event may be tied to the execution of a finite
number of cycles or, in the case of parailel execution ot
concurrent processes, it may be an external signal.

Software Production Libraries

A software system being implemented by the top-down method
evolves continuously.
The task of fixing a set of homogeneous versions is made
possible by using some production libraries to store both
source code and test data. The essential requirement is to
have:
- a Master Library which contains the overall up-to-date
version of the system
-~ a Development Library containing some newly implemented
system components or modified ores
- a Test Library containing the case data used to test the
system

Each fully tested comwonent will replace the Identically named
stub in the Master Library in the same way that nodified
components replace their previous version. The data used for
testing will be added to the Test Library.
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It is advisable, at each modification, to run again all case
data stored in the Test Library.

Furthermore some old versions of the system at well tested
gtages may be stored as a family of static libraries.

The management of these production libraries is performed
automatically by various information filing systems or
librarians.

Managerial Framework

In the case of large scale projects, the improvement of
programming productivity also depends on the standardization of
tne nethods and tools employed as well as a rational
organization of the programmers' activities.

- Chief Programmer Team

This is the most well-known management approach in the

programming environment.

It consists of task separation, high specialization and

disciplined relationships amongst team members.

It is important to individualize the following taks:

- Direction: the responsibility of design and implementation
of the most critical components as well as the supervision
of the development and the integration of the system;

-~ hssistance: the need to cooperate in the development of
critical components;

- Maintenance: the updating of the support libraries and
documentation, together with the annotation of the project
progress in journals;

- Operation: development, c¢oding and testing of single
componnats.

These specialized tasks may be assigned to differant members
of a team or grouped to be carried out by a few people or one
individual according to the manpower available.

In the pilot stage [13] the programmer team was managed by a

nuclevs of three members:

~ the chief programmer, who assures the direction and is the
primary decision-maker;

- the back-up programmer, responsible for assistance, having
also a share in all important decisions, and who nay
replace the chief programmer if need be;

- the programming secretary, who attends to maintenance and
coordinates all routine work such as run requests and
listing registration.

The other team members, up to three programmers, are

responsible for operation and report directly to the chief

programmer.

The first achievements announced were very vnromising and a

generalization of this approach would be suitable or the
nromotion of a Software Factory.
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~ Structured Walk-throughs
This is a management control based on periodic reviews during
the design phase. At each review a well defined component of
a project is focused.
The person responsible for the development of this component
reports on specifications, assumptions and interfaces with
other components of the project. Everyorne involved in the
system development as well as managers concerned with the
project may attend the meetings and discuss the details of
the review,
These critical discussions increase the project awareness
among participants and will promote a better impact of the
software at production time.
This practice may also be continued during the coding phase,
but in this case the participation is restricted mainly to
the programmers.
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A Style as Integration of Different Techniques

Although developed almost independently, the techniques
reviewed share the common goal of contributing to the
improvement of Software structure.

Some of them partially overlap as far as either the explored
domain or the adopted solution are concerned.

In this perspective some perplexity may exist in the choice of
the method best suited to any single case.

A balanced solution consists in the integration of some
selected techniques, according to the extent of the planned
Software product.

An attempt at integration is proposed for application by the
individual programmer.

Of course, there is no point in making a 1list of strict rules
to be followed blindly.

Programming must be an imaginative activity, therefore
programmers must carry out their creative task in a manner
based on functional principles and tailored to their own
capabilities. Personal intuition must be stimulated to invent
original alternatives in finding the solution to a given
problem.

The topics presented from now on are intended as suggestions to
guide people, firstly in formulating a solution and secondly in
choosing between the different possible approaches to a
solution, so that the best one will be adopted.

This is the way to establish a sound programming style.

The proposal is explained by a simple example. Though the
problem is trivial, the operating method can be extended up to
medium size Software products.

"What is medium size?" is the obvious question at this point.

A subjective classification of Software products depending on
their size might be:

- the small ones concern trivial or didactic problems;

- the medium ones concern complex problems developed within a
reasonable time by one programmer;

-~ the large ones concern problems worked out by a team because
of their extent or urgency.

Let us suppose that we are faced with a problem involving some
generic computations on an unpredictable number of cases, each
of them represented by a set of input data.

