

1 e o T oo
o eged I
£ ¥

CONTENTS

Editorial Note

Using Computercards is Vrong

Present Availability of PASCAL Compilers
Installation Notes

Statisties of Computing Installation, September
Utilisation by Objectives é Accounts, September
Statistics of Batch Processing, September
Histogram of Equivalent Time Usage

List of Personnel

13

20

21

22

23

23

24

collsvs
Text Box

collsvs
Text Box

EDITORIAL NOTE.

The Computing Centre Newsletter is published monthly excent for
August and December.

It describes developments, modifications and specific topics in
relation to the use of the computing installations of the Joint
Research Centre, Ispra Establishment.

The aim of the Newsletter is to provide information of
importance to the users of the computing installations, in a
form which is both interesting and readable.

The Newsletter also includes articles which are of intellectual
and educational value in order to keep the users informed of new
advances in computer science topics.

The BEditorial Board is composed as follows:

J. Pire. Responsible Editor.
M. Dowell. Technical Editor.

C. ePigni.
Editors.
H. de Wolde.

Administration and contact address:

Ms. A. Cambon (tel. 730)

Support to Computing

Building 36

J.R.C. 1Ispra Establishment
21020-ISPRA (Varese)

LEGAL NOTICE:

Neither the Commission of the European Communities nor any
person acting on behalf of the Commission is responsible for the
use which might be made of the information in this Newsletter.

collsvs
Text Box

USING COMPUTERCARDS IS WRONG

H. I. de Wolde

As explained in a previous issue, the exteansive use of
computercards is wrong, dangerous, old fashionad, costly, and
bears many perils.

The present computing facilities, although not representing the
latest developments in the field, offer an extensive number of
tools by which the use of punchcards may be avoided.

This article does not contain any new information; it just
gives, on request of some users, one of the possible solutions
towards program development with a very limited use of
punchcards.

Suppose we have to develop a large FORTRAN program which
requires many input data parts.

Furthermore, we have access +to a TSO terminal, preferably a
video.

Librarian

We chodse the Librarian for the storage of the basic material,
because this system is very well protected against 1loss or
destruction of information, providing that the masterfile
manager makes adequate security copies of the information.
Secondly tlie disk space utilization is very economical and the
material is accessible under TSO and from batch jobs.

If you do not yet have access to a masterfile, you may create
one by using the information presented in example 1.

The description of the available options and the composition of
the reservation card may be found in +the Green Book on
Librarian.

It is strongly recommended not to create different masterfiles
for each development but to share the-use of these files. This
enables the users to have sensible procedures for back-up and
compress and to make the most economic use of the available
space.

For the intended task, we need to create two modules in the
masterfile:

- Source program
- Input data

Two ways are open for these tasks, either from punchcards in
batch processing or by means of a terminal under TSO. The
second method is the most economic in terms of manpower.
Preparing a deck in punchcards requires roughly three times more
efforts in comparison to transfering the same information by
means of a video terminal. If, however, you have a ' big volume
of new data to introduce in the computer, it may be convenient
to rely on the punch service to have them punched on cards.

-3 -

A card input deck may be loaded by the job in batch as shown in
example 2, Immediately after a back-up of the file has been
made by the master file manager, the deck should be destroyed.
Otherwise you mignt rely too much on the presence of a card
input deck and cause confusion with new versions of the module.
The equivalent job is performed under TSO by the creation of a
file, under EDIT control, and successively transfer to the
masterfile as the example 3.

Execution

The composition of the deck for the execution of the job is
given in example 4.

such a deck may be punched and brought into the input stream by
means of the card reader. However, a TSO SUBMIT can perform the
same task and has some advantages. For example, different types
of errors are detected and reported before the job submission is
accepted by the system. This may save you considerable time.

Now we suppose that you have already created a partitioned data
set, named for example TSOPROC.CNTL, in which only the qualifier
CHTL is obligatory, the first part of the name may be chosen
freely. If you don't have such a data set consult the HELP
procedure CREARES,

Create a new member named for example EXEC, of the partitioned
data set using of the Editor:

EDIT TSOPRQC.CNTL (EXEC) NEW)
copy the deck composition from example 4 but omit the // and €E§)
jobname
SAVE
END

To place the job in the input stream, it is sufficient to give
the command:

SUBMIT TSOPROC.CNTL (EXEC)

Updating

The updating and extension of a program under TSO is much easier
and quicker to perform than the same operation in punchcard
form. Again, many small errors may be detected before the job
is placed in the input stream, which may save you several times
the average turn around time.

