

CONTENTS

Editor's Note

A Look at Fortran 77

Statistic of computing installation, September

Utilization by objectives and accounts, September

2

3

14

15

Note of the Editor
The present Newsletter is
published monthly except for August
and December.

The Newsletter includes:

• Developments, changes, uses of
installations

• Announce;nents, news and abstracts
on initiatives and accomplishments.

The Editor thanks in advance those who
want to contribulll to the Newsletter
by sending articles in English or French
to one of the following persons of the
Editorial Board.

Editorial Board I Comite de Redaction

H. de Wolde, D.G. lspra
C. Pigni, C.C. lspra
J. Pire, C.C. lspra

Consultant: S.R. Gabbai, D.G. lspra

Computing Centre References

Manager
Adjo&ned

Computer Room
Adjoined

Peripherals
System Group

Adjoined
Informatics Support

o General Information
o Program Information Service

Adjoined
o Graphics and Support to Users

Adjoined
Application Packages

Nllte de Ia Redaction

L.e present Bulletin est publili mensuelle­
ment except!! durant les mois d'aout et
d6cembre.

L.e Bulletin traite des:

• Oliveloppements, changements et
emploi des des installations

• Avis, nouvelles et rnu~ concernant
les initiatives et les rulisations.

La Redaction remercie d'avance ceux
qui veulent bien contribuer au Bulletin
en envovant des articles en anglai• ou
fran~is A l'un des membres du Comi11i
de Redaction.

Room

J. Pire 1816
G. Gaggero 1874
P. Tomba 1857
A. Binda 1857
G. Nocera 1825
D. Koenig 1839
P.A.Moinil 1841
G. Gaggero 1874
G. Hudry 1873
G. Gaggero 1874
S. Leo Menardi 1884

Tel.

732
787
797
797
767
742
704
787
787
787
721

H.l. de Wolde 1883 1259
A. Pollicini 1886 701
A. lnzaghi 1887 755

Editor : Jean Pire
Layout Paul De Hoe
Graphical and Printing Workshop, JRC lspra

2

A LOOK AT FORTRAN 77 *

A.A. Pollicini

Introduction

The progress in technology is continually providing us with new tools. One
such tool is the electronic computing machine. The main characteristic of
such a machine is the ability to perform at very high speed some basic ope­
rations on electric signals that represent information.

Electronic data processing is based on the binary logic, therefore the atom
of information is the binary digit commonly known by the contracted term
bit. Once more human intelligence proved its multiform imagination, in
building with this unique type of brick a number of different architectures
that range, for instance, from 8 bits to 60 bits addressable units and using
3, 4, 6, 7 or 8 bits to represent respectively 8, 16, 64, 128 or 256 external
symbols.

The way in which computing machines are actually used is to submit to
them a coded description of an algorithm that is expected to solve a speci­
fic problem. Because there is a great distance between our natural languages
and machine codes, we currently use an intermediate means, called pro­
gramming language to provide such descriptions.

In practice a computer manufacturer provides users with a processor consti­
tuted by the definition of the language plus the compiler that translates the
language on and for his machine. It is evident that each manufacturer ex­
ploits all features of his own machine architecture in the most effective way
aiming at the enhancement of the performances of his machine. This is the
reason for all software incompatibility and of the difficulties in moving
pieces of software.

The direct approach to software portability should be to design a language
for a virtual machine making abstraction from the architecture and then to
provide a different interpreter for its code on each computer. This is indeed
done in some problem oriented systems. But the widely used general pur­
pose languages existed before the need for portable software, therefore an
a posteriori remedy was necessary: a standard definition of the language.

* Reprint of the lecture: Programming Language Standards given during the ISPRA·
COURSE on PROGRAM LIBRARY AND INFORMATION SERVICE TECHNIQUES.
17-20.10.1978

3

The languages themselves may provide features to support some abstrac­
tions_ A feature very helpful towards portability is abstract data type, then
the standardization of languages with strong typing does not involve heavy
constraints and may be promoted by the author, an implementor or a
user's group.

On the contrary, for languages designed during the 60's and supported by
many manufacturers in their own fashion, the task of standardization had
to be carried out by official bodies at national and international level.

