

CONTr:NTS

Editorial Note 2

Using Computercards is Hrong 3

Present Availability of PASCAL Compilers 13

Installation Notes 20

Statistics of Computing Installation, September 21

Utilisation by Objectives & Accounts, September 22

Statistics of Batch Processing, September 23

Histogram of Equivalent Time Usage 23

List of Personnel 24

- 1 -

collsvs
Text Box

collsvs
Text Box

EDITORIAL NOTE.

The Computing Centre Newsletter is publisl1ed monthly exceryt for
August and December.

It describes developments, modifications and specific topics in
relation to the use of the computing installations of the ,Taint
Research Centre, Ispra Establishment.

The aim of the Newsletter is to provide information of
importance to the users of the computing installations, in a
form which is both interesting and readable.

The Newsletter also includes articles which are of intellectual
and educational value in order to keep the users informed of new
advances in co~puter science topics.

The Editorial Board is composed as follows:

J. Pire. Responsible Editor.

H . Dowel!. Technical

c. • Pigni.
Editors.

H. de Wolde.

Administration and contact address:

Us. A. Cambon (tel. 7 30)
Support to Computing
Building 36
J.R.C. Ispra Establishment

21020-ISPRA (Varese)

LEGAL 1~0TICE:

Editor.

Neither the Commission of the European Communities nor any
person acting on behalf of the Commission is responsible for the
use which might be made of the information in this Newsletter.

- 2 -

collsvs
Text Box

USING COMPUTERCARDS IS WRONG

H. I. da Wolde

As explained in a previous issue, the exte~sive use of
computercards is wrong, dangerous, old fashionsd, costly, and
bears many perils.
The present computing facilities, although not representing the
latest developments in the field, offer an extensive number of
tools by which the use of punchcards may be avoided.
This article does not contain any new information~ it just
gives, on request of some users, one of the possible solutions
towards program development wi~~ a very li~ited use of
punchcards.

Suppose we have to develop a large P.ORTRAN program which
requires many input data parts.
Furthermore, we have access to a TSO terminal, preferably a
video.

Librarian

we cho~e the Librarian for the storage of the basic material,
because this system is very well protected against loss or
destruction of information, providing that the masterfile
manager makes adequate security copies of the information.
Secondly the disk space utilization is very economical and the
material is accessible under TSO and from batch jobs.
If you do not yet have access to a masterfile, you may create
one by using the information presented in example 1.

The description of the available options and the composition of
the reservation card may be found in the Green Book on
Librarian.
It is strongly recommended not to create different masterfiles
for each development but to share the·use of tl1ese files. This
enables the users to have sensible procedures for back-up and
compress and to make the most economic use of the available
space.

For the intended task, we need to create two modules in the
masterfile:

- Source program
- Input data

Two ways are open for these tasks, either from punchcards in
~atch processing or by means of a terminal under TSO. The
second method is the most economic in terms of manpower.
Preparing a deck in punchcards requires roughly three times more
efforts in comparison to transfering the same information by
means of a video terminal. If, however, you have a· big volume
of new data to introduce in the computer, it may be convenient
to rely on the punch service to have them punched on cards.

- 3 -

A card input deck may be loaded by the job in batch as shown in
example 2. Immediately after a back-up of the file has been
made by the master file manager, the deck should be destroyea.
Otherwise you rnig!1t rely too much on the presence of a card
input deck and cause confusion with new versions of the module.
The equivalent job is performed under TSO by the creation of a
file, under EDIT control, and successively transfer to the
masterfile as the example 3.

Execution

The composition of the deck for the execution of the job is
given in example 4.

Such a deck may be punched and brought into the input stream by
means of the card reader. However, a TSO SUBMIT can perform the
same task and has some advantages. For example, different types
of errors are detected and reported before the job submission is
accepted by the system. This may save you considerable time.