-4 -

collsvs
Text Box

collsvs
Text Box

After the LOGON procedure the commands are arranged as follows:

LIBGET PROGA DS ('SYSU.name')
EDIT PROGA fortgi .
(editing commands“)

SAVE o
END
LIBSAVE *

In which PROGA is the assumed name of the Librarian module. e
strongly advise users to issue frequently a3 SAVE command during
editing and possibly a LIBSAVY, followed by a LIBGET iastruction
to store the corrections already performed. In case of an
unexpected shut down of the computer this will save you a great
deal of work. The LIBSAVE command cancels the working copy of
the module, so it has to be followed by a LIBGET command to
continue the updating.

Private Libraries

If you are developing a 1large program, it is very useful to
store the completed and tested subroutines separately in the
masterfile and as a load module in a private library. In this
way, the active source part of the program remains smaller and
might give a considerable saving in CPU time and channel
traffic,

A completed subroutine may be extracted from the source deck,
installed as a separate module and loaded to your private
library, named SYS1.LIBxxxxX, in which =xxxxx are characters
which may be chosen by the user. This is performed using the
information given in example 5.

If SUBR1 existed already in the Private Library, the old vexrsion
will be substituted by the new one. The most flexible and
economic way of using this procedure is to load it in the same
partitioned data set as mentioned earlier. IFor example with the
name TSOPROC.CNTL{LOAD) .

Before the submission of this job you have only to modify (under
EDIT control), the name of the subroutine and the related record
numbers.

Then the following command should be given:

SUBMIT TSOPROC.CNTL (LOAD)

After the successful execution of the Jjob you must cancel the
records n through m in module PROGA to reduce compilation time
and because they are safely stored elsewhere under the name
SUBR1.

Example 6 describes a situation in which the mounting of a tape
is required. The whole procedure may be stored as a member of a
partitioned data set and the following tasks are executed:

- The retrieval of the updated parts of the source program,
called PROGA.)

- The retrieval of the input data, called DATA.

- The compilation of the source.

- The link-editing to include the subroutine locad modules.
- The request for tape mounting.

- The execution of the program.

collsvs
Text Box

Example 1

reation of a masterfile

//JOBLIB DD DSN=LIBRA75,DISP=(SHR,KEEP) ,UNIT=DI3K,

VOL=SER=COPICB

//

//STEP1 EXEC PGM=$$URIAN
//SYSPRINT DD SYSOUT=A
//M

/7

{ASTER DD UNIT=DISK,VOL=SER=USERnn,DSN=SYSU.name,

DCB= (BLKSIZE=6444 ,DSORG=DA) ,DISP= (NEW,CATLG, DELETE) ,
SPACE= (CYL, (k))

//
//SYSIN DD *
-OPT UNIT,DISK,options

/*

//STEP2 EXEC EURDR,U=DISK,V=USERnn
//GO.SYSIN DD#*

/*

In

Teservation card

which:

nn indicates a diskpack of the USER series

name is the second part of the masterfile name

k is the number of cylinders. One cylinder may contain
about 6000 records of mixed nature.

Options

-OPT is a Librarian command card. The ovtions at
initializing a masterfile are the default definitions for the
whole file. At the subsequent loading of modules into the
file one may change these default values and define new ones
for the single module.

The most common form is:

-OPT INIT,DISK,NORESEQ,SEQ=/73,8,10,10/,NOLIST,NOPUNCH,NOEXEC

The records are numbered starting in column 73 with a field
width of 8 columns. The first sequence number is 10
increased each time by 10. The modules of this masterfile
are not automatically renumbered after each run. If you
expect to have input records with 80 columns of information
you may write:

SEQ=/81,8,10,10/, but this may also be done at the module
level.

The option NORESEQ defines no -automatic updating of the
recordsequence numbers. Using a card with 0 increase, the
programmer can easily see which records have been added
namely the cards numbered with no 10 multiple. Of course, if
you insert more than 9 cards at a single place the system
performs some resequencing.

