

CONTENTS

Editorial Note 2

A Gradual l·1ove to FORTRAN 77 3

Statistics of Computing Installation, June 27

Utilisation by Objectives and Accounts, June 28

Statistics of Batch Processing, June 29

Histogram of Equivalent Time Usage 29

List of Personnel 30

- 1 -

EDITORIAL NOTE.

The Computing Centre Newsletter is published monthly except for
August and December.

It describes developments, modifications and specific topics in
relation to the use of the computing installations of the Joint
Research Centre, Ispra Establishment.

The aim of the Newsletter is to provide information of
importance to the users of the computing installations, in a
form which is both interesting and readable.

The Newsletter also includes articles which are of intellectual
and educational value in order to keep the users informed of new
advances in computer science topics.

The Editorial Board is composed as follows:

J. Pire. Responsible Editor.

!1. Dowel!. Technical

c. Pigni.
Editors.

II. de Wolde.

Administration and contact address:

1-1s. A. Cambon (tel. 730)
Support to Computing
Building 36
J.R.C. Ispra Establishment

21020-ISPRA (Varese)

LEGAL NOTICE:

Editor.

Neither the Commission of the European Communities nor any
person acting on behalf of the Commission is responsible for the
use which might be made of the information in this Newsletter.

- 2 -

A GRADUAL MOVE TO FORTRAN 77

A.A. Pollicini

INTRODUCTION

Hore than one year has elaps'3d since the approval of the
Standard FORTRAN ANSI X3. 9-1978 [1] and people are nO"Yl used to
hear a~d read about FORTRAN 77, as the standardized lanquage was
named.
It is quite likely that FORTRAN 77 programs are currently
runnin~ on those computers for which a compiler has already been
made available. Unfortunately this is not the case for IBM!
Although a FORTRAN 77 compiler for IB>-1 computers is beinq
develo?ed and might soon be announced, no official information
has been circulated so far.

The more recent public doctJment on the subiect is a SE.l\S note [2]
which states:

'Still by this meetinq, no commitments were made by IB~1 when
there would be a new compiler available'.

In this situation, rather than pas!Jively waitinq for the
avai labi li ty of a corn pi ler, it is sensible that we try to ans\..rer
the followino question:
11hat can we do in the meantime?
Of course we still have to use FO~'rRAN IV, (and therefore we
cannot yet profit of a lot of new fa·::ilities). But we should
devise a ki 1d of lancruarres compa tibi li ty "Ylhich prevents the
proqrams we are coding now froM becoMinq obsolete in a short
time.
Such an attempt is described in the following part of this
article and consists of a simple programminq discipline
immediatly applicable by any programmer.
The proposal is based on a careful application of some features
available bot;h in the IB~~ G1 and H Extended FO~TRAN compilers.
These features have to be used in a way polarized by the
awareness of the presence in FORTRAN 77 of unlike features.

It may be considered like a dopinq technique, finalized to an
easier adaptation of the resultino programs to the expected
compiler adhering to the approved 1978 standard.

Therefore, the spirit of this article is aimed at suggestinq a
way for the development of new FORTRAN proqrams, but is not
concerned at all with existing proqrams which need to be
converted.

- 3 -

FINDING OUT THE PROBLEMS

A qeneral overview of the innovations introduced in the new
lanquage[3] is of great help in the classification of the kind
of the arisen problems. First of all some introduced features
have the welcome effect of normalizinq some IB~ extensions which
violated the previous standard ANSI x3.9-1966 [4].
These features are pointed out in the following.

- Arrays. The maximum number of dimensions is fixed to seven.

- The value of an adjustable dimension for a dummy array may be
passed either in the argument list or in COMMON.

- The evaluation of sequential exponentiations goes from right
to left, thus A**B**C is evaluated as A**(B**C)

- Computed GOTO. Namely the execution of
the control variable is
the label list.

the next state~ent if
out of the range of

- I/O StateMents in' the short forms: READ £,list
PRI~T f, list

ERR and END options in READ statements.

- Apostrophe notation both for character constants and for
character editinq in a FORMAT statement.

- Tabulation editing Tn in a F0~~1AT statement.

- A character constant may be used as actual arqument in a
function reference.

A character constants may be used in a PAUSE statement.

- ENTRY statement.

- List-directed Input/Output.

The use of the above features as
conforms to the ~ORTR&~ 77 standard.
specifications of the standard, in
extended possibilities.

allmved by IBr·1 col"'pilers
Notice, however that the

some cases, may allow

In addition the following IB.t-1 features are nmv integrated
standard \vi th only minor restrictions or deviations.

in the

- IMPLICIT statement except for the length specifier (*n) in the
data tyoe declarator.

- Assiqnment of initial values in type statements, but avoiding
the use of the length specifier in the data type
declarator.

-Mixed mode arithmetic except for: (1) combination of the types
DOUBLE PRECISION and COMPLEX, {2) the use of entities

- 4 -

of the types INTEGER*2 and Cm-1PLEX*16 which do not
exist.

- Alternate RETURN,
a-rgument
form:
*label

with the only difference that any actual
specifying a statement label must have the

instead of &label.

- Generic Names (H Extended only) are allowed for intrinsic
functions, but some exceptions apply.
(1) The followinq IBH functions are not included:
COT AN, ERF, ERFC, GAMMA, LGAM,U\, QEXT 7
(2) and other are considered as specific names by the
standard: AIMAG,CONJG,FLOAT,SINGL.
Moreover, the GENERIC statement will have to be
removed.

All other innovations may cause problems which need to be solved
in order to achieve the compatibility we are aiminq at.

There is a class of minor problems \caused byl the following
features, for which a possible solution 's immediately
suggested.

Suppression of Hollerith constants. It is enough to use
always and only the apostrophe notation, already allowed
by IBM compilers. Notice that the use of such con~tants
is limited in FORTRAN IV to actual arguments in CALL
statements or function references; to initial values in
DATA or type statements and to messages in PAUSE
statements.
It should also be noticed that the H editing for
character constants within the FORMAT statement was

·retained by the standard, but it seems an advisable
practice to always use the same notation. The one
allowed everywhere is the enclosinq apostrophes.