Now we suppose that you have already created a partitioned data
set, named for example TSOPROC.CNTL, in which only the qualifier
a~TL is obligatory, the first part of ti1e name may be cho~en
freely. If you don't have such a data set consult the HELP
procedure CREARES.
Create a new member named for example EXEC, of the partitioned
data set using of the Editor:

composition from example 4 but omit the-~nd-t~

•

To place the job in the input stream, it is sufficient to give
the command:

SUBMIT TSOPROC.CNTL(EXEC)

Updating

The updating and extension of a
and quicker to perform than
form. Again, many small errors
is placed in the input stream,
the average turn around time.

program under TSO is much easier
the same operation in punchcard
may be detected before the job
which may save you several times

- 4 -

collsvs
Text Box

collsvs
Text Box

After the LOGON procedure the commands are arranged as follows:

LIBGET PROGA DS('SYSU.name')
EDIT PROGA fortgi

@i ting commands~)
SAVE ~--

END
LIBSAVE *

In \'IThich PROGA is the assumed ;1arne of the Librarian module. :'le
strongly advise users to issue frequ~ntly o SAVE command during
editing and possibly a r.IBSAV'.?, followe:l by a LIBGET i:1struction
to store the corrections already performed. In case of an
unexpected shut down of the computer this will save you a great
deal of work. The LIBSAVE command cancels the working copy of
the module, so it has to be f.ollmve:i by a LIBGET command to
continue the updating.

Private Libraries

If you are developing a large program, it is very useful to
store the completed and tested subroutines separately in the
masterfile and as a load module in a private library. In this
way, the active source part of the proqram remains smaller and
might give a considerable saving in CPU time and channel
traffic.

A completed subroutine may be extracted fro~ the source deck,
installed as a separate module and loaded to your private
library, named SYSi.LIBxxxxx, in which xxxxx are characters
which may be chosen by the user. This is performed using the
information given in example 5.

If SUBR1 existed already in the Private Library, the old version
will be substituted by the new one. The most flexible and
economic way of using this procedure is to load it in the same
partitioned data set as mentioned earlier. ?or exa~ple with the
name TSOPROC.CNTL(LOAD).
Before the submission of this job you have only to modify (under
EDIT control), the name of the subroutine and the related record
numbers.
Then the following command should be given:

SUBHIT TSOPROC.~NTL(LOAD)

After the successful execution
records n throuqh m in module
and because they are safely
SUBR1.

of the job you must cancel the
PROGA to reduce compilation time
stored elsewhere under the name

- 5 -

Example 6 describes a situation in which the mounting of a tape
is required. The whole procedure may be stored as a member of a
partitioned data set and the following tasks are executed:

- The retrieval of the updated parts of the source program,
called PROGA.

- The retrieva·l of the input data, called DATA.

- The compilation of the source.

- The link-editing to include the subroutine .load modules.

- The request for tape mounting.

- The execution of the program.

- 6 -

collsvs
Text Box

Example 1

IIJOBLIB DD DSN=LIBP.A75,DISP=(SHR,KEEP),UNIT=DISK,
11 VOL=SER=COPICB
IISTEP1 EXEC PGM=$$URI~~
//SYSPRINT DD SYSOUT=A
//~ffiSTER DD UNIT=DISK,VOL=SER=USERnn,DSN=SYSU.name,
11 DCB= (BLKSIZE=6444 ,DSORG=DA) ,DISP= (NEl'i',CATLG,DELETE) ,
11 SPACE= (CYL, (k))
IISYSIN DD *
-OPT UNIT,DISK,options
I*
IISTEP2 EXEC EURDR,U=DISK,V=USERnn
IIGO.SYSIN DD*

I*
~eservation card:>

In which:
nn indicates a diskpack of the USER series
name is the second part of the masterfile name
k is the number of cylinders. One cylinder may contain

about 6000 records of mixed nature.

Options
-OPT is a Librarian command card. The ootions at
initializing a masterfile are the default definiti~ns for the
whole file. At the subsequent loading of modules into the
file one may change these default values and define new ones
for the single module.
The most common form is:

-OPT INIT,DISK,NORESEQ,SEQ=I73,8~10,101,NOLIST,NOPUNCH,NOEXEC

The records are· numbered starting in column 73
width of 8 columns. The first sequence
increased each time by 10. The modules of
are not automatically renumbered after each
expect to have input records with 80 columns
you may write:

with a field
number is 10

this masterfile
run. If you
of information

SEQ=I81,8,10,10I, but this may also be done at the module
level.
The option NORESEQ defines no ·automatic updating of the
recordsequence numbers. Using a card with 10 increase, the
programmer can easily see which records have been added
namely ti1e cards numbered with no 10 multiple. Of course, if
you insert more than 9 cards at a single place ~e system
performs some resequencing.