The reservation card is composed as follows:

columns 1-7 the number of the "fiche d'activite"”

9-12 the number of authorization

14-17 the number of the programmer
manager)

19-24 the expiration date
26-69 the masterfile name, left adjusted
8,13,18,25 must be left blank

Space on users disks may be reserved only half

(masterfile

advance. To renaw the reservation it is sufficient to run

the next job:

//ST=EP1 EXEC EURDR,U=DISK,V=USERnn
//GO.SYSIN DD *

new reservation card
/*

example 2:

Librarian: Load a module by cards

// EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD *

-0PT

-ADD mname,LIST

-DESC.....

-PGMR.....

. cards

~EMOD
-END
/*

In which: .
nn indicates a diskpack of the USER series
name is the names to be given to the new module.

Example 3:

Example of the transfer of a new module to the Librarian
masterfile(using TSO).

LIBSAVE mname FORT DS ('SYSU.name') PGMR(author) DESC('.....')

In which:
mname is the module name without qualifiers
name is the second part of the masterfile name
author is the name of the programmer. (Don't forget
to always use the same notation!)
DESC('...') specifies up tn 36 characters of description.

The masterfile name and the description must be enclosed
witain apostrophes.

Once the source program and the input data have been loaded, we
may execute the program, assuming that we do not yet need tapes
or additional files.

Example 4:

Librarian: deckcomposition for compilation and execution

//++s.JOB....

$ TIME --
$ LINES --
$ CLASS 2

//STEP1 EXEC LIBRAP,A='SYSU.name',E='USERnn'’

//SYSIN DD *

-QPT

-SEL,PROGA ,EXEC -

-EMOD

-END

/*

//STEP2 EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD *

-OPT

-SEL DATA,EXEC

-EMOD

-END

/*

//STEP3 EXEC FTGI1CLG

//CMP,SYSIN DD DSN=*, STEP1,INS,0SJOB,DISP=(OLD,DELETE)
//GO.SYSIN DD DSN=*,STEP2,INS.0SJOB,DISP=(OLD,DELETE)

In which:
PROGA is the name of the source module
DATA is the name of the data module

nn indicates a dispack of the USER series
name is the second part of the masterfile name

collsvs
Text Box

Examgle 5:

Load a subroutine from Librarian into the Private Library

//+...JOB CARD....

$ TIME -~
$ LINES --
$ CLASS 2

//STEP1 EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD *
-OPT UTILITY
-0OPT
-ADD SUBR1,EXEC
~DESC.v0e-
-PGMR.....
-INC PROGA,n,m
-EMOD
-END
/%
//STEP2 XEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD DSN=¥, STEP1 INS.0SJOB, DISP—(OLD DELETE)
//8TEP3 EXEC FTGI1C
//CMP.SYSIN DD DSN=*,STEP2, INS.0SJOB,DISP=(OLD,DELETE)
//STEP4 EXEC FTL,NC=NCAL
//LKED, SYSLMOD DD DSN=S8YS1.LIBxxxxx,UNIT=DISK,
17 VOL=SER=USERkk, DISP—(OLD KEEP)
//LKED.SYSLIN DD DSN= SLOADSET ,DISP=(OLD,DELETE)
/ DD *
NAME SUBR1 (R)
/*

In which: s
SUBRI1 is the name to be given to the subroutine which has
to be added to the private library

PROGA is the name of the source module containing the
program
n,m are respectively the first and the last record number

of SUBR1 in the program module PROGA
USERnn is the program module PROGA \
USERkk 1is the volume where the private library resides
name = is the second part of the masterfile name
LIBxxXX is the name of the private library to be used

- 10 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

Example 6:

-Source from Librarian, compile and link with Private Library.