A programming language standard is a text that defines a set of accepted
features and gives a syntactic description for them, as far as possible in a
clear and unequivocal way.

Once approved, such a text should become a constraint both for program
developers and computer manufacturers, in the sense that a program is said
to be standard conforming if all language features it uses are included in
the standard, while a processor is said to be standard conforming if it in­
cludes all the features of the standard as a subset.

This attitude often results in a trap for the naive user of a standard con­
forming processor.

The scope of the present analysis will be restricted to the FORTRAN lan­
guage, because a great effort was focused on its standardization, mainly by
the works of the American National Standards Institute.

ANSI FORTRAN STANDARDS: the path from 1966 to 1978

The American Standards Association (successively renamed United States
of America Standards Institute mid 1966 and American National Stan­
dards Institute in 1969) approved in March 1966 two FORTRAN IV stan­
dards. ANS FORTRAN [1] and ANS BASIC FORTRAN [2] as a subset of
the full language.

Two clarifications were issued in 1969 [3] and 1971 [4]. Outside U.S.A. an
ECMA Standard on FORTRAN [5] was issued in 1965 that ranges between
the two ANS standards.

In 1972 an ISO recommendation for FORTRAN [6] presented three levels
of the language that followed, with few secondary changes, the previous
standards giving them an international character.

It is admitted that an ANS standard looses validity after a five year period
unless a revision procedure has started before the period is expired.

The revision took a long period, during which several working documents
were published.

4

The X3J3 Committee issued a draft proposed ANS FORTRAN [7] in 1976
for public review and comment. After examination of the public comments
received, the Committee edited in 1977 [8) a new text defining the full
language and a subset to replace respectively ANS FORTRAN and ANS
Basic FORTRAN. The new language has been given the informal designa­
tion FORTRAN 77.

During the ballot period, few final amendments were adopted and reported
in a further working document [9]. ·

Finally, the Board of Standards Review approved the new standard on
April 3, 1978 and the official edition was announced [10].

An overview of the differences

Since only major differences wil! be dealt with, a functional grouping of ar­
guments is adopted rather than the structural classification of the standard.

Most of the arguments are innovations introduced by the new standard.

There are two kinds of innovations:
1) features that are already present in some existing processors as exten-

sions;
2) features that are a novelty for the language at all.

No distinction is made in the descriptions that follow, concerning the kind
to which each feature belongs, but some concluding remarks will be made,
which issue from this fact. On the contrary, the restrictions are very limi­
ted if we consider the many arguments the actual standard covers.

Indeed, the X3J3 Committee was specially sensible to the need to preserve
compatibility with the previous standard (but this does not mean with the
extensions of the existing compilers). Since each restriction is going to
cause existing applications to come into conflict with compilers that will
conform to the new standard, the fact is explicitly considered in one of the
appendices that integrate the text of the standard.

Indeed, Appendix A lists those changes that are known to cause conflict
and states that they were retained " ... only ... to correct an error in the pre­
vious standard or to add to the power of the FORTRAN language in a sig­
nificant manner."

I Elements of the language

a) The character set
- There are two new special characters: apostrophe(') and colon(:)
- A partial definition of the collating sequence is int'roduced as follows:

5

- the blank character is less than any digit and letter.
- letters are in alphabetical order and A is less than Z.
- digits are in increasing order and 0 is less than 9.
- digits and letters must not be intermixed, but the precedence of

the two classes of characters is free.
- the position of special characters, other than blank, is left free.

b) Lines
- There are three types of comment lines:

- lines with the character C in column 1 (as in 1966 text).
- lines with the character* in column 1 (new).
- lines with blank characters in columns 1 to 72 (conflict with 1966

text. Formally, such a blank line resulted the initial line of a state­
ment).

- Continuation· lines must contain blank characters in columns 1 to 5
and any character other than blank or zero in column 6 (conflict
with 1966 text. Columns 1 to 5 of continuation lines could contain
any character with the only limitation that column 1 must not con­
tain the letter C that meant comment line).

Remark: What was previously defined as END line is considered as END
statement by the new text. This implies that some additional functions
are tied to the keyword END (see paragraph VIII- Program units), but
does not represent a conflict.