- Array element names appearing in an EQUIVALENCE statements
must have the same number of subscript expressions as
the number of dimensions specified in th.e array
declarator.
Please conform to this requirement and avoid:

DIMENSION A(10,10) ,B(10)
EQUIVALENCE (A(1),B(1))

- 5 -

•

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

•

- The value of any subscript expression must always be in the
limit specified bv the correspondino dimension.
Please conform to this healthy requirement! For
instance use A(2,2,2) instead of A(4,4,1) to reference
the 10th element of the array declared as follows:

DIMENSION A(2,3,5)
Notice that both references are valid in FORTRAN IV but
only the former one is valid in FORTRAN 77.

The major problems we will-- be faced with are caused by:

- The modification of the semantics of the DO loop,

- the improvement of the Input/Output facilities,

- the introduction of a definition status for entities,

- the introduction of the data type CHARACTER.

For such problems, it is not always possible to
solution in the form of a recommendation.

propose a

In particular for character handlinq some software
needed and the library routines described in the last
are intended to be a contribution to move a first step

aids are
paragraph
forward.

Finally some marked incompatibilities remain, for which the only
solution is to consider their use strictly forbidden. They are
namely:

- LOGICAL * 1 data type,
- Hexadeci~al constants,

Dummy arguments enclosed in slashes,
- NAMELIST,
- PUNCH state~ent,

and, limitedly to the H Extended compiler:
- Extended precision on 128 bits,
- Asynchronus Input/Output.

- 6 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

DO LOOP

The DO loop as defined by FORTRAN 77 specifications, offers a
set of extensions.
lie have to wait for the availability of a compiler to be able to
profit of them, but ·there are two changes implying careful
attention in our intent of producing FORTRAN IV codes which are
as much as possible compatible with FORTRAN 77.

The execution of the DO statement results in the evaluation of •
the iteration count. When it is zero the loop remains inactive
and none of the statements of its range are executed.
This means that if ·the terminal parameter is less than the
initial one the DO loop will be skipped. This is in contrast
with the current situation in which the loop is always entered
and =xecuted at least once.

Thus, if our applications have to perform in the same way now
and in the future, it is necessary to introduce before each DO
statement a ccnditional statement which takes into account the
actual value of the iteration count.

For instance:

IF (INIT.GT.LAST) GO TO 10
DO 10 I=INIT,LAST,INCR

10 CONTINUE

The IF statement, will become completely redundant in FORTRAN 77
and could be removed. or transformed into a comment line \.,rhen the
proqram is compiJP-d as a FORTRAN 77 one.
But this fact is of minor concern. Indeed the,reliability of an
application is far more important than its conciseness and we
can enlarqe reliability by redundancy.

MorN>ver, FORTRAN 77 stri::::tly forbids jumps into the range of a
DO loop from outside. Therefore, the range extension is no
lonqer valid.

- 7 -

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

•

However, the execution of a CALL statement or an external
function reference vdthin- the range of a DO lcop, althcuqh
physically implying a jt~p outside and coming back inside at the
retur::1 from the subprogram formally does not violate the rule.
In practice the following situation does not conform to the new
standard: 1

SN=.TRUE.
DO 20 I=1 ,N

(block~>
IF (•••) GO TO 30
(block j;) s r

10 CONTINUE Ch.rr~~"""~

(block 6) Do ;_oof'

20 CONTINUE
(block b)

Jul\t SN=.FALSE.
30 CONTINUE

I:N.>t.J>E (block£)
--- IF(SW) GOTO 10

If such a scheme really represents a suitable solution it could
be made compatible with FORTRAN 77 by the duplication of the
(block~) as shown in the scheme below which looks clearer than
the old one.

DO 20 I=1,N
(block«.)
IF (.••) GO TO 8

(block (5)
GO TO 10

8 CONTINUE
(block () -- DUPLICATED CODE

10 CONTINUE
(block '6')

20 CONTINUE
(blockS)

30 CONTINUE
(block£)
CONTINUE

Of course, if the (block t.) is quite large, the duplication of
this portion of code is not recommended.
It would be preferable to define a clear interface between the
(block ~) and its environment and then to transform the block
itself into a subroutine call in place of both occurrences of
the identical code.

- 8 -

collsvs
Text Box

collsvs
Text Box

INPUT - OUTPUT

The 1966 standard allowed effective access to peripherals with
simple I/O statements, but dealt only with unformatted· and
formatted records on sequential files.
The 1978 standard has considerably enlarged the Input/Output
facilities providing users with:

- sequential and direct access to external files of records
which may be either:

Unforrnatted or
formatted by FORMAT control or
formatted by list-directed formattin~.

- sequential access to int~rnal files of record which may only
be formatted by FORMAT control.

As a consequence, a number of "specifiers" are needed to decribe
what is the combination required for each file.
These specifiers are controlled by the OPEN,CLOSE,READ,WRITE
statements and possibly inquired by the INQUIRE statement.
The more functional way to simulate the FORTRAN 77 Input/Output
would certainly be to hide from the application program all the
new concepts.
This could be done by desiqning a subroutine for each I/0
statement and giving to each subroutine, as argument list, the
list of the specifiers fo~ the corresponding statement.
At the moment of the introduction of a FORTRAN 77 compiler,
every CALL to each subroutine would be replaced bv the
corresponding I/O statement and the actual argument~ in the CALL
statement would become the value of the specifiers for that I/0
statement. No other changes will be needed in the application
program:

Let us consider some aspects of the implementation of these
subroutines. ,
The means used for the implementation are not relevant with
respect to the portability of the FORTRAN 77 program which will
issue in the final phase. Therefore, the choice could equally
well be either machine language or machine-dependent high level
language.

The required effort to provide the complete range of facilities
is quite important and not justified in a short term period such
as the one preceding the release of · an IBM processor for
FORTRAN 77.

The real aim should be to maintain the established facilities,
in a way quickly adaptable to FORTRAN 77, keepin~ as far as
possible the structure and the codinq of the application program
unchanged.