//e¢ee.JOB CARD....
$ TIME -~
$ LINES --

gOC TP9-E§§ttt,yyy,zzz

//STEP1ﬂ EXEC LIBRAP,A='SYSU . mame* ,E="USERnn'
//SYSIN DD ¥

-0PT

-SEL PROGA,EXEC

-EMOD

-END

*
7/STEP2 EXEC LIBRAP.A='SYSU.name',E='USERnn'
//SYSIN DD *
-OPT
-SEL DATA, EXEC
-EMOD
-END
/*
//STEP3 EXEC FTG1CLG,PRN=xxxxx,VLB=USERkk,ULB=DISK
//CMP.SYSIN DD DSN=#%,STEP1.INS.0SJOB,DISP=(0LD,DELETE)

//GO.FTaaFool DD (==~~- tgggixgggigéégg)
//GO.SYSIN DD DSN=*_.STEP2.INS. ,DISP= (OLD,DELETE)

In which:
EUtttt is the tape volume serial number
yyy is SL or NL
22z is Y or N (file protection ring)
SYSU.name is the name of the masterfile
USERnn is the volume where the masterfile resides
PROGA is the source module name
DATA is the data module name
XXXXX is the last part of the name of the private library
which has full name SYS1,LIBXXXXX
USERkk is the volume where the private library resides
aa is the FORTRAN unit name definition.

When the user stores this procedure as a member of a partitioned
data set for example: TSOPROC.CNTL(EXEC), one single command
will put the job in the input stream:

SUBMIT TSOPROC.CNTL (EXEC)

- 11 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

References:

1] T.S.0. HELP procedures

2] Instailation Notes (JER)

3] Green Book: Librarian

4] NewsletterNo 2 Private Program Libraries

No 14 IBM Time Sharing option,
concepts features § facilities

No 21 The Librarian TSO interface now
in use.

- 12 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

PRESENT AVAILABILITY OF PASCAL COMPILERS

A. A, Pollicini

There has been a PASCAL compiler installed on the I3M 370/165 of
the JRC-Ispra Computing Centre since September 1977.

This compiler originated from the Informatics Department of IREP
at Grenoble University.

T?? release at present installed is W2.04.00, update (78..33).
The compiler can be accessed in batch by invoking one of the
following catalogued proceduras and requires 300 kbytes of core.

A) Compilation and module editing

//LOAD EXEC PASCL
//CMP. INPUT DD ¥
source program

/*
//LKED,SYSLMOD DD UNIT=DISK,VOL=SER=USERxx,DISP=MOD,
// DSN=MYLIB (MYPROG)

Where the generic names "MYLIB" and "MYPROG" stand for a user
library and a user program respectively.

USERxx should be replaced by the name of the appropriate user
volume on which the library (MYLIB) is stored.

The user program is now stored jin load form on the library
and may be executed as follows:

//XPR EXEC PGM=MYPROG
//STEPLIB DD UNIT=DISK,VOL=SER=USERxx,
// DSN=MYLIB,DISP=SHR

//OUTPUT DD SYSOUT=A,DCB=(RECFM=FA,BLKSIZE=133)
//INPUT DD *

input data
/*

B) Compilation, module editing and execution

//RUN EXEC PASCLG
//CMP . INPUT DD *
source program

/¥
//GO.INPUT DD *

input data
Vi

- 13 -

A new PASCAL compiler for IBM computers was obtained this year
from the Australian Atomic Energy Commission [2] and has
recently been installed.

Two

catalogued procedures have been designed to access the

compiler in batch. The core requirement is 200 kbytes.

AR)

BB)

Compilation only

//COMP EXEC APASC
//CMP,SYSIN DD *

source program
/*

Compilation, module editing and execution

//RUN EXEC APASCLG

//CMP_.SYSIN DD *¥
source program

//GO.SYSIN DD ¥
input data

/*

Notice that the compilsr returns a completion code greater
than zero only if it cannot compile the source. Therefore,
in the case of syntax errors the returned code is zero (as
well as in the case of successful compilation). For this
reason during program development it is advisable to use the
procedure APASC.

Copies of the reference manual of the AAEC PASCAL compiler may
be purchased at the Computing Support Library (Mrs. Cambon -

bld. 36).

- 14 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

GENERAL CONSIDERATIONS

Unfortunately, in the PASCAL world, portability problems are
more important than users might expect for such a widely
available programming language.

Although the original definition of prof. Wirth [3] was always a
fixed reference for any implementor, the standardization of the
language by official bodies has only been recently started. The
first graft was published this year [4]. This may explain why
the two implementations present a number of incompatibiiities
reviewed in the following:

The first point is related to a different use of some special
characters.

In fact the original character set of the language includes some
symbols outside the ones allowed by the EBCDIC set. It is usual
to replace them by combination of symbols, but in some case
there is a lack of uniformity as shown.in table I.