II Data types and specification statements

a) Type CHARACTER
This is the most significant improvement of the typing features of the
language. This innovation also involves changes in other aspects of the
language. Such related changes will be reported in the following para­
graphs.
- a character constant is constituted as a (non empty) string of any cha­

racter representable by the processor and must be enclosed in
apostrophes.
The blank character is significant. Any significant apostrophe within
the string must be represented as two consecutive apostrophes.

- the Hollerith data type expressed as

nHc 1 c2 ••• en

is no longer valid (conflict with 1966 text).
The committee, being conscious that Hollerith constants could be re­
tained by some manufacturers as an extension, gives in Appendix C

6

some recommendations for the uniformity of such an extension.
- The type CHARACTER allows the representation of strings of cha­

racters of fixed declared length.
The following are examples of type CHARACTER statements:

CHARACTER* 3 MONTH (12)
MONTH is an array of 12 elements each consisting of three cha­
racters.

CHARACTER* 6 MON,TUE*7,WED*9,THU*8,FRI,SAT*8,SUN
the listed variables are specified for string of different lengths. The
specific length declarators, where present, override the general length
declarator, thus:
the strings MON,F R I,SUN are 6 characters long.
the string TUE is 7 characters long.
the strings TH U and SAT are 8 characters long.
the string WED is 9 characters long.

CHARACTER LETTER (26)
LETTER is an array of elements of 1 character, indeed in absence of
any length declaration the default length is one.

CHARACTER TITLE(*)
TITLE as appears in the statement may be used as dummy argument
in a subprogram. Then the length of the associated actual argument
will apply.

- The allocation of strings requires one character storage unit for each
character in the string.

This specification allows compilers the freedom for architecture­
oriented allocation and effective core management. But, all other
data types are allocated in numeric storage units that is storage words.
This fact entails a physical separation in core between character
strings and data of different types. As a consequence, the EOU I VA­
LENCE and COMMON statements may be used for character enti­
ties only with homogeneous lists of variable names.

- The operations on strings are:
- concatenation allowed by the operator II (two consecutive slashes)

used in dyadic expressions of infixed notation.
- substring reference allowed by the use of a variable name or array

element name of type character followed by two integer expres­
sions enclosed in parentheses and separated by a colon.
The values of the two expressions give the position in the string of
respectively the first and the last characters of the substring.

7

- inquiry for the length of a given string allowed by the intrinsic func­
tion LEN (S).

- inquiry for the occurrence of a given substring within a given string
allowed by the intrinsic function INDEX (S, SUBS).

- inquiry for the position of a given character in the collating sequence
allowed by the intrinsic function I CHAR (C).

- inquiry for the character corresponding to a given position within the
collating sequence allowed by the intrinsic function CHAR (I).

Remark: String manipulation will no longer constitute a dramatic portabi­
lity dilemma for the Fortran programmer. In effect, the representation of
characters according to the previous standard and in such a way that pro­
grams may be transferred on different computers, implied the use of one
storage word per character that was a considerable waste of core.
On the other hand, the use of manufacturer provided features as well as
programming tricks to get a more effective installation dependent code,
implied high conversion cost to run on different installations.
It must be noted that software belonging to this second category will incur
the same troubles also with the new standard.

b) IMPLICIT statement
- the implicit integer or real type attribution tied to the formation rule

of symbolic names, can be confirmed or overridden by an IMPLICIT
statement that has the form:

IMPLICIT type (range 1 [. range2] •••)

where type may be one of the allowed data types. (In the case of cha­
racter entities type may include the length declarator and assumes the
form CHARACTER [*len]). Each range may be either a single letter
or the extremes of a series of contiguous letters in the form C1 -Cn.
All ranges must appear in alphabetic order.

- the specifications of an IMPLICIT statement apply within the scope
of a program unit, but more than one such statement may appear in
the same unit provided that no intersection occurs among different
ranges.

- this statement must precede all other specification statements, ex­
cept PARAMETER statements, within a program unit.

- any type statement may override the specification of an IMPLICIT
statement for any particular symbolic name.

- IMPLICIT statements do not affect any intrinsic function name.