- 9 -

Sequential I/O in the way we are used to use it iR intrinsically
compati~le with FORTRAN 77 which assumes by default the suitable
values for all specifiers not pertaining to FORTRAN IV.
Therefore, the requirement concerns the two extensions included
in the IBM compilers, naMely Direct Access and list-directed
formatting. Since the latter extension is compatible in its
current form (see "FINDING OUT THE PROBLE~S ") , we need to
simulate only the Direct Access I/O statements.
At this point the scope of the necessary tool is restricted to
subroutines receiving only the specifiers for Direct Access.
A reasonable solution would be obtained by implementing in
FORTRAN IV, an OPEN subroutine which issues a DEFINE FILE
statement, and separate subroutines for read a~d write
operations containing respectively the stateMents

READ (u'nr[,fmt]) list
and l'ffiiTE (u' nr [, fmt]) list

But the DEFINE FILE statement as allowed by IBM compilers
accepts only integer co~stant as logical unit and number of
blocks.
This lack of flexibility does not allow for the parameterization
of the statement with dummy arguments and the use of FORTRAN IV
is, therefore, not possible. On the other hand the choice of
Assembly language implies a bigger effort whi=h once again is
not justified in a transitional period.

In conclusion what is suggested for an immediate, but adaptable
use of Direct Access I/0 is summarized in the following
recommendations:

- Put the DEFINE FILE statement(s) at the beginninq of the
executable segment of the Main program (or of a subroutine if
the structure of the program requires few interfaces between
different units).

-Make its(their) location higly visible by adequate cow~ents
such as, for instance:

C REMEMBER TO REPLACE THE FOLLOWING STATE~ENT WITH
C AN OPEN STATEMENT WHICH DECLARES:
C ACCESS=DIRECT
C RECL=.... (BLOCKLENGTH)

- Do not use the FIND statement for simplicity.

- Put each Direct Access READ and WRITE in isolated segments of
the program units which contain them.

- Make their location also clearly visible by comments such as
these:

C REMEMBER TO REPLACE THE FOLLOWING STATEMENT WITH
C THE CORRESPONDING FORM VALID IN FORTRAN 77 SPECIFYING
C REC=.... (RECORD TO BE ACCESSED)

- 10 -

collsvs
Text Box

collsvs
Text Box

pEFINITION STATUS

The 1978 Sta~dard states that the
executable program may be either
definition status of an entity may
as a consequence of many events.

status of any entity of an
defined or undefined. The

change durinq the execution

_In particular, the entities which are local to a subprogram
become undefined at the execution of a RETURN or END statement.
This allow the processor to reuse free storage in allocatinq new
entities.
But this also implies that the compiler must be able to
recognize which entities have to remain defined on exit from the
subprogram, that is they have to retain their value at the
completion of the execution of the subproaram for a further use.
For this purpose the 1978 Standard provides the state~ent SAVE
which is a new verb in the F0RTRAN dictionary.
Fro~ now on the ~ore plain and reliable way to obtain this in
FORTR~ IV will be to make such entities global using a Common
block. For clarity it is suggested to put all similar entities
belonging to a subprogram in a named Common block which appears
both in the Main proqram and in the appropriate subprograrn.

Example.

C DE~10NS'!'RATIVE PRClGRA111 POR SAVE STATEMENT SIMULJITI0N
COMMON/SAVEO 1/STORO 1 (3)
C0~10N/S_ZWE02/STOR02 (10)

END
SUBROUTINE SUB01
COW~ON/SAVE01/A,B,K

END
FUNCTION FUNC02(ARR,J)
COMMON/SAVE02/V
DUft.ENSION V(10)

END

This program configuration can be either kept unchanged or
adapted to FO~TRAN 77.
In the latter case the adanted progr~ will take advantaae of
the SAVE facility and the only modifications will be:
(1) to rebove all these Common blocks from the Main program and
(2) to replace in each subprograms the specific Com~n block

with an a9propriate SAVE statement.

SUBROUTINE SUB01
SAVE A,B,K

END
FUNCTIO~~ FUNC02 (ARR,J)
SAVE V
DIMENSION V(10)

END

- 11 -

collsvs
Text Box

CHARACTER DATA TYPE

The text of the sta~dard makes a clear distinction between
character storage un~c and numeric storage unit.
In this way manufacturers may choose the storage allocation of
character string \vhich is the most effective on their computer.
Therefore, an equally distinct separation is required in
structuring the entities of a program.
From now on \'le should keep any declaration of variables and
arrays designed for storinq characters, separate from all other
declarative statements.
In general all the following points have to be observed for our
simulation purpose.

- Different Commo~ blocks must be used for storing characters
and for all other data types.(this norm is compulsory in
FORTRA.~ 77)

- Entities for storing characters must not be EQUIVALENCEd with
entities of other data types.(also this norm is compulsory in
FORTRAN 77)

- It is suggested that tl1e entities designed to contain
characters are of type INTEGER.

If initial values are reque3ted they have to be specified in
th.e ap:::>stophe notation which is the only for!'l accepted in
FORTRAN 77.

all declarative statements referring to
be groupP.d together and the use of

make them highly visible is strongly
be obtained by comment lines with a

- For better clarity,
such entities should
logical parentheses to
recommended. This may
fixed texts such as:

C BELmv-CHARACTER ENTITIES

C ABOVE-CHARACTER ENTITIES

- Finally all the functions to be performed on these entities
must be committed to special subprograms which hide from the
application program the concept of addressinq character within
a string.
The implementation of similar subprograms is the temporary
solution which allows the application proqram to work before
the installation of a FORTRAN 77 compiler.
Therefore, they may be coded using the well known "trick" of
equivalencing INTEGER and LOGICAL*1 entities. A detailed
description of a set of such subprograms follows in the next
paragraph.

In the subsequent phase of adaptation to FORTRAN 77, the

- 12 -

collsvs
Text Box

modifications of the application program, necessary to match the
CHARACTER type will be:

- Replacement of the declarative segment with the suitable
CHARACTER Type-statements.

- Substitution of the
character handling
statements.

statements which
~bprogram with

HOW TO USE THE FORTRAN AIDS LIBRARY

make reference to
appropriate FORTRAN

a
77

This library is planned to contain routines which help the users
in solving small, well identified and general problems. It is
named SYS1.LIBFTAID and can be concatenaited to the FORTRAN
Library as a private library using the parameterization facility
of the catalogued procedures as shown in the following line.