PASCAL IREP AAEC USE
REPORT Compiler Compiler
{ 3 (* ¥) (* ¥) Comments
[] (y@yj (.) Arrays (a) and
or
K > (b) sets (b)
T " @ pointers
TABLE I

- 15 =

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

A second point requiring care is the use

of

I/0 statements and

procedures, for which the situation is summarized in Table II.

PASCAL REPORT

IREP COMPILER

IAAEC COMPILER

INPUT and OUTPUT
files declared in
the PROGRAM
statement

INPUT and OUT2UT
to be declared as
FILE OF in the
context of the
source program

hs in the REPORT

RESET cannot apply
on INPUT file;
REWRITE cannot
apply on OUTPUT
file

RESET applies on
INPUT and REWRITE
on OUTPUTY

as in the REPORT

EOLN
PAGE

(file)
(file)

PAGE (file)
predefined constant
LoL, LoP

ENLN (file)

TABLE II

As an example, write couwmands on a line printer may occar in one
among the following alternatives,

IREP compiler

WRITELN(...);
WRITE (... ,EOL) ;

AATC compiler

WRITELN (...

)
WRITELN(...)

~e ~e

WRITE(...) ;WRITE (EOL); WRITE(...);WRITELN;

Moreover, the

control

of pagination is performed in the

implementation in the following ways:

or

IREP

WRITE(...,...); PAGE (OUTPUT) ;

WRITE(...,...,EOP);

On the contrary the AAEC compiler makes use of the ASA control
characters as first character of each line as in FORTRAN FORMAT,

Additionally PACKED ARRAY is allowed in the AAEC compiler and
the standard keyword SET is used instead of POWERSET.

- 16 =

collsvs
Text Box

collsvs
Text Box

These comparisons do not cover all the differences between the
two implementations, but are given to warn users about the need
for careful reading of the specific reference manuals, before
using either of the compilers.

As a conclusion of the present announcement a short example
coded accordingly to the AAEC implementation is shown in
Appendix 1.

REFERENCES

[1] FAUCHE,JP.; HENNERON,G.; TASSART,G.
Complements au "PASCAL User Manual and Report" concernant
l'implemqntation du Compilateur PASCAL, realisee par 1'IREP,
IREP - Universite des Sciences Sociales de GRENOBLE (1977)

[2] COX,G.W.; TOBIAS,J.M.
PASCAL 8000 IBM 360/370 version for 0S and VS environments.
Version 1.2 Reference Manual
Australian Atomic Energy Commission (1978)

[3] JENSEN,K.; WIRTH,N.
PASCAL User Manual and Report
Springer-Verlag (2nd edition) (1978)

[4]1 ADDYMAN,A.M, et al.
A DRAFT DESCRIPTION OF PASCAL
Softggfeu ractice and Experience - Vol. 9, n. 5 (May 1979)
pPP. =

- 17 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

APPENDIX 1,

Example of a PASCAL program according to the

implementation
PROGRAM WHATDAY (INPUT,OUTPUT);

(* THE INTENT OF THIS PASCAL PROGRAM IS
TO SAY WHAT DAY OF THE WEEK IS
ASSOCIATED TO A DATE SPECIFIED BY THREE INTEGERS
IN THE ORDER 'DAY' 'MONTH' 'YEAR'.

EACH DATE IS EXPECTED ON A SEPARATE INPUT RECORD.

CONST NULL = 0;
TYPE DAYOFWEEK = PACKED ARRAY(.1..9.) OF CHAR;
VAR DAY: DAYOFWEEK; .

DATE, MONTH,YEAR,MM,YY,CC: INTEGER;

PROCEDURE FINDDAY;
(* PLEASE DON'T WORRY ABOUT THIS OBSCURE ALGORITHM!
VAR PRM1,PRM2,PRM3,PRM4 ,ORDER: INTEGER;

BEGIN

PRM1:= (13*MM-1) DIV 5;

PRM2:= YY DIV 4;

PRM3:= CC DIV 4;

PRMY := PRM1+PRM2+PRM3+DATE+YY-2%CC;

ORDER:= PRMU4 MOD 7;

IF ORDER«NULL THEN ORDER:= ORDER+7;