- 7 -

The reservation card is composed as follows:

colu."'liils 1-7 the number of the "fiche d'activite"

9-12 the number of authorization

14-17 the n~er of the programmer (masterfile
manager)

19-24 the expiration date

26-69 the masterfile name, left adjusted

8,13,18,25 must be left blank

Space on users disks may be reserved only half a year in
advance. To renew the reservation it is sufficient to run
the next job:

//STEP1 EXEC EURDR,U=DISK,V=USERnn
//GO.SYSIN DD *

new reservption card
I*

example 2:

Librarian: Load a module by cards

// EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD *
-OPT
-ADD mname,LIST
-DESC •••••
-PGMR •••••

cards

-EMOD
-END
/*

In which:
nn indicates a dislcpack of the USER series
name is the name to be given to the new module.

- 8 -

Example 3:

Example of the tra.'lsfer of a new module to the Librarian
masterfile(using TSO) •

LIBSAVE mname FORT DS('SYSU.name') PGMR(author) DBSC(' ••••• ')

In which:
mname is the module name without qualifiers
name is the second part of the masterfil~ nama
author is the name of the programmer. (Don't forget

to always use the same notation!)
DESC(' ••• ') specifies up t0 36 characters of description.

The masterfile name and the description must be enclosed
wi~~in apostrophes.

Once the source program and the input data have been loaded, we
may execute the program, assuming that we do not yet need tapes
or additional files.

Example 11:

Librarian: deckcomposition for compilation and execution

// •••• JOB ••••
$ Tnm --
$ LINES --
$ CLASS 2
//STEP1 EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD *
-OPT
-SEL,PROGA,EXEC
-EMOD
-END
I*
//STEP2 EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD *
-OPT
-S~L DATA,EXEC
-EMOD
-END
I*
//STEP3 EXEC FTG1CLG
//CMP.SYSIN DD DSN=*.STEP1.INS.OSJOB,DISP=(OLD,DELETE)
//GO.SYSIN DD DSN=*.STEP2.INS.OSJOB,DISP=(OLD,DELETE)

In which:
PROGA is the name of the source module
DATA is the name of the data module
nn indicates a dispack of the USER series
name is the second part of the masterfile name

- 9 -

collsvs
Text Box

Example 5:

Load a subroutine from Librarian into the Private Library

// •••• JOB CARD ••••
$ TIME --
$ LINES --
$ CLASS 2
//STEP1 EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD *
-OPT UTILITY
-OPT
-ADD SUBR1,EXEC
-DESC •••••
-PGMR •••••
-INC PROGA,n,m
-EMOD
-END
I*
//STEP2 EXEC LIBRAP,A='SYSU.name',E='USERnn'
//SYSIN DD DSN=*.STEP1.INS.OSJOB,DISP=(OLD,DELETE)
//STEP3 EXEC FTG1C
//CMP.SYSIN DD DSN=*.STEP2.INS.OSJOB,DISP=(OLD,DELETE)
//STEP4 EXEC FTL,NC=NCAL
//liKED-.SYSLMOD DD DSN=SYS1.LIBxxxxx,UNIT=DISK,
//- VOL=SER=USERkk,DISP=(OLD,KEEP)
//LKED.SYSLIN DD DSN=&~OADSET,DISP=(OLD,DELETE)
// DD *

NAME SUBR1 (R)
I*

In which:
SUBR1 is the name to be given to the subroutine which

to be added to the private library
PROGA is the name of the source mOdule containing

program

has

the

n,m are respectively the first and the last record number
of SUBR1 in the program module PROGA

USERnn is the program module PROGA 1
USERkk is the volume where the private library resides
name is the second part of the masterfile ~ame
LIBxxxx is the name of the private library to be used

- 10 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

Example 6:

·Source from Librarian, compile and link with Private Library.