//SIMF77 EXEC F~;1CLG,ULB=DISK,VLB=COPICA,PRN=FTAID

For the moment it contains five subprograms implementing three
primitives which directly simulate features available in
FORTRAN 77:

search a substring within a given string,

- compare two strings for equality,

- move the contents of a string into another string,

plus two more sophisticated primitives easly programmable in a
standard way using FORTRAN 77:

- locate the peginning of a field which follows a given
separator,

- replace a substring with a new string of different length.

The design of the argument lists and
of the subprograms was drawn from
feature to be simulated.

~ 13 -

the underlying algorithms
the specifications of the

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

collsvs
Text Box

CG

CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG

c
CD
c

The first primitive is an integer function, a complete listing
of which is given below as an example of the· implemention
fashion. The heading segment also describes the use of the
function.

FUNCTION INDXCH(A,IA,4~,B,IB,LB)

01" THE SUBSTRING THIS FUNCTION LOOKS FOR THE FIRST OCCURRENCE
CONTAINED IN THE RANGE (EXTREMES INCLUDED)
OF THE GIVEN STRING

IB - LB
B

IN THE RANGE BETWEEN THE IJ')CATIONS (EXTREHES
OF THE INSPECTED STRING

INCLUDED) IA - LA
A

THE FUNCTION UAY ASSUME THE VALUE EITHER OF :

- A POSITIVE INTEGER NHICH GIVES THE LOCATION OF' THE
LEFTMOST CHARACTER OF THE SUBSTRING WITHIN THE INSPECTED
·STRING. (THE LOCATIONS ARE COUNTED STARTDlG FROt1 IA)

- OR ZERO IF THE SUBSTRING DOES NOT EXIST
OR IF THE SPECIFIED RANGE FOR

IS SHORTER THAN THE ONE SPECIFIED FOR
OR IF THE PARAMETERS ARE INCONSISTENT

(E.G. IA.GT.LA)

DIMENSION A(LA) ,B(LB)
LOGICAL*1 A,B
LOGICAL EQCOMP
INTEGER PR
DATA PR/6/

F 0 R M A T S FOR MESSAGES ON PRINTER

A
B

61 FORMAT('O ERROR 01 INVALID STRING BOUNDARIES')
6 2 FORMAT (1 0 ERROK 0 2 EMPTY STRING NOT ALLO~lED')

c
CX P~~ETERS ~~E CHECKED FOR CONSISTENCY
c

c

IF(IA.~E.LA.AND.IB.LE.LB) GO TO 1
WRITE(PR,61)
GO TO 20

IF(LA.GT.O.AND.LB.GT.O) GO TO 10
WRITE(PR,62)
GO TO 20

10 CONTINUE

CX COMPUTE AND VERIPY THE LENGTHS OF BO~H STRINGS
c

NCHA=LA-IA+1
NCHB=LB-IB+1
IF(NCHA.LT.NCHB) GO TO 20

- 14 -

collsvs
Text Box

collsvs
Text Box

c
CX LOOK THE INSPECTED STRING FO~ THE OCCURRENCE OF THE SUBSTRING
c

c

L.\ST=LA-NCHB+1
DO 14 I=IA,LAST

LF=I+NCHB-1
IF(EQCOMP(A,I,LF,B,IB,LB)) GO TO 22

14 CONTINUE

CX ASSIGN VALUE TO THE FU~CTION
c

20 CONTINUE
INDXCH=O
GO TO 29

22 CONTINUE
INDXCH=I-IA+1

29 RETURN
ENI)

I
The following statement shows
INDXCH function;

a~ example of reference to the

INIT=~NDXCH(REC,ISR,IER,FLD1,ISF,IEF)

the same action may be produced in FORTRAN 77 by the statement;

INIT=INDEX(REC(ISR:IER) ,FLD1 (ISF:IEF))

The comparison primitive has been implemented only for checking
identity of strings, while all the relational operators are made
available by the standard. However, only the equality or
inequality are independent from the collating sequence and
therefore, compatible on different computers. Furthermore, the
latter can be expressed as the complement ~f the former.
This primitive has the form of a logical function and is
described and referenced as follows.

LOGICAL FUNC'IIION EQCOI-tP (A, IA ,L'\,B, IB,LB)

THIS FUNCTION PERFORMS A COMPARISON, CHARACTER
BETI'iEEN A FIELD DEFINED IN THE RANGE (EXTREMES
OF A GIVEN CHARACTER STRING

BY CHARACTER,
INCLUDED) IA - LA

A
AND ANOTHER FIELD DE'P!NED IN THE RANnE (EXTREMES INCLUDED) IB - LB
OF A SECOND CHARACTER STRING B

THE FUNCTION RETURNS A LOGICAL VALUE WHICH IS

.TRUE. IF THE COl1PARED FIELDS ARE EQUAL

.FALSE. EITHER IF THE Two FIELDS ARE DIFFERENT
OR I~ THE SPECIFIED RANGES ARE INCONSISTENT

REMARK - IF THE TWO FIELDS DO N0T ~~TCH IN LENGTH, THE COMPARISON
GOES ON UP TO THE END 0"' THE LONGER ONE.
THE SHORTER FIELD IS EXTENDED Tl") THE RIGHT !HTH AS MANY
BLANKS AS NECESSARY.

DOCU!'IENTATION IS COMPLETED FOR UNIT EQCOHP

- 15 -

collsvs
Text Box

Example of use:

IF (EQCOMP(FLD1,IS1,IE1,FLD2,IS2,IE2)) GO TO 10
(blocko<)

GO TO 20
10 CONTINUE

(block f>l
20 CONTINUE

This will become:

IF (FLD1(IS1:IE1).NE.FLD2(IS2:IE2)) THEN
(blocko..)

ELSE
(block p.)

END IF

The "move" primitive is a subroutine w.hich satisties the
following specifications.

SUBROUTINE MOVCH(A,IA,LA,B,IB,LB,IER)

THIS SUBROUTINE MOVES CirnRACTERS FROM A SOURCE STRING
ACCORDING TO THE SPECIFICATION o~ THE RANGE
TO A TARGET STRING
ACCORDING TO THE SPECIFICATION OF THE RANGE

IF THE TARGET RANGE IS LA'R.GER THAN THE SOURCE ONE,
THE FORMER \\'ILL BE ~ILLED. TO THE RIGHT WITH BLANK(S)

IF THE TARGET RANGE IS SMALLER THAN THE SOURCE ONE,
THE MOVED CHARACTERS WILL BE TRUNCATED T0 THE RIGHT

CHARACTERS ARE NOT MOVED IF:

- IA.GT.LA
- IB.GT.LB
- LA.LE.O
- LB.LE.O

O'R.
O'R.
O'R.