The last input information of each set being an indicator which
tells whether another set follows or not.

In addition to the specific input data the computations require
some reference information contained in a data library.

Either the results or an appropriate error report will be
printed for each case.
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In the early stages it is necessary to consider the data
organization.

Since any informatics process may be seen as a transformation
upon some information, the delimitation of self-contained
functions may be deduced from logical connections within the
information.

Therefore the identification of such connections as well as the
recognition of relationships between input data and output
results, allows a rational data organization, on which the
frame of the design will be based. (See the concept of the
Jackson method [7]).

Our example deals with:

- Reference data stored in an established library.

First of all the extent of the library governs the core
requirement as well as the choice between a single access to
the whole library or periodical retrieval of one needed
subset of it.

Secondly, its content affects both the attributes of the
variables which are going to receive the data, and the mode
of reading them in.

- Specific input/output data, whose composition and complexity
will be a guide to the choice of proper variable structures
to store them.

- Error types, on which the message texts will depend.

We assume that:

- the library is short enough to be kept entirely in core,
- each set of input data contains: a descriptive title, a
hierarchy of numeric fields, a logical indicator,
- the results ensuing from each input set are requested in form
of a table,
- errors are grouped in two classes that are:
- inconsistent input
- computation failures

A preliminary analysis of the requirements points out:

- the nature of the processing (computation on an unpredictable
number of cases)

- the information required (specific data contained in each
input set in conjunction with reference data always valid)

- the expected information (printout of results or error report
obtained by the processing of each input set)

The broad 1lines of the design emerge from these general
elements. Some actions stand out as well as their relational
occurence.
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Action Occurrence

get reference data once, before all other actions
get specific input data for each set
check data consistency for each set, after data are got
make computations only for valid sets
check for completion

of computations after computations on a valid set
print results only for correctly processed sets
prepare and print message when any error has occurred
stop the processing at the end of the last set

The reported actions must be linked according to the 1logic
emerging from the relationships between their occurrences.
Such linked actions constitute a picture of the top level of
the problem solving process.

The suggested tool to describe this abstract process is a
pseudo-code.

A relevant consideration must be made before defining or
choosing the pseudo-code to be used. It is generally
admitted that a distinctive feature of a good design is to be
language independent. However, it is an undeniable advantage
if the same control structure layout is present in both the
pseudo-code and the prograrmming language.

Indeed, in this case, the coding activity will mainly consist
in replacing action descriptions with statements of the
programming language, while the control flow is already
settled, the pseudo-code keywords being wvalid also in the
programming language. So this derogation to the principle of
lanquage independence seems to be acceptable.

PROGRAM
Get reference data from Library
Lo
Get one input set and check data consistency
IF consistent data
THEN make computations
IF computations completed
THEN print results
ENDIF
ENDIF
IF any error
THEN prepare and print messages
ENDIF
UNTIL no input set follows
END PROGRAM

The program in pseudo-code shows some statements in natural
language that describe the 1logical functions into which the
program itself is decomposed.
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In the continuation of the text, such functions will be
referred to by more concise identifications. The table below
gives the correspondences.

Get library - Get reference data from library

Get and check -~ Get one input set and check data
consistency

Compute - Make computations

Results - Print results

Messages - Prepare and print messages

At this point we deal with the problem of data visibility, that
is the need to control the access to data that must be shared
by different functions.

The following summary shows the situation in our problem:

Accessed data Functions
reference data from: - Get library,
= Compute
specific input data from: - Get and check,
- Compute
output results from: - Compute,
= Results
error indicators from: Get and check,
Compute,

the top unit
Get and check,
the top unit

stop indicatox from:

In this way the interfaces between communicating functions are
clearly defined.

Now the design will proceed from the top 1level which is
completely expressed, down to the more detailed 1levels,
operating in the same way on each separate function.

At this point one cannot go into details, because of the
generic formulation of the problem. We can only remember that
existing data structures are a tangible element on which the
architecture of the function itself may be based. For instance
the function 'Get and check' will be tailored to the hierarchy
of input data. .

When the design is completed the problem must be coded in a
programming language.

The work to be done in this phase greatly depends on the
features of the chosen language, so that only some suggestions
will be given here.

Some implementation decisions must be taken before starting to
code the program.