// •••• JOB CARD ••••
$ TIME --
$ LINES --
$ CLASS --
,$0C TP9=EUtttt,yyy ,zzz
//STEPL_ EXEC LI-BRAP-,A=.LSYStJ;name-. ,E='USERnn'
//SYSIN DD *
-OPT
-SEL PROGA,EXEC
-EMOD
-END
I*
//STEP2 EXEC LIBRAP.A='SYSU.name',E='USERnn'
//SYSIN DD *
-OPT
-SEL DATA,EXEC
-EMOD
-END
I*
//STEP3 EXEC FTG1CLG,P~~=xxxxx,VLB=USERkk,ULB=DISK
//CMP.SYSIN DD DSN=*.STEP1.INS.OSJOB,DISP=(QLD,DELETE)
I /GO.FTaaFoo1 DD ~~aoe descriptiol'l)
//GO.SYSIN DD ~.STEP2.INS.oSJOB;DISP=(OLD,DELETE)
In which:

EUtttt
yyy
zzz
SYSU.name
USERnn
PROGA
DATA
XXX XX

USERkk
a a

is the tape volume serial number
is SL or NL
is Y or N (file protection ring)
is the name of the masterfile
is the volume where the masterfile resides
is the source module name
is the data module name
is the last part of the name of the private library
which has full name SYS1.LIBxxxxx
is the volume where the private library resides
is the FORTRAN unit name definition.

When the us~r stores this procedure as a member of a partitioned
data set for example: TSOPROC.CNTL(EXEC), one single command
will put the job in the input stream:

SUBMIT TSOPROC.CNTL(EXEC)

- 11 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

References: 1] ·T. S. 0. HELP procedures

2] Installation Notes (JER)

3] Green Book: Librarian

11] Newsletter--No 2 i>fi-vat.e--l'rogram....Li.brari.es

No 111 IBM Time Sharing option,
concepts features & facilities

No 21 The Librarian TSO interface now
in use.

- 12 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

PRESENT AVAILABILITY OF PASCAL CQr'!PILERS

A. A. Pollicini

There has been a PASCAL compiler installed on t:1e ra~~ 370/165 of
the JRC-Ispra Computing Centre since Septe~er 1977.
This compiler originated from the Inforrnatics Departnent of !REP
at Grenoble University.
The release at present installed is H2.04.00, update (78 •• 33).
[1]
The compiler can be accessed in batch by invoking one of the
following catalogued procedures and requires 300 kbytes of core.

A) Compilation and module editing

//LOAD EXEC PASCL
//CMP.INPUT DD *

source program
/*
//LKED.SYSLMOD DD UNIT=DISK,VOL=SER=USERxx,DISP=MOD,
// DSN=MYLIB(MYPROG)

Where the generic names "MYLIB" and "MYPROG" stand for a user
library and a user program respectively.
USERxx should be replaced by the name of the appropriate user
volume on which the library U-iYLIB) is stored.

The user program is now stored ~n load form on the library
and may be executed as follows:

//XPR EXEC PGM=MYPROG
//STEPLIB DD UNIT=DISK,VOL=SER=USERxx,
// DSN=MYLIB,DISP=SHR
//OUTPUT DD SYSOUT=A,DCB=(RECFH=FA,BLKSIZE=133)
//INPUT DD *

input data
I*

B) Compilation, module editing and execution

//RUN EXEC PASCLG
//C~.INPUT DD *

source program
I*
//GO.INPUT DD *

input data
I*

- 13 -

A new PASCAL compiler for IBM computers was obtained this year
from the Australian Atomic Energy Commission [2] and has
recently been installed.
Two catalogued procedures have been designed to access the
compiler in batch. The core requirement is 200 kbytes.

AA) Compilation only

//COMP EXEC APASC
//CMP.SYSIN DD *

source program
/*

BB) Compilation, module editing and execution

//RUN EXEC APASCLG
//CMP.SYSIN DD *

source program
//GO.SYSIN DD *

input data
I*

Notice that the compiler returns a completion code greater
than zero only if it cannot compile the source. Therefore,
in the case of syntax errors the returned code is zero (as
well as in the case of successful compilation). For this
reason during program development it is advisable to use the
procedure APASC.

•
Copies of the reference manual of the AAEC PASCAL compiler may
be purchased at the Computing Support Library (Mrs. Cambon
bld. 36).

- 14 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

GENERAL CONSIDERATIONS

Unfortunately, in the PASCAL world, portability problems are
more important than users might expect for such a widely
available programming language.
Although the original definition of pro£. Wirth [3] was always a
fixed reference for any implementor, the standardization of the
language by official bodies has only been recently started. The
first draft was published this year [4]. This may explain why
the two implementations present a number of incompatibiiities
reviewed in the following:

The first point is related to a different use of some special
characters.
In fact the original character set of the language includes some
symbols outside the ones allowed by the EBCDIC set: It is usual
to replace them by combination of symbols, but 1n some case
there is a lack of uniformity as shown .. in table I.