B
IB - LB

A
IA - LA

R E M A R K EXPECTED MODIFICATIONS OP GLOBAL VARIABLES:
- THE TARGET STRING A MAY CR~NGE

ITS CONTENT PARTLY 0~ TOTALLY
- THE VARIABLE IE~ IS ASSIGNED TO

DOCUMENTATION IS Cat1PLETED FOR UNIT MOVCH

- 16 -

collsvs
Text Box

This subroutine may be called now by using:

CALL MOVCH(FLD1,IS1,IE1,FLD2,IS2,IE2,IEn)

and replaced later on by ~~e character assignement statement:

FLD1(IS1:IE1)= FLD2(IS2:IE2)

The replacements shmo~n for these three orimitives look so simple
that a special tool providing them automaticallv could also be
forseen.

A variant of the function IHDXCH is also provided ~tith the
folloNing specifications.

FUNCTION LOCFLD(A,IA,LA,CH)

THIS FUNCTION LOOKS FOR THE FI~ST OCCURRENCE OF THE CHARACTER CH
IN THE Ri\NGE BETWEEN THE LOCATIONS (EXTREMES INCLUDE.)) IA - IA
OF THE CHARACTER STRING A

THE FUNCTiON MAY ASSUHE DI"'FERENT VALUES l'lHICl::I HAVE THE FOLLOIHNG
MEANINGS:

ZERO
=) CH IS ABSENT IHTHIN THE SPECIFIED RANC';E

INT (NEGATIVE)
=) FIRST OCCURRENCE OF CH AT L0CATION IABS(INT)

FOLLOWED BY THE SAt"tE CHARACTE'R. UP T0 THE END OF
THE SPECIFIED RANGE (NO FIELD FOLLOl'lS)

INT (POSITIVE)
=) THE FIELD FOLLOIHNC"; THE FIRST OCCURRI:NCE

(SINGLE OR MULTIPLE) OF CH
BEGINS AT LOCATION INT

NOTICE THAT THE L0CATION RETURNED BY THE FUNCTION
IS ALWAYS COUNTED STA~TING FROM THE LEFT BOUND IA .

DOCUHENTATION IS C0~1PLI:TED FOR UNIT LOCFLD

- 17 -

This function has to be receded in Fortran 77, for instance as
follows.

c
c
c

c

FUNCTION LOCFLD (A,CH)

CHA1~CTER A(*),CH

LOC=INDEX(A,CH)
IF (LOC.NE.O) THEN

I=LOC
LOC=-LOC
IF (I.LT.LEN(A)) THEN

I=I+1
IF (A(I:I) .EQ.C::H) GO Tn 1
LOC=I

END IF
END IF
LOCFLD=LOC
RETURN
END

And the current form for referencing it:

LOCELD(STRING,ISS,IES,SEP)

will have to be, modified to:

LOCFLD(STRING(ISS:IES) ,SEP)

- 18 -

collsvs
Text Box

The re~l~cement of a substr~ng shifting the po~tion of the
initial string which follows it is possible by c~lling the
subroutine RE~LCH which works ~s described below:

SUBROUTINE REPLCH(A,IA,LA,ISUBS,LRUBS,B,IB,LB,RnL)

THIS SUBROUTINE REPLACES THE CHARACTERS CONTAINED IN THE SUBSTRING
DEFINED BY THE LOWER AND UPPER BOUNDS (INCLUDED)
OF A GIVEN STRING
WITH THE CHARACTERS IN 'THE RANGE (EXTERMES INCLUDED)

!SUBS - LSUBS
A

IB - LB
OF A SECOND STRING B

NOTICE THAT THE TARGET SUBSTRING MUST BE CmtPLETELY CONTAINED
WITHIN THE RANGE OF THE STRinG A SPECIFIED BY IA - LA

THE REPLACEt-1ENT HAY IMPLY EITHER A COHPRESSION TO THE LEFT OR
A TRUNCA~ION TO THE RIGHT OF' THE TARGET STRING A •
HOWEVER THE TRUNCATION IS ONLY ALI.OWED IF THE LOST CHARACTER(S)
IS(ARE) EXCLUSIVELY :SLANK(S).

RE!1ARK EXPECTED l10DII'ICATION OF GLOBAL VARIABLES:
- THE TARGET STRING A UAY CHANGE

ITS CONTENT, PARTLY OR TOTALLY
- THE LOGICJ\L VARIABLE RPL IS ASSIGtJED TO

THE VALUE • TRUE. IF' THE REPLACE!:1ENT
SUCCEEDED, OR • F_l\LSE. OTHERWISE.

DOCUMENTATION IS Cm1PLETED FOR UNIT REPLCH

Also this subroutine will need to be converted into FORTRAN 77.
Statements calling the subroutine will h~ve to be changed from
the form:

CALL REPLCH(Cl\RD,ISC,IEC,INIT,LAST,WORD,ISW,IEW,REPL)

to the form:

CA.LL REPLCH(CARD(ISC:IEC),INIT,LAST,WORD(ISW:IEW) ,REPL)

In conclusion as an example of one application of the suggested
way for handling characters is included. In appendix A, at the
end of this article, is given the listing of program FTDOC which
was used to abstract the explanatory headings reported above as
description of the library subprograms.

To have a global look at thP. transformations involved the list
of what miqht be a FORTRAN 77 version is included as appendix B.
Note: the program listed in appendix B has only had a "manual"
syntax check.