CASE ORDER OF
DAY:= ‘'SUNDAY '
DAY:= 'MONDAY '
DAY:= 'TUESDAY '
DAY:= 'WEDNESDAY'
DAY:= 'THURSDAY '
DAY:= 'FRIDAY '
DAY:= 'SATURDAY '

N we we we we we

AN EWN=0
e es 0s ar es o0 e

END
END; (* FINDDAY *)

BEGIN
WHILE NOT EOF (INPUT) DO
BEGIN
READLN (DATE,MONTH,YEAR);
CC:= YEAR DIV 100; YY:= YEAR MOD 100;:
IF MONTH»2 THEN MM:= MONTH-2
ELSE BEGIN MM:= MONTH+10;
IF YYDPNULL THEN YY:= YY-1
ELSE BEGIN CC:= CC-1; YY¥:= 99 END
END;
FINDDAY;
WRITELN ('0 THE DAY ASSOCIATED TO ',
DATE:2,'.',MONTH:2,"'."',YEAR: 4,
' IS ',DAY:10)
END;
WRITELN ('0 END OF DATA');
END. (* WHATDAY *)

- 18 -

AAEC

*)

*)

collsvs
Text Box

collsvs
Text Box

EXAMPLE DATA.

12 10 1492
9 5 1956
7 4 1959

29 2 1980

RESULTS.

THE DAY ASSOCIATED TO 12,10,1492 IS WEDNESDAY
THE DAY ASSOCIATED TO 9. 5.1956 IS WEDNESDAY
THE DAY ASSOCIATED TO 7. 4.,1959 IS TUESDAY
THE DAY ASSOCIATED TO 29. 2.1980 IS FRIDAY
END OF DATA

- 19 -

collsvs
Text Box

collsvs
Text Box

f>INSTALLATION NOTES (JOB REQUESTS STATEMENTS).

In order to reflect the introduction of the new $0C control
cards in the HASP system(see Newsletter 34 -September 1979 for

details), one_ new section for the installation no eséJE?) has
been added and two of the existing sections (INFO and UTIL) have

been updated. To obtain copies of these installation notes
users should consult the information in Newsletter 28 - February
1979 pages 6 and 7,

To 1list the JER(Job Execution Requirements) section it is
necessary to request only 1000 lines of printed output(i.e 111
should be 001).

An example of the job necessary to list the JER notes is given
below:

//eeseoeeesJOB(your job card)...
$ LINES 001
// EXEC LIHNO,MEMB=JER

- 20 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

Statistics of computing installation utilization.
Report of computing installation exploitation

for the month of September 1979.
General
Number of working days

Work hours from 8.00 to 24.00 for
Duration of scheduled maintenance
Duration of unexpected maintenance
Total maintenance time

Total exploitation time

CPU time in problem mode

Batch Processing

Number of
Number of
Number of
Number of
CPU time
Number of
Number of

T.5.0

Number of
Number of
Numbar of
CPU time
Number of

jobs

cards input
lines printed
cards punched

1/0 (Disk)
I1/0 (Magnetic tape)

LOGON' s
messages sent by terminals
messagas receivad by terminals

1/0 (Disk)

Connect time

IMS

Total time service is available

CPU time
Number of

1/0 (Disk)

- 21 -

Y:ZAR 1978

21 d
16.00h
18.00n

3.91h
21.91h
314.0%h
138.85h

7914
1919000
25387000
121000
132.11h
15012000
3341000

1313
55611
285194
4.82h
687000
631.34h

381.40h
1.92h
336000

YCAR 1979

20 d
16.00h
18.18h
18.35h
36.53n
283.47h
130.27n

6369
1154800
13836000
70800
114,140
19876900
3236000

2487
156243
861517

14.11h
2364000
1709.9%h

264.29%h
2,02h
655900

collsvs
Text Box

Utilisation of computer centre by objectives and appropriation

accounts for the month of September 1979

IBM 370/165
equivalent time in hours

1.20.2 General Services - Administration - Ispra 31.62
1.20.,3 General Services - Technical - Ispra 0.11
1.30.3 Central Workshop 2.17