8

c) PARAMETER statement
- the PARAMETER statement gives a constant a symbolic name and

has the form:

PARAMETER (namel=expresl{.name2=expres2] ..•)

- each name must match in type with the associated expression and
must be unique within the program unit.

- names that are not of implied type integer or real must be previous­
ly defined in type.

- the primaries of the expressions must be constants or parameters
previously defined.

- such symbolic names can be used in any subsequent statement of
the program unit as primary in an expression or OAT A statement,
but cannot be used in format specifications nor as part of other con­
stants.

d) INTRINSIC statement
- this statement has the form:

INTRINSIC funl [.fun2] ..•

Each fun is the name of an intrinsic function. If an intrinsic function
name is used as actual argument in a program unit, it must appear in
an INTRINSIC statement in that program unit.

- the names of intrinsic functions for type conversion and for choosing
the largest or smallest value, must not be used as actual argument.

e) EXTERNAL statement
- the appearence of an intrinsic function name in an EXTERNAL state­

ment inhibits the reference to the intrinsic function in the program
unit and a homonymous external procedure must be provided. This
is partially in conflict with 1966 text in the sense that all names re­
ferred to as basic external functions by the previous standard are now
included in the table of intrinsic functions.

- a function name must not appear in both INTRINSIC and
EXTERNAL statement.

f) Generic names for intrinsic functions
- if the operations performed on a set of arguments by an intrinsic

function are significant even if the set may belong to different data
types, a generic name may be used to invoke such a function.
The suitable function will be selected according to the type of the
actual arguments.

- if intrinsic function names are used as actual argument, they must
be specific names.

9

- the appearance of a generic name in type statement does not remove
the generic property.

Ill DATA initialization

a) DATA statement
- in addition to variable and array element names (already allowed by

the previous standard), also array names, substring names and implied­
DO lists may receive initial values in a OAT A statement.
in the constant I ist either constants either symbolic names for con­
stant (see PARAMETER statement) may be used both for the values
and the repetition counters.
integer constant expressions are allowed both for subscript and sub­
string expressions.
in the case of character and logical entities, the name and the corres­
ponding constant must be of the same type. For the other data types,
conversion is allowed as for arithmetic expressions (see paragraph V).

IV Arrays

a) Dimensions of an array
- an array may have up to 7 dimensions.
- for each dimension, a lower bound and an upper bound are allowed.

In this case the array declarator assumes the form:

name (dl 1 : du 1 [.dl2: du2] ...)

the lower bound may be omitted and in this case the value 1 is
assumed.

- if the array name is not a dummy argument, the dimension bounds
are integer constant expressions.

- if the array name is a dummy argument, the dimension bounds may
be integer expressions and, in addition, the upper bound of the last
dimension may be an asterisk to mean an assumed-size array.

- only one restriction is made on the values of the dimension bounds,
that is the upper bound must not be less than the lower bound. Ne­
gative and null values are accepted.

b) Reference to an array element
- to reference an array element, the array name must be followed by

a subscript of the form:

- each entity separated by comma is called a subscript expression and

10

must be an integer expression. Array element references and function
references are allowed within subscript expressions.

- the number of subscript expressions must always be equal to the
number of dimensions of the corresponding array declarator.

This is in conflict with 1966 text that allowed:

DIMENSION A (10,10).B(50)

EQUIVALENCE (A(51),B(l))

- the value of any subscript expression must not be greater than the
upper bound for corresponding dimension. This is a welcome con­
flict with 1966 text that allowed any subscript for which the suc­
cessor function returned a value that did not exceed the array size.

For instance:

DIMENSION A(2,3,5)

10 B=A(4,4,1)

20 C=A(1,4,5)

size of A= 30

the 1Oth element

the 31th element

in which, after evaluation of the successor function

f=Sl+Dl (S2-1)+D1·D2(S3-1)

statement 10 resulted lega!, while statement 20 was illegal.

V EXPRESSIONS

a) generalization of expression use
- it is in the spirit of the new standard to allow expressions where for­

merly variables were required.

b) mixed mode expressions
- in arithmetic expressions with more than one operand, if there are

operands of different type, conversions from type to type are
allowed following the criterion that the absorbing power of type is
in the order:

COMPLEX, DOUBLE PRECISION, REAL, INTEGER.