- 19

Appendix A
Listing of FORTRAN IV program FTDOC

CG PROGRAM F T D 0 C
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CD
c

THIS PROGRAM READS A FORTRAN SOURCE CODE AND LISTS ONLY THE
INSERTED COMMENT LINES, ACCORDING TO A KEY WHICH MAY BE SUPPLIED
AS FIRST CARD. POSSIBLE KEYS, AS USED IN THIS PROGRA•1 ARE:

CG
CD
ex
c

FOR GENERAL INFORMATION
FOR DECLARATIVE SEGMENTS
FOR EXECUTABLE SEGMENTS
(TAKEN BV D~AULT) FOR ALL COMMENT LINES

THE PURPOSE IS TO PROVIDE A LIST OF CONDENSED AND MEANINGFUL
TEXTS WHICH DESCRIBE THE USE AND THE FUNCTION OF EACH PROGRAM
UNIT. THIS GIVES EVIDENCE TO THE INTERNAL CODE DOCUMENTATION
PROVIDED BY THE AUTHOR BY MEANS OF IN-LINE C0~1ENTS.

BELOW - CHARACTER ENTITIES

INTEGER LINE(20),SUBR(3),FUNC(2),ENDS,END(9),NAME(2),KEY
INTEGER BLANK(2) ,LPAR
DATA SUBR (1) 'SUBR (2) 'SUBR (3) /' SUBR I ' I OUT! I ' I NE· I I
DATA FUNC(1),FUNC(2)/'FUNC','TION'/
DATA END(1),END(2),END(3) ,END(4),END(5) ,END(6) ,END(7),END(8),

1 END(9)/'DOCU','MENT','ATIO','N IS',' COM','PLET','ED F',
2 'OR U','NIT '/

DATA NAME(1),NAME(2)/'MAIN','
DATA BLANK(1),BLANK(2)/' ','

c
CD ABOVE - CHARACTER ENTITIES
c
CD ~F 0 R M A T S
c

50 FORMAT (20A4)
60 JORMAT ('1 I)
61 FORMAT(10X,20A4)

'/,ENDS/'END '/,KEY/'C
I I' LPAR/' (I I

68 FORMAT(///' ACQUISITION 0~ CONTROL KEY DID NOT SUCCEED')
69 FORMAT(//!' SUBROUTINE 0~ FUNCTION NAME NOT FOUND IN LINE'

1 //10X,20A4)
c
CD MAIN INPUT AND OUTPUT UNITS PARAMETERIZED AS 5 AND 6 •
c

c
CD
c

c

c

INTEGER CD, PR
DATA CD/5/,PR/6/

DECLARATION OF THE LIBRARY FUNCTION

LOGICAL EQCOMP

LOGICAL ANALZD,REPL,HEADER
DATA HEADER/.TRUE./

CD END OF THE DECLARATIVE SEGMENT
c
c
CX LOOK FOR A SPECIFIC CONTROL KEY

- 20 -

EQCOf1P AS LOGICAL

'I

c
CX LOOK FOR A SPECIFIC CONTROL KEY
c

c

READ(CD,50,END=99) LINE
INIT=1
ISEP=LOCFLD(LINE,INIT,SO,BLANK)
IF (ISEP.GE.O) GO TO 1

LAST=-ISEP-1
IF (LAST.GT.4) GO TO 1

CALL MOVCH(KEY,INIT,LAST,LINE,INIT,LAST,IE~)
IF (IER.NE.O) GO TO 91

CONTINUE
LAST=1

2 CONTINUE

READ(CD,50,END=99) LINE
GO TO 2

CX SCANNINr. OP EACH PROGRAM UNIT BEGINS HEREAFTER
c

c

WRITE(PR,60)
JUMP=2

3 CONTINUE

CX ANALISYS OF EACH LINE IS PERFORMED HEREAFTER
c

c

ANALZD=.TRUE.
CALL MOVCH(LINE,73,80,BLANK,1,8,IER)
IF (.NOT.EQCOMP(LINE,INIT,LAST,KEY,INIT,LAST)) GO TO 4

CALL MOVCH(LINE,INIT,LAST,BLANK,INIT,LAST,IER)

CX rSSUE ONE DOCUMENTATION LINE
c

c
ex
c

c
ex
c

WRITE(PR,61) LINE
GO TO 13

4 CONTINUE

5

6

IF (.NOT.HEADER) GO TO 12

LOOK FOR A SUB~OUTINE OR FUNCTION STATEMENT

ISTAT=INDXCH(LINE,INIT,80,SUBR,INIT,10)
IF (ISTAT.LT.7) GO TO 5

LSTAT=ISTAT+9
GO TO 6

ISTAT=INDXCH(LINE,INIT,SO,FUNC,INIT,S)
IF (ISTAT.LT.7) GO TO 11

LSTAT=ISTAT+7
CONTINUE

LOOK FOR THE UNIT NAME AND PRINT THE STATEfffiNT

ISCAN=LSTAT+1
INAU=LOCFLD (LINE, !SCAN, 80 ,BLANK)
IF (INAM.LE.O) GO TO 92

"

- 21 -

collsvs
Text Box

c
ex
c

c
ex
c

c
ex
c

c
ex
c

INAM=LSTAT+INAM
LNAM=INAM+S
ISCAN=INAM+1
DO 7 ICH=ISCAN,LNAM

IF (EQCOMP(LINE,ICH,ICH,BLANK,1,1) .OR.
c

7
EQCOMP (LINE, !CH 1 !CH, LPAR, 1 , 1)) GO TO 8

CONTINUE

8
9

10

11

12

13

91

92
99

GO TO 9
LNAM=ICH-1
LTH=LNAl1- INAM+ 1
CALL MOVCH(NAME,INIT,LTH,LINE,INAM,LNAM,IER)

PRINT THE HEADER STATEMENT OF THE PROG~~ UNIT

CONTINUE
WRITE(PR,61) LINE
READ(CD,SO,END=99) LINE
CALL MOVCH(LINE,73,80,BLANK,1,8,IER)
IF (LOCFLD(LINE,1,80,BLANK) .Eq.6) GO TO 10

ANALZD=.FALSE.
CONTINUE

HEADER=.FALSE.
GO TO 13

CONTINUE

LOOK FOR THE END STATEMENT

IF (.NOT.EQCOMP(LINE,INIT,6,BLANK,INIT,6)) GO TO 13
ISTAT=LOCFLD(LINE,INIT,80,BLANK)
IF (ISTAT.LT.7) GO TO 13

LSTAT=ISTAT+2
IF (.NOT.EQCOMP(LINE,ISTAT,LSTAT,ENDS,1,4)) GO TO 13

IF (LOCFLD(LINE,LSTAT,80,BLANK).NE. (-2)) GO TO 13
CALL REPLCH(LINE,1,80,ISTAT,LSTAT,END,1,36,REPL)
INAM=LSTAT+2
IF (REPL) INAM=ISTAT+36
CALL MOVCH(LINE,INAM,INAM+S,NAME,1,6,IER)
IF (IER.EQ.O) WRITE(PR,61) LINE
HEADER=.~UE.