1.30.4 L.M.A. =

1.90.0 ESSOR 41.39
1.92.0 Support to the Commission 2.43
2.10.1 Reactor Safety 98.82

2.10.2 Plutonium Fuel and Actinide Research -

2.10.3 Nuclear Materials 13.17
2.20.1 Solar Energy 0.07
2.20.2 Hydrogen 0.25
2.20.4 Design Studies on Thermonuclear Fusion 18.52
2.30.0 Environment and Resources 22,11
2.40.0 METRE 2,60
2.50.1 Informatics 35.86
2.50.2 Training -
2.50.3% Safeguards 8.82
TOTAL 277.94
1.94,0 Services to External Users 3.54
TOTAL 281.48

- 22 -

BATCH PROCESSING DISTRI3JTED BY REQUESTED CORE MEMORY SIZE

100{ 200{ 300| 400} 520| 300 [1000 [12) [1400 PI4OO

No. of jobs {1752]2052{1014| 820} 319 25 11 18 22 -
Elapsed time 76| 127 127] 153 95 13 10 13 9 -
CPU time 3.3117.5[22.6[24,1429.7) 8.5} 64,3] 4.2} 2.7 -
"Equiv" tine 23 39 46 63 33 6 5 7 4 -
"Turn" time O.4f 1.0{ 1.5] 2.4} 3.3] 3.2|6.2] 4.3 | 4.0 -
I/0 (disk) 20141285513266|5271[1114| 207 241 3351 184 -
I/0 tape) 1987| 381| 202| 600 3 - - 18 2 -

HOTE.

All times are in hours.

"Equiv" means equivalent.

"Turn" means turn around.

All I/0 transfers are measur2d in 1200's.

PERCENTAGE OF JO3S FINISHED IN LESS THAN

T iDL 15mn |30mn |1hr |2hrs |4hrs |8hrs| 1day| 2day| 3day [6das

fyear 1973 34 52 69 84 96 98 99| 100{ 100 100

fyear 1273 35 52 35 80 93 99| 100} 102} 102| 100

HISTOERAM 0 TOTAL EQUIVALENT TIMES4RS)

= 1 17]

:7' ; =1
~N
NN
m;/???éé;.
NEAY 745275

Projactad total for 1979 = 3245 hours(using averagz:).
Total for 1978 was = 3253 hoaurs.

- 23 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

REFERENCES TO THE PERSONNEL/FUNCTIONS OF THE COMPUTING CENTRE.

Manager of The Computing Centre J.Pire

Responsible for User Registration Ms. G.Rambs

Operations Sector
Responsible for the Computer Room A.Binda~Rossetti

Substituted in case of abscence by:

Responsible for Peripherals G.Nocera

Systems_Group

Responsible for the group D.KOnig
Substituted in case of abscence by: - P,.A.Moinil
Responsible for TSO Registration C.Daolio

Room Tele.
Informatics Support Sector

Responsible for the Sector (f.f.) H.de Wolde 1833 1259
Secretary Mrs. G.Hudry 1873 787
Responsible for User Support H.de Wolde 1883 1259
General Inf,/Support Library Mrs. A.Cambon 1871 730
Advisory Service/List of Consultants(See Hote 1) 1870 730
A.Inzaghi A.A.Pollicini
H.I. de Wolde
R.Meelhuysen M.Dowell

NOTE 1. The advisory service is available in the same room .as
the Computing Support Library(room 1870). Exact details of the
advisory service times for a specific week can be found at the
head of any output listing(for that week).

Any informatics problem may be raised. However, the service is
not designed to help users with problems which are their sole
responsibility. For example, debugging of the logic of programs
and requests for information which can easily be retrieved from
available documentation. :

If necessary, other competent personnel from the informatics
division may be contacted by the consultant but not directly by
the users.

The users should only contact the person who is the consultant
for that specific dav and only during the specified hours.
Outside the specified hours general information may be
requested from Mrs. A, Cambon in the Computing Support
Library.

, - 24 -

HOW TO BECOMLC A REGULAR READER OF THL WEWSLETTER.

Persons interested in receiving regularly the "Computing Centre
Newsletter" are requested to £ill in the following form and

send it to :-

Ms. A. Cambon
Support To Computing
Building 36

Tel. 730.

Please add me to the Newsletter mailing list.

NAME

R I I R N I N N A A I R R IR A Y

ADDRESS

L I I IR R A N N N R]
D A I N I N I I R A N R I I A A S A A A A R I I)

R R R R N N e S R I e e

TELEPHONE ..ccesvecenccccnns

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