'
PASCAL !REP AAEC USE
REPORT Compiler Compiler

f J (* *l (* *l Comments

[l () (a) (. .) Arrays (a) and
or

I< >I Cbl sets (b)

t " @ pointers

TABLE I

- 15 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

A second point requ~r~ng care is the use of I/O statements and
procedures, for which the situation is su>nmarize:J. in Table II.

PASCAL REPORT IREP COMPI~l!:f.l. fillEc COMPILER

INPUT and OUTPUT INPUT and OUTPUT as in the REPOR'f
fil8S declared in to be declared as
the PROGRAM. FILE OF ... in the
statement context of the

source program

RESET cannot apply RESET a::>plies on as in the REPORT
on INPUT fil·3~ INPUT and REt~ITE
REWRITE cannot on OUTPU'f
apply on OUTPUT
file

EOLN (file) - E0LN (file)
PAGE (file) PAGE (file) -

- predefined constant~ -
I~OL' EOP .
TABLE II

As an example, write COLil.'Tiands on a line printer may occur in one
among the following alternatives.

IREP compiler A_a.::;C compiler

WRlTELN (•••) ~ "I'TRITEL~~ (•••) ~
WRITE (••• ,EOL) ~ WRITELN (•••) ~
WRITE(•••) ~WRITE (EOL) ~ WRITE (•••) ~WRITELU~

Moreover, the control of pagination is performed in the IREP
implementation in the following ways:

WRITE(••• , ••• ,EOP)~ or WRITE(••• , •.•) ~PAGE(OUTPUT)~

On the contrary the AAEC comoiler makes use of the ASA contro1
characters as first character of each line as in FORTR&~ FORMAT.

Additionally PACKED ARRAY is allowed in the AAEC compiler and
the standard keyword SET is used instead of POWERSET.

- 16 -

collsvs
Text Box

collsvs
Text Box

These comparisons do not cover all the differences between e1e
two implementations, but are given to warn users about the need
for careful reading of e1e specific reference manuals, before
using either of the compilers.

As a conclusion of _ the present announcement a short example
coded accordingly to the AAEC implementation is shown in
Appendix 1.

REFERENCES

[1] FAUCHE,JP.; HENNERON,G.; TASSART,G.
Complements au "PASCAL User Manual and Report" concerna"nt
l'implem~ntation du Compilateur PASCAL, realisee par l'IREP.
!REP - Universite des Sciences Sociales de GRENOBLE (1977)

[2] COX,G.W.; TOBIAS,J.M.
PASCAL 8000 IBM 360/370 version for OS and VS environments.
Version 1.2 Reference Manual
Australian Atomic Energy Commission (1978)

[3] JENSEN,K.; WIRTH,N.
PASCAL User Manual and Report
Springer-Verlag (2nd edition) (1978)

[4] ADDYMAN,A.M. et al.
A DRAFT DESCRIPTION OF PASCAL
Software practice and Experience - Vol. 9, n. 5 (May 1979)
pp. 381-424

- 17 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

APPENDIX 1.

Exruuple of a PASCAL program according to
implementation

PROGRAM WHATi>AY (INPUT,OUTPUT)1

(* THE INTENT OF THIS PASCAL PROGRAM IS

the

TO S A Y W H A T D A Y OF THE WEEK IS
ASSOCIATED TO A DATE SPECIFIED BY THREE INTEGERS
IN THE ORDER I DAY I I MONTH I I YEAR I •

AAEC

EACH DATE IS EXPECTED ON A SEPARATE INPUT RECORD. *)

CONST NULL = 0 1
TYPE DAYOFWEEK =PACKED ARRAY(.1 •• 9.) OF CHAR1
VAR DAY: DAYOFi'lEEK1

DATE,MONTH,YEAR,MM,YY,CC:.INTEGER1

PROCEDURE FINDDAY1
(* PLEASE DON'T WORRY ABOUT THIS OBSCURE ALGORITHM! *)

VAR PRM1,PRM2,PRM3,PRM4,0RDER: INTEGER1

BEGIN
PRM1:= (13*MM-1) DIV S1
PRM2:= YY DIV 41
PRM3:= CC DIV 41
PRM4:= Pffi11+PRM2+PRM3+DATE+YY-2*CC1
ORDER:= PRM4 MOD 71
IF ORDER<NULL THEN ORDER:= ORDER+71
CASE ORDER OF