CALL MOVCH(NAME,INIT,6,BLANK,INIT,6,IER)
JUMP=1

CONTINUE

READ NEXT LINE AND REPEAT THE OPERATIONS

IF (ANALZD) READ(CD,SO,END=99) LINE
GO TO (2, 3) ,JUMP

ISSUE ERROR MESSAGES

liRITE(PR,68)
GO TO 99
WRITE(PR,69) LINE
STOP
END

- 22 -

collsvs
Text Box

collsvs
Text Box

Appendix B
Listing of FORTRAN 77 version of FTDOC

CG PROGRAM F T D 0 C
c
c
c
CD BELOW - CHARACTER ENTITIES
c

c

CHARACTER*80 LINE
CHARACTER*4 ENDS/'END 1 /,KEY/'C 1 /

CHARACTER LPAR/ 1 ('/,BLANK/' '/
CHARACTER*6 NAME/'MAIN '/
CHARACTER*B FUNC/'FUNCTION'/
CHARACTER*10 SUBR/'SUBROUTINE'/
CHARACTER*36 END/'DOCUMENTATION IS CO~PLETED FOR UNIT '/

CD ABOVE - CHARACTER ENTITIES
c
CD F 0 R M A T S
c

50 FORMAT(A80)
60 FORMAT (11 I)
61 FORMAT(10X,A80)
68 FORMAT(///' ACQUISITION OF CONTROL KEY DID NOT SUCCEED')
69 FORMAT(///' SUBROUTINE OR FUNCTION NAME NOT FOUND IN LINE'

1 //10X,A80)
c
CD MAIN INPUT AND OUTPUT UNITS PARAMETERIZED AS 5 AND 6 •
c

INTEGER CD/5/,PR/6/
c

LOGICAL ANALZD,REPL,HEADER/.TRUE./
c
CD END OF THE DECLARATIVE SEGfffiNT
c
c
CX LOOK FOR A SPECIFIC CONTROL KEY
c

c

READ(CD,SO;END=99) LINE
INIT=1
ISEP=LOCFLD(LINE,BLANK)
IF (ISEP.LT.O) THEN

LAST=-ISEP-1
IF (LAST.LE.4) THEN

KEY=LINE(1:LAST)
READ(CD,50,END=99) LINE
GO TO 2

END IF
END IF
LAST=1

2 CONTINUE

- 23 -

collsvs
Text Box

collsvs
Text Box

CX SCANNING OF EACH PROGRAM UNIT BEGINS H~~EAFTER
c

c

WRITE(PR,60)
JUMP=2

3 CONTINUE

CX ANALISYS OF EACH LINE IS PERFORMED HEREAFTER
c

c

ANALZD=.TRUE.
LINE(73:80)=BLANK
IF (LINE(INIT:LAST).EQ.KEY(INIT:LAST)) THEN

LINE(INIT:LAST)=BLANK

CX ISSUE ONE DOCUMENTATION LINE
c

c

WRITE(PR,61) LINE
ELSE IF (HEADER) THEN

CX LOOK FOR A SUBROUTINE OR FUNCTION STATEMENT
c

c
ex
c

c
ex
c

c
7

8
9

10

ISTAT=INDEX(LINE(INIT:80),SUBR)
IF (ISTAT.GE.7) THEN

LSTAT=ISTAT+9
ELSE

ISTAT=INDEX(LINE(INIT:80),FUNC)
IF (ISTAT.LT.7) GO TO 11

LSTAT=ISTAT+7
END IF

LOOK FOR THE UNIT NAME AND PRINT THE STATEMENT

ISCAN=LSTAT+1
INAM=LOCFLD(LINE(ISCAN:80),BLANK)
IF (INAM.LE.O) GO TO 92

INAM=LSTAT+INAM
LNAM=INAM+S
ISCAN=INAM+1
DO 7 ICH=ISCAN,LNAM

IF (LINE(ICH:ICH) .EQ.BLANK.OR.
LINE(ICH:ICH) .EQ.LPAR) GO TO 8

CONTINUE
GO TO 9
LNAM=ICH-1
NAME=LINE(INAH:LNAM)

PRINT THE HEADER STATE~1ENT OF THE PROGRAM UNIT

CONTINUE
WRITE(PR,61) LINE
READ(CD,SO,END=99) LINE
LINE(73:80)=BLANK
IF (LOCFLD(LINE(1:80),BLANK) .EQ.6) GO TO 10

ANALZD=.FALSE.
11 CONTINUE

HEADER=.FALSE.
ELSE

- 24 -

e
ex LOOK FOR THE END STATEMENT
e

e

IF (LINE(INIT:6).EQ.BLANK) THEN
ISTAT=LOCFLD(LINE(INIT;SO),BLANK)
IF (ISTAT.GE.7) THEN

LSTAT=ISTAT+2
IF (LINE(ISTAT:LSTAT).EQ.ENDS) THEN

IF (LOCFLD(LINE(LSTAT:SO),BLANK).EQ. (-2)) THEN
CALL REPLeH(LINE,ISTAT,LSTAT,END,REPL)
INAM=LSTAT+2
I~ (REPL) INAM=ISTAT+36
LINE(INAM:INAM+S)=NAME
WRITE(PR,61) LINE
HEADER=.TRUE.
NAME=BLANK
JUMP=1

END IF
END IF

END IF
END IF

END IF

ex READ NEXT LINE AND REPEAT THE OPERATIONS
e

e

IF (ANALZD) READ(eD,SO,END=99) LINE
GO TO (2,3),JUMP

ex ISSUE ERROR MESSAGES
e

92 WRITE(PR,69) LINE
_ 99 STOP

END-

- 25 -

REFERENCES

[1] American National Standard Institute
ANS Proqramminq Lanauage FORTRAN. ANSI X3.9.-1978
ANSI,Inc New York (1978)

[2] SEAS FORTRAN Proiect Committee
Minutes of SEAS WPM Briqhton 15th January 1979
SEAS Administrative Secretary Nijmegen (1979)

[3] Pollicini, A.A.
A Look at FORTRAN 77
Computinq Centre Newsletter No.25(oct.1978)
JRC Ispra internal publication.
[There is a typinq error at page 19.
The tabulation descriptors should read:

(T,TL,TR)]

[4] American National Standard Institute
ANS fortran. ANSI X3.9-1966
ANSI,Inc New York (1966)

- 26 -

Statistics of computing installation utilization.
Report of computing installation exploitation
for the month of June 1979.