Provided that the language allows independent compilations, a
modular scheme of the program must be planned. This means that
generalized and close functions are identified as independent
units to be compiled separately. (Procedures or subprograms
according to the terminology of the language)
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Although it is not a general rule to consider each function as
an independent unit, we do chcose this way to emphasize the
concept of program segmentation as well as the need to keep the
top unit simple and clear.

Thus all existing functions become independent units and we
just add to them a top unit called MAIN that simplv monitors
the other ones, and the program scheme stands out as follows:

GET LIBRARY

DO

GET AND CHECK

IF consistent data

THEN COMPUTE

MAIN IF computations completed

THEN RESULTS

ENDIF
ENDIF
IF any error

THEN MESSAGES

ENDIF
UNTIL no input set follows

Now, for each unit, one must provide:

- declaration of all local variables,

- declaration of the variables shared with other units using
tha facilities allowed by the language to set up interfaces
between units,

- executable statements performing the required actions.

Applying the top-down technique the testing may start as soon
as the MAIN unit is implemented and proceeds to each new unit
implementation. Thus the problem will be tested step by step.

At the first step only the MAIN unit exists, while all other
functions are temporarily simulated by stubs that are dummy
units whose only goal is to show a trace of the control.
Therefore the first action of a stub is to write a message to
prove that the unit has been entered; moreover the stub will
print the value of any parameters transferred to the simulated
unit by the calling one.

Thus the first run only produces a figure of the chronological
link of the different units.

The next steps must provide the test of one unit at a time.
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The functions to be tested first are, respectively, reading
input data and editing the results. 1Indeed transformations
upon data cannot be verified without the certainty that data
are correctly accessed and that the results are printed
exactly.

The first verification on data is to print the values that have
just been read.

Obviously the unit GET LIBRARY will always read the same data,
therefore the operations to write the accessed values may be
removed as soon as the test is successful. However it is
advisable to maintain such operations alsc in the final version
of the unit GET AND CHECK, because this may also be useful for
the debugging of anomalous behaviour of the program in the
exploitation phase.

The test of the unit RESULTS implies the availability of a set
of suitable values stored in some arrays. This may be
obtained, for instance, by a series of assignment statements in
the COMPUTE stub. 1In this way, also the access to the arrays
shared by the two units will be tested.

The units GET AND CHECK and COMPUTE that involve alternative
situations must be tested both for the valid alternative, and
for all the foreseen errors.

The test of the unit MESSAGES must just be focused on the data
which represent these abnormal situations to be sure that the
proper message is issued for any foreseen error.

The simulation of a complete set of error conditions is very
important for obtaining reliable diagnostics during the real
work of the program.

The evolution of the program during the testing phase is
represented by the following steps:

Step 1

coded unit to test:

MAIN - loop over multiple input sets

stubs to simulate:

GET LIBRARY - library transfer

GET AND CHECK - input transfer

COMPUTE - computations

RESULTS - editing of results

MESSAGES - issue of error messages

Step 2

coded units to test already tested functions plus:
MAIN

GET AND CHECK - transfer and validation of input data
stubs to simulate:

GET LIBRARY - library transfer

COMPUTE - computations

RESULTS - editing of results

MESSAGES - issue of error messages
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Step 3

coded units
MAIN

GET LIBRARY
GET AND CHECK

stubs
COMPUTE
RESULTS
MESSAGES

Step 4

coded units
MAIN

GET LIBRARY
GET AND CHECK
RESULTS

stubs
COMPUTE
MESSAGES

Step 5

coded units
MAIN

GET LIBRARY
GET AND CHECK
COMPUTE
RESULTS

stub
MESSAGES

Step 6

coded units
MAIN

GET LIBRARY
GET AND CHECK
COMPUTE
RESULTS
MESSAGES

to test already tested functions plus:
- library transfer

to simulate:

- computations

- editing of results
- issue of error messages

to test already tested functions plus:

- editing of results

to simulate:
- computations
- issue of error messages

to test already tested functions plus:

- computations

to simulate:
~ issue of error messages

to test already tested functions plus:

- rejection of input inconsistencies
- failures in computations

- issue of error messages
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After the last step all the units are integrated and the whole
program is tested.

The peculiarity of such a descending path is that the
monitoring of the global logic is the most tested part of the
program.