However, combinations of COMPLEX and DOUBLE PRECISION
are not allowed.

11

The following table shows the situation for the arithmetic operators
+ - * /, while a more complicated rule applies to the exponentia­
tion operator.

xl
x, 11 Rl 02 ~

•• I= 11 op 11 R=REALO,lopRl QzOBLEIItlop01 c-~MPLX!REALIItl)
P<:t

Rt R=R 1 opREALII1l R=RtOPRl O•OBLE!R,lop01 c-CMPLX!R 1)opC1

o, D-01 opOBLEII2l 0=01 op08LE!R1 l O•O,opOl Prohibited

c, ~· op) cz CMPLX!REAI..!I1l
c=C,opCMPLX!Rl) Prohobitod C• C1 op~

TyfJB of the result of lx, op x1J applicable wh11n op is + : - ,· • ; I

c) logical expressions
- two logical operators were added:

.EOV. that gives value TRUE for matching values of the ope­
rands and FALSE otherwise

.NEOV. that gives value TRUE for discordant values of the ope­
rands and FALSE otherwise

- the precedence order of the logical operators is:
.NOT.,.ANO.,.OR.,(.EOV. and .NEOV.)

VI Control statements

a) l31ock-l F and related statements
This is the only issue of the modern concepts on control structuring
that was retained by the committee.
- the syntax for this control structure is:

IF (e) THEN
[statements]

[

ELSE IF (e) THEN]
[statements]

[
ELSE]
[statements]

END IF

- any number of ELSE IF statements may appear after the block-1 F
statement and before the ELSE statement (if present) or the END IF
statement.

12

- all blocks of statements may be empty.
- the transfer of control to the statements in a block-1 F is only possible

by entering the IF statement.

b) DQ-Ioop
- the Do-variable may be of type integer, real or double precision as

\Nell as the initial, terminal and incrementation parameters are
allowed to be arithmetic expreSsions oftype integer, real or double
precision. The expressions are evaluated and converted according to
the type of the DO-variable at entering the DO statement, therefore
assignments to variables in these expressions, during loop execution
does not affect the control.

- the incrementation parameter may have a positive or a negative but
not zero value. Initial and terminal parameters may have any value.
The iteration count is established before iteration, and if zero the
loop is not executed as in the classic WHILE FALSE situation.

- the Do-variable remains defined afexiting from tne loop,-wnenever
it happens by jumping outside or at completion of the iterations.
(Conflict with 1966 text).

- the extended range of a DQ-Ioop is no longer admitted and this con­
flicts with 1966 text.
At this subject it is vvorthwhile noting that those preprocessors im­
plementing internal procedures will incur troubles as shown in the
following example. (Fig. 1).

c) Computed GO TO
- the transfer of control depends on the value of an integer expression

instead of an integer variable.
- if the control expression is out of range, the execution goes .in se­

quence.

VII Input/Output statements

In addition to the already existing file positioning statements BACK­
SPACE, ENDFILE, REWIND, three new auxiliary input/output statements,
OPEN, CLOSE and INQUIRE were added. Their purpose is to allow for
new flexibility in program-periphery communications.
External files as currently identified by unit in FORTRAN IV, are now
said to be preconnected and can still be accessed as before, without any
need of the new statements (to guarantee compatibility). Otherwise con­
nection between an external file and a unit can be controlled by opening
and closing it explicitly as well as its actual properties may be inquired at
any moment.

13

ACCOUNTED WORK UNITS TABLE FOR All JOBS OF THE GENERAL SERVICES· Monthly and Cumulative Statistics

January February March April May June July August September October November December -------
Year 1977 44 74 78 32 26 36 27 25 2? 31 40 34

accumulation 44 118 196 228 254 290 317 342 369 400 440 474

Year 1978 51 43 55 50 49 74 36 31 33
accumulation 51 94 149 199 248 322 359 391 424

ACCOUNTED WORK UNITS TABLE FOR THE JOBS OF All THE OBJECTIVES AND GENERAL SERVICES· Monthly and Cumulative Statistics
-----~