END

0 DAY:= 'SUNDAY '1
1 DAY:= 'MONDAY '1
2 DAY:= 'TUESDAY '1
3 DAY:= 1 WEDNESDAY 1 1
4 D~Y:= 'THURSDAY '1
5 DAY:= 'FRIDAY I 1
6 DAY:= 'SATURDAY I

END1 (* FINDDAY *)

BEGIN
WHILE NOT EOF(INPUT) DO
BEGIN

READLN(DATE,MONTH,YEAR)1
CC:= YEAR DIV 1001 YY:= YEAR MOD 1001
IF MONTH)2 THEN MM:= HONTH-2
ELSE BEGIN MM:= MONTH+101

IF YY>NULL THEN YY:= YY-1
ELSE BEGIN CC:= CC-11 YY:= 99 END

END1
FINDDAY1
WRITELN (1 0 THE DAY ASSOCIA'rED TO 1 ,

DATE:2,'.',MONTH:2;'.',YEAR:4,
I IS ',DAY:10)

END1
WRITELN (I 0 BND OF DATA I) 1

END. (* WHATDAY *)

- 18 -

collsvs
Text Box

collsvs
Text Box

EXAMPLE DATA.

12 10 1492
9 5 1956
7 4 1959

29 2 1980

RESULTS.

THE DAY ASSOCIATED TO 12.10.149'2 IS WEDNESDAY
THE DAY ASSOCIATED TO 9. 5.1956 IS WEDNESDAY
THE DAY ASSOCIATED TO 7. 4.1959 IS TUESDAY
THE DAY ASSOCIATED TO 29. 2.1980 IS FRIDAY
END OF DATA

- 19 -

collsvs
Text Box

collsvs
Text Box

INSTALLATION NOTES (JOB REQUESTS STATEl{BNTS).

In order to reflect the introduction of the new $OC control
cards in the HASP system(see Newsletter 34 -September 1979 for
details), one new section for the installqtion notesCJER) has
been added and two of the existing sections(INFO and UTIL) have
been updated. To obtain copies of these installation notes
users should consult the information in Newsletter 28 - February
1979 pages 6 and 7.

To list the JER(Job Execution Requirements) section it is
necessary to request only 1000 lines of printed output(i.e 111
should be 001).

An example of the job necessary to list the JER notes is given
below:

// ••••••••• JOB(your job card) •••
$ LINES 001
// EXEC LIHNO,MEMB=JER

- 20 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

Statistics of computing installation utilization.
Report of computing installation exploitation
for the month of September 1979.

Yi'!AR 1978 YI!AR 1979
General

Number of working days
Work hours from 8.00 to 24.00 for
Duration of scheduled maintenance
Duration of unexpected mainten.;nce
Total maintenance time
Total exploitation time
CPU time in problem mode

ilatch Processing

Number of jobs
Number of cards input
Number of lines printed
Number of cards punched
CPU time
Number of I/O {Disk)
Number of I/O {Magnetic tape)

T.S.O

Number of LOGON's
Number of messages sent by terminals
Number of mess<t'J'"; receiv9d by terminals
CPU time
Number of I/O {Disk)
Connect time

~

Total time service is available
CPU time
Number of I/O {Disk)