In conclusion, some key suggestions may be summarized.

During the design phase:

- always have in mind the global view of the problem,

- outline the organization and visibility of all data before
thinking about their transformation,

~ divide complex functions up into simpler primitives,

- describe the actions to be performed, using concise and
unequivocal statements in natural language.

During the coding phase:

- find the best segmentation into independent units,

- declare all variables and restrict the use of global
variables to essentials.

During the testing phase:

- for each level of abstraction, implement crucial units
beforehand, so that they can be tested more thoroughly,

~ store all test cases and each time a unit has been modified,
rework all cases pertaining to it.
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A TALK ABOUT PROGRAMMING LANGUAGES

The development of the languages for computer programming has
passed from the machine level to stages that more closely match
the user's need.

So we have had several classes of languages called from time to
time, high 1level languages, problem-oriented languages, very
high 1level languages etc., and the number of languages is
continuously growing, especially in the academic environment.
Because of the size of the subject, a general discussion on
programming languages exceeds the scope of this paper, and
consequently this chapter will only concern general-purpose
languages widely used for scientific applications.

The Ideal Programming Language

It frequently happens that programmers are restricted by some
lack of the language used.

By collecting such negative observations, it is possible to
infer a set of the desirable features that a suitable language
should have.

First of all the syntax of a programming language should be
formally defined.

This preliminary qualification allows a coherent implementation
of compilers by different computer manufacturers. Moreover a
formal definition represents an unequivocal basis for
systematic approaches in teaching computer programming.

A lot of important features follow.

Their natures differ widely, so it is more convenient to group
them according to some general subjects.

a) Syntactical and editing facilities:

- extended character set;

- free format for the source statements; .

- long identifierxrs for the symbolic elements of the
language, with a connecting character like hyphen, dot or
underscore. By this, meaningful names are easily allowed
giving more understandable codes;

- both in 1line and interspersed comments. The former are
for concise explanations of single operations, the latter
for descriptive documentation of blocks of code;

- automatic indentation which illustrates the 1logic by
showing up nested levels.

The last three features are very useful in obtaining a
self-documented source code.
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b)

c)

4d)

Data representation:

parameter variables, i.e. symbolic names for constants,
may improve readability;

flexible facilities to handle character strings of
variable length;

extendable data type definition to support data
abstraction creating convenient new types:
multidimensional arrays for effective representation of
compact matrices of homogeneous data;

composite structure for flexible representation of chains
of heterogeneous data, as well as sparse matrices;

dynamic allocation may be a useful option, indeed it is a
powerful feature, but its thoughtless use should be
avoided because it involves time-consuming algorithms for
core management.

Management of control:

a complete set of closed structures, avoiding both
uncontrolled branching structures and multiple entries;

a macro generation mechanism for in-line expansion of a
short portion of code needed in several places. This
feature is especially suitable for time optimization
because it involves only a sequential execution of the
embedded instructions;

internal procedures to be referred to from everywhere
within a program unit by a simple 1link mechanism and
without space duplication. Since the 1linkage may be
implemented without any noticeable overhead, this feature
may be an alternative to the previous one, but more
oriented to space optimization;

external procedures allowing independent compilation.
This feature permits a physical decomposition of the
program into distinct modules and, in spite of the
execution overhead involved, is of wide application to
support external libraries;

recursive procedures as an optional feature is of great
interest. Indeed recursion is a very clear and synthetic
means of expressing algorithms. But users must ge very
careful not to fall into abuse of it because the process
cannot be implemented efficiently. On this subject, it
must be remembered that advanced techniques for program
optimization comprise transformation ‘from recursion to
iteration [11].

Debugging facilities:

a complete set of intelligible diagnostics of the syntax
errors detected by the compiler; '

a powerful set of error handling procedures to issue
explanatory messages and explicit report of recovering
actions if any, whenever the running code is discovered to
be behaving abnormally;

a wide set of tracing facilities to prompt significant
information as soon as a definite bug occurs.
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e) Cost-effective facilities:

- a data management system supporting a wide range of

peripheral devices and able to cover any access mode,
aiming at both efficiency and device independence;

- specialized public libraries that must be efficient,
reliable and well protected;

- private libraries to be concatenated to the public ones
and easily extendable by user-defined procedures or
macros;

- official definition of a standardized subset to guarantee
reliable performances on different compilers;

- standard conventions for interface definition as well as
the recognition of linkage conventions of other languages,
so that connections between external modules coded in
different languages become possible.