January February March April May June July August September October Nov<:mber December

Year 1977 135 218 312 193 180 269 244 196 277 275 284 179
accumulation 135 353 665 858 1038 1307 1551 1747 2024 2300 :<584 2763

··----·-
Year 1978 211 213 283 232 202 317 230 270 240
accumulation 211 424 707 939 1141 1,458 1688 1958 2.198

ACCOUNTED WORK UNITS TABLE FOR THE JOBS OF THE EXTERNAl USERS· Monthly and Cumulative Statistics

January February March April May June July August September October November December

Year 1977 13 14 18 16 13 22 19 18 27 25 21 20
accumulation 13 27 45 61 74 96 115 133 160 185 206 226

Year 1978 12 10 11 46 23 11 9 5 12
accu mu lat1on 12. 22 33 79 102 113 123 128 140

EQUIVALENT TIME TABLE FOR All JOBS OF ALL USERS· Monthly and Cumulative Statistics

January February March April May June J\JIY August September October November December

Year 1977 158 241 314 242 202 294 266 217 299 299 318 235
accun1ulatton 158 399 713 955 1157 1451 1717 1934 2233 2532 2850 3085

Year 1978 276 261 35€ 298 262 335 245 297 267
accumulation 276 537 893 1191 1453 1.788 2.033 2.330 2.597

Utilisation of computer centre by the objectives and appropriation accounts
for the month of September 1978

IBM370/165
equivalent time in hours

1.20.2 General Services- Administration- lspra 28.78

1.20.3 General Services- Technical - lspra 4.67

1.30.4 L.M.A. 0.15

1.90.0 ESSOR 24.22

1.92.0 Support to the Commission 10.04

2.10.1 Reactor Safety 116.12

2.10.2 Plutonium Fuel and Actinide Research 11.53

2.10.3 Nuclear Materials 0.95

2.20.1 Solar Energy

2.20.2 Hydrogen

2.20.4 Design Studies on Thermonuclear Fusion 3.14

2.30.0 Environment and Resources 14.97

2.40.0 METRE 1.27

2.50.1 Informatics 29.87

2.50.2 Training 0.06

2.50.3 Safeguards 2.57

309 Programming Support

TOTAL 239.79

1.94.0 Services to External Users 12.38

TOTAL 252.17

15

SUBROUTINE MAPLIN(LEVEL,NJLINE,IER)
DI,ENSICN LEVEL(N),LINE\N .
INTEGER SYMBOL/4H* /,LLNLEN/120/
IF N.LE.LINLEN
THEN

I ER_~Q_.
R =1, N

tF LEVEL(l).GT.O
THEN

PER FORf-1 MARK
CIF

~~F~O~R~-----------~
LSE

I EP =1
CIF
RETURN
PROC MARK

LINE(U=SYMBOL
CPROC
END

THE SHELTRAN
SOURCE

AND

FIG.1

i THE
FORTRAN
GENERATED

SUBROUTINE MAPLtN(LEVEL,N,LINE,lERJ
. DIMENSION LEVEl(N),LlNE(NI
I INTEGER SYMBOL/4H* /,LINLEN/120/

IF • NOT. (

17001
12001
1.3000
13001
12000

- N.LE.LINLEN
-) J GOTO 12000

IER=O
DO 13000

I= 1, N
IF (.NOT. (

LE VEU I) .GT .0
-)) GO TO 12 0 0 1

INTEGER MARK
ASSIGN 17001 TO MARK
GOTO 17000
CONTINUE
CONT LNUE
CONTINUE

RANGE
OF THE
DO LOOP

EXTENDED

'RANGEJ

HA~_IL_' (170011 I
ENO

a) OPEN statement
- it has the form:

OPEN (olist)

in which olist is a list of specifiers from the following sequence:

[UN IT=] u to specify one external unit. It is mandatory.
lOST AT=ios ios is an integer variable that returns a value at com­

pletion of the execution of the statement. (Zero
means successful operation).