- 21 -

21 d
16.0011
18.00h
3.91h

21.91h
314.09h
138.85h

7914
1919000

25387000
121000
132.11h

15012000
3841000

1313
551i11

285194
4.82h

687000
631.34h

381.40h
1. 92h

336000

20 d
16.00h
18.1Bh
18.35h
36.53h

283.47h
130.27n

6369
1154800

13836000
70800

114. 14h
198761)00

3236000

2487
156243
861517
14. 11h

2364000
1709.99h

264.29h
2.02h

655900

collsvs
Text Box

Utilisation of computer centre by objectives and appropriation

accounts for the month of September 1979

IBH 370/165
equivalent time in hours

1.20.2 General Services- Administration- Ispra

1.20.3 General Services- Technical- Ispra

1 • 30. 3 Central Workshqp

1.30.4 L.M.A.

1.90.0 ESSOR

1.92.0 Support to the Commission

2.10.1 Reactor Safety

2.10.2 Plutonium Fuel and Actinide Research

2.10.3 Nuclear Materials

2.20.1 Solar Energy

2.20.2 Hydrogen

2.20.4 Design Studies on Thermonuclear Fusion

2.30.0 Environment and Resources

2.40.0 METRE

2. 50. 1 Infor::natics

2.50.~ Training

2.50.] Safeguards

TOTAL

1.94.0 Servic~s to External U~qrs

TOTAL

- 22 -

31.62

0. 11

2. 17

41.39

2.43

98.82

13. 17

0.07

0.25

18.52

22.11

2.60

35.86

8.82

277.94

3.54

281.48

BATCH PROCESSING DIST;U3:JT3;:J BY REQUESTED CORE MEMORY SIZE

100 200 300 1100 6·JO 800 1000 12:).) 11100 '> 140 0

No. of jobs 1752 2052 10111
Elapse;i time 76 127 127
CPU ti"le 3.3 17.5 22.6
".C:quiv" ti::ne 23 39 116
"Turn" time 0.11 1.0 1.5
I/0 (disk) 2014 2055 3266
I/0 tape) 1987 381 202

NOTE.
All times are in hours.
"Equiv" means equivalent.
"Turn" means turn around.

820 319 25
153 95 13

24.1 29.7 ll.'l
63 38 6

2.11 3.3 3.2
5271 11111 207

600 3 -

All I/O transfers are measured in 1JOO's.

PERCE.:l'l'AGE OF JOi:lS FINISHED IN LESS THAl~'

11 18 22
10 13 9

, .. :) 11.2 2.7
5 7 4

6.2 4.3 4.0
211 335 1811
- 18 2

T _,u:; 15rm 30mn 1hr 2hrs 4hrs 8hrs 1day 2day 3day 6da.z

%year 1973 311 52 69 811 96 98 99 100 100 100
--·
%year 1C!79 35 1 32 ~5 80 93 99 100 10J 101) 100

'1ISTOGRI:l!1 or TOTAL [QUIVALEN'!' '!'It1Et'iRSl

iSO ==:I -

.!Ill fEll 'RIIP.IIIIYJIIIJlLIIJFliEI'OCTIItii!JU:

Projected total for 1979 = 3245 hours (using avera·:p).
Total for 1978 was = 3253 hour~.

- 23 -

-
-
-
-

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

iillFEREHCES TO THE PERSONNEL/FUIICTIONS OF THE COUPUTING CENTRE.

~lanaqer of The Computing Centre

Responsible for User Registration

Operations Sector
Responsible for the Computer Room
Substituted in case of abscence by:

Responsible for Peripherals

Systems Group
Responsible for the group
Substituted in case of abscence by:·

Responsible for TSO Registration

J.Pire

Ms. G.Rambs

A.Binda-Rossetti

G.Nocera

o.Konig
P.A.Moinil

C.Daolio

Room Tele.
Informatics Support Sector
Responsible for the Sector (f.f.-} H.de ~volde 1833 1259

Secretary Hrs. G.Hudry 1873 787

Responsible for User Support H.de Wolde 1883 1259

General Inf./Support Library ltrs. A.Cambon 1~71 730

Advisory Seryice/List of Consultants(See Uote 1) 1870 730

A.Inzaghi A.A.Pollicini
H.I. de Wolde

R.Meelhuysen M.Dowell

NOTE 1. The advisory service is available in. the same room ~s
the Computing Support Library(room 1870). Exact details of the
advisory service times for a specific week can be found at tae
head of any output listing(for t~at week).
Any informatics problem may be raised. However, the service is
not designed to help users with problems which are their sole
responsibility. For example, debugging of the logic of programs
and requests for info~tion which can easily be retrieved from
available documentation. ·
If necessary, other competent personnel from the informatics
division ma~ be contacted by the consultant but not directly by
the users.
The users should only contact ~1e person who is the consultant
for that specific d~y and only during the specified hours.
Outside the specified hours general infon~ation may be
requested from Mrs. A. Cambon in the Computing Support
Library.

- 24 -

HOW TO BECOME A REGULAR READER OF Till! NEWSLE'l'TER.

Persons intere~;~ted in receiving regularly the "Computing Centre

Newsletter" are requested to fill in the following for.u and

send it to :-

Ms. A. Cambon

Support To Computing

Building 36

Tel. 730.

Please add me to the Newsletter mailing list.

NAHE

ADDRESS

TELEPHONE

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