I: should be observed that points a) to c¢) include the most
profitable features in order to produce a readable, modifiable
and maintainable code which is expected to be as little error
prone as npossible., However the last two points must not be
naglected kecause they respectively make provability easier and
allow efficiency. Experience has also shown that the success
of a programming language greatly depends upon these features.

Using the Existing Languages

Unfortunately the best known languages, and maybe any
general-purpose language, do not combine all the features we
need to apply the described tachniques. So we must adapt our
habits to the adopted tool.

Algol-like languages, for instance SIMULA 67, ALGOL €8, PASCAL
etc., provide extended means for data representation but in
some cases the implicit mechanism of global variables may hide
unexpected side-effects.,

Control structures are cgenerally well suited to build closed
control environments and nest them properly, but uncontrolled
branches are to be avoided.

The program seqgmentation is mainly achieved by internal
procedures, including recursion. A systematic verification of
data type compatibility concerning actual and formal parameters
is performed. Furthermore scalar parameters may be transferred
by value, increasing data protection.

However the use of external procedures is made possible in some
cases. For instance the CDC 6000 PASCAL compiler includes two
declarations to refer to external libraries [14]: EXTERN for
PASCAL procedures and FORTRAN for library subprograms compiled
by a FORTRAN processor. This later possibility might make of
PASCAL the mrodern programning language which can enrich its
range with the patrimony of decades of programming efforts.
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Due to its supple and powerful data type definition mechanism,
PASCAL may be considered an extendable language and its growing
significance is confirmed by the fact that the U.S.A.
Department of Defence is supporting a study to define a new
common scientific oriented programming language based on PASCAL
[15]).

Two negative points must be noted however, for this family of
languages: Input-output facilities are rather poor and
debugging is not always well supported.

The PL/I checkout and optimizing compilers provide good data
representation, clear control structures and the full set for
program segmentation: macros plus internal, external and
recursive procedures.

In spite of this excellent equipment trouble is very frequently
met.

The user must be aware that side-effects against data security,
may occur by use of global variables and because of the
transfer of parameters which takes place by address.

In addition unclosed control structures as well as multiple
entries should be avoided.

Input-output offers extended possibilities, while the
sophisticated recovery facilities are of help only to highly
experienced users.

A special word will have to be given on FORTRAN IV.

This language is lacking in several features which are
indispensable to the building of well-structured programs.
Indeed, data structure are limited to arrays and closed control
structures are inexistent. Moreover scalar parameters are
transferred in a hybrid way which does not assure data
protection, i.e. they are passed by value, returning result
when the subprogram terminates.

Nevertheless FORTRAN cannot be ignored, because of its
importance from an economic point of view, ensuing from
execution time optimization, independent compilation,
simplified but efficiert input-output and cffective debugging.
The use of a precompiler has been gro sed as a remedy.

But the proliferation of such ools has pointed out the
weakness of the enterprise.

The overall precompiler tangle can Le summarized by the
sentence "It is a good thing they exist, but it is a pity we
necded them to exist”. In fact these tools have made it
possible, and still do, for people in envirorments lacking in
proper languages, to be intiated to and trained in structured
coding. Some of them Zirst implewmented automatic indentation,
still missing in programming languages. Above all their
existence engendered in the FORTRAN world the need fcr closed
structures and consegquently promoted analytical studies to
defire coherent and standardized proposals [16] which should
hopefully result in an extensior in this direction of the
Language and the compilers as well.
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But their generalized use is causing us to lose sight of the
primary benefits of a compiler: effectivness, direct path in
debugging, compatibility with the operating system and
maintenance supported by the manufacturers, etc.

In conclusion the best approach, using FORTRAN IV, seems to be
a great effort to emphasize a clear and well-structured design,
followed by a disciplined use of fixed control construct which
simulate closed structures by means of the control statements
of the language.

Proposals along these lines can be found in the literature
(171, [18], but any programmer can devise clever solutions,
read this text with criticism and hopefully find something to
his profit.
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