YEAR 1978 YEAR 1979
General

Number of working days
Work hours from 8.00 to 2q.oo for
Duration of scheduled maintenance
Duration of unexpected mair.tenance
Total maintenance time
Total exploitation time
CPU time in problem-mode

Batch Processing

Number of jobs
Number of cards input
Number of lines printed
Number of cards punched
CPU time
Number of I/O (Disk)
Number of I/O (Magnetic tape)

Number of LOGON's
Number of messages sent by terminals
Number of messages received by terminals
CPU time
Number of I/O (Disk)
Connect tilne

Total time service is available
CPU time
Number of I/O (Disk)

- 27 -

22 d
16.00h
21.00h
15.83h
36.83h

334.99h
183.18h

s5q2
2019000

27663000
116000
178.78h

19061000
4552000

957
43207

177315
3.40h

674916
434.7qh

415.00h
1.00h

501000

20 d
16.00h
16.50h
16.87h
33.37h

286.63h
153.24h

7393
14~3100

24687000
200100
133.65h

15859000
4058000

3270
193457

1133375
17.91h

2490000
2125.00h

245.17h
1.68h

442000

Utilisation of computer centre by objectives and appropriation

accounts for the month of June 1979.

IBM 371)/165
equivalent time in hours

1.20.2 General Services -Administration - Ispra

1.20.3 General Services -Technical - Ispra

1.30~3 Central Workshop

1.30.4 L.M.A.

1.90.0 ESSOR

1.92.0 Support to the Commission

2.10.1 Reactor Safety

2.10.2 Plutonium Fuel and Actinide Research

2.10.3 Nuclear Materials

2.20.1 Solar Enerqy

2.20.2 Hydrogen

2.20.4 Design Studies on Thermonuclear Fusion

2.30.0 Environment and Resources

2.40.0 METRE

2.50.1 Informatics

2.50.2 Training

2.50.3 Safeguards

1.94.0 Services to External Users

- 28 -

TOTAL

TOTAL

41.68

2.86

3.82

8.55

2.41

169.83

~.98

5.42

0.03

4.62

6.70

17.00

1.83

18.26

21.47

313.47

8.12

321.59

BATCH PROCESSING DISTRIBUTED BY REQUESTED CORE MEMORY SIZE

100 200 300 400 600 800 1000 1200 1400 1>1400

No. of jobs 1978 2385 1345
Elapsed time 58 140 t52
CPU time 2.8 20.1 34.5
"Equiv" time 20 43 60
"Turn" time 0.5 1.4 ~.2
I/0 (disk) 1740 3062 3544
I/0 (tape) 1780 509 255

NOTE.
All times are in 'hours.
"Equiv" means equivalent.
"Turn" means turn around.

850 356 54
166 64 24

31.5 19.2 8.1
67 28 11

2.4 4.4 4.1
4480 1216 412
1433 33 4

All I/O transfers are measured in 1000's.

PERCENTAGE OF JOBS FINISHEO IN LESS THAN

2 72
3 36

0.9 16.2
1 21)

16.1 4.3
2 526

- 10

TIME 15mn 30mn 1hr 2hrs 4hrs 8hrs 1day 2day 3d ay

%year 1978 27 43 61 78 93 99 100 100 100

%year 1979 29 116 63 78 93 99 100 100 100

Histogram not available this month.

- 29 -

- -
- -
- -
- -
- -
- -
- -

6day

100

100

REFERENCES TO THE PERSONNEL/FUNCTIONS OF THE Cot-1PUTING CENTRE.

nanager of :rhe Computing Centre

Responsible for User Registration

Operations Sector
Responsible for the Computer Room
Substituted in case of abscence by:

Responsible for Peripherals

Systems Group
Responsible for the group
Substituted in case of abscence by:

Responsible for TSO Registration

Informatics Support Sector
Responsible for the Sector

Secretary

Responsible for User Support

General Inf./Support Library

J.Pire

Hs. G.Rambs

P.Tomba
A.Binda-Rossetti

G.Nocera

D.KO"nig
P.A.Moinil

C.Daolio

Room

G.Gaggero 1874

Mrs. G.Hudry 1873

H.de Wolde 1883

Mrs. A.Cambon 1871
(See -Note 2)

Advisory Service/List of Consultants(~ee Note 1) 1870

A.Inzaghi A.A.Pollicini
H.I. de Holde

R.Meelhuysen M.Dowell

Tele.

787

787

1259

730

730

NOTE 1. The advisory service is available in the same room as
the Computing Support Library(room 1870). Exact details of the
advisory service times for a specific week can be found at the
head of any output listing(for that week).
Any informatics problem may be raised. However, the service is
not designed to help users with problems which are their sole
responsibility. For example, debugging of the logic of programs
and requests for information which can easily be retrieved from
available documentation.
If necessary, other competent personnel from the informatics
division may be contacted by the consultant but not directly bX
the users.
The users should only contact the person who is the consultant
for that specific day and only during the specified hours.
Outside the specified hours general information may be
requested from rtrs. A. Cambon(see note 2) in the Computing
Support Library.

NOTE 2. Mrs. Cambon is at present replaced by Mrs. C La Cognata.

- 30 -

HOW TO BECOHE A REGULAR READER OF THE NEWSLETTER.

Persons interested in receiving regularly the "Computing Centre

Newsletter" are requested to fill in the following form and

send it to :-

Ms. A. Cambon

Support To Computing

Building 36

Tel. 730.

NAME

ADDRESS

TELEPHONE

	Contents
	Editorial note
	A gradual move to FORTRAN 77
	Statistics of computing installation, June
	Utilisation by objectives and appropriation, June
	Statistics of batch processing, June
	List of personnel