ERR=Iabel to monitor error conditions.
Fl LE=fname name of the file to be connected to the external

unit.
STATUS=sta to specify whether the file is NEW, OLD or

SCRATCH.
ACCESS=acc
FORM=fm
RECL=rl

ace may be SEQUENTIAL or DIRECT.
fm may be FORMATTED or UNFORMATTED.
rl is an integer expression whose value specifies the
size of all records; rl applies only to direct access
and must be positive.

BLANK=blnk blnk may be NULL to ignore blanks in numeric
fields or ZERO to accept them as zeros.

b) CLOSE statement
- it has the form:

CLOSE (cllist)

in which cllist is a list of specifiers from the following sequence:

[UNIT=) u
IOSTAT=ios
ERR=Iabel
STATUS=sta

c) INQUIRE statement

to recall the external unit. It is mandatory.
as in OPEN
as in OPEN
to specify whether the final disposition has to be
KEEP or DELETE.

- this statement may be used in two ways: either to inquire about pro­
perties of a named file, or of the connection to an external unit.

- the form "by file" is:

INQUIRE (iflist)

where iflist must contain the specifier F I LE=fname and may include
other specifiers from an extended list.

17

- the form "by unit" is:

INQUIRE (iulist)

where iulist must contain the UNIT specifier and may include some
specifiers of the list.

- at completion of the execution the variables coupled to those speci­
fiers having an actual meaning, become defined.

d) Data transfer statements
- the transfer of data is performed by the statements:

READ (cilist) [iolist]

WRITE (cilist) [iolist]

The control information list cilist must contain one or more of the
following specifiers:

[UNIT=] u

[FMT=] f

REC=rn

IOSTAT=ios

ERR=Iabel
END=Iabel

to refer to a unit. It is mandatory and u may be:
- an integer expression to identify an external

unit.
- a symbolic name of a character entity that iden-

tifies an internal file.
to provide formatted control. The f identifier may
be:
- the label of a FORMAT statement or an integer

variable to which the label value has been assigned.
- a character array name that contains the format

specifications or a character expression that gives
them directly.

- an asterisk to mean list-directed input/output.
to point to the requested record in direct access
method. rn is an integer expression that must have
a positive value.
to return in ios an integer value depending on whe­
ther completion was successful (zero) or not.
to monitor 1/0 errors.
to monitor end file condition.

The input/output list iolist is a list of items to or from which data
are to be transferred. Within output lists any type of constant or ex­
pression are permitted.

- the short forms:

READ f [.iolist]

PRINT f [.iolist] are allowed.

18

- the possibility of specifying an internal file as unit allows for data
transfer and conversion from storage to storage without physical
transmission of information. This facility is limited to sequential
access and formatted control. In addition, auxiliary input/output
statements must not specify internal files.

- the list-directed input/output supplies formatted control without
any need of FORMAT specifications. Data are converted in accor­
dance to the type of the items in the input/output list. The values
are delimited by separators (comma or slash or blank). Blanks cannot
be used as zero and embedded blanks are significant only within cha­
racter constants. Complex are enclosed in parentheses.

e) FORMAT specifications
- apostrophes editing may be used in alternative to Hollerith editing.
- some format descriptors were introduced for tabulation editing

with left and right alignement (P, PL, PR).
- there are new format descriptors (SP, SS, S) for sign control.
- embedded and trailing blanks in numeric fields are removed or con-

verted to zeros according to the specification BN or BZ.
- a colon edit descriptor may terminate format control if the items of

input/output list are exhausted.
- the exponent field in E and D descriptors must be preceded by the

sign (conflict with 1966 text that allowed blank to be interpreted as
a plus sign).

VIII Program units

a) Program segmentation
- a name may be assigned to the main program, using the optional

statement

PROGRAM name

that must be the first one of the main.
- also BLOCK OAT A subprogram may have a symbolic name.
- every program unit must terminate with an END statement.

If executed in a subprogram it implies a RETURN and a STOP in
the main program.

b) Multiple entries
- one or more ENTRY statements may appear in a FUNCTION or

SUBROUTINE subprogram.
- such entries are referenced by name or by a CALL statement de­

pending on whether present in a FUNCTION or SUBROUTINE sub­
program.

19

c) Alternate returns
This is the most regrettable extension because it allows for more intri­
cate control paths.
- the RETURN statement may contain the selection of a variable

point within the calling unit, to which the control is to be trans­
ferred.

RETURN [e)

where e is an integer expression.
- in this case, one or more dummy arguments in the SUBROUTINE

or ENTRY statement are asterisks, to which are associated actual
arguments of the form *label.

d) Definition status of entities
- the execution of a RETURN statement or END statement within a

subprogram causes the entities referenced by the subprogram to be­
come undefined except entities:
- in blank common
- in a named common block which also appears either in the main

program or in another program unit that is referencing the sub­
program directly or indirectly.

- initially defined and that never changed their status.
- appearing in a SAVE statement.

- the SAVE statement has the form:

SAVE [a[,a] ...)

each a may be a common block name enclosed in slashes, an array
name or a variable name.
It is to be noted that entities in a named common block and saved
by a program unit, might become undefined in another program unit
referencing the same common block and lacking in the corresponding
SAVE statement.

COMPATIBILITY AND INCOMPATIBILITY WITH EXISTING COM­
PILERS

The 1966 standards reflected the intent of recognizing a subset belonging
to several implementations rather than of giving uniformity to divergent
extensions implemented by different processors.

On the contrary, during the revision period, X3J3 acted almost as a FORT­
RAN development committee and featured the definition of a truly new

20

FORTRAN 77 INNOVATIONS vs. SOME EXISTING IMPLEMENTATIONS

IBM
CDC Cll HONEYWELL 360.370 SIEMENS UNIVAC

FEATURE 6000 V3 FORTRAN
600/6000 FORTRAN 4004 1100

7600 V1 IV FORTRAN IV FORTRAN FORTRAN
EXT.FORT. ETENDU (GandHI IV v

Type YES CHARACTE'l

IMPLICIT YES YES YES YES YES

PARAMETER - YES YES

INTRINSIC COMPLETELY NEW FEATURE

Generic name YES YES YES

Mixed modo YES YES YES YES YES YES

Eav ••• NEav. COMPLETELY NEW FEATURE

IF.THEN-
COMPLETELY NEW FEATURE ELSE

Como. GOTO YES YES YES

OPEN, CLOSE COMPLETELY NEW FEATURE INQUIRE

ERR. END not general YES oot general not general ERR only
OPtiOns

lntem. File ENCODE ENCODE ENCODE ENCODE
DECODE DECODE DECODE DECODE

Direct Access READ/WAITE CALL DEFINE DEFINE DEFINE
DISK & DRUM RANSIZ FILE FILE FILE

Short form YES YES YES YES YES READ,PRINT

List-d~r. 1/0 INPUT nFORMAT(vl OUTPUT

New FORMAT partly partly partly partly partly partly descriptors

PROGRAM st. YES YES

ENTRY st. without YES YES YES YES YES parameter

Alternate RETURNS YES YES YES YES YES Returr"s (list}

SAVE COMPLETELY NEW FEATURE

language, considering compatibility only with respect to the 1966 standard.
Indeed, FORTRAN 77 includes facilities already provided by some pro­
cessors, but in many cases the syntactic form is quite different, therefore
most of the existing FORTRAN programs will fall into incompatibility with
the new standard, even if the techniques they apply are now retained by the
new standard.

21

Less compatibility problems may instead be expected from those features
that are real innovations introduced by the standard, since they will be ob­
viously implemented in a standard conforming way by forthcoming pro­
cessors.

To warn users against some of the incompatibilities that will arise, the next
table gives a map of major innovations versus six widely used processors.
This table is based on a comparative study carried out at lspra on there­
ferred FORTRAN compilers (11].

ANNOUNCEMENTS OF COMPILERS IMPLEMENTING FORTRAN 77

Information about compilers for FORTRAN 77 are beginning to circulate.
- A full language FORTRAN 77 ANSI conforming implemented by

Tandem computers.
- A FORTRAN 77 implemented on Honeywell 6000 series by Lahey Com­

puter Systems.
- A portable and complete FORTRAN 77 on UNIX systems implemented

by Bell Laboratories.
- An extension of subset FORTRAN 77, auspiciously named "FORTRAN

80" developed by INTEL.
were reported last July by FOR-WORD [12] and next publication of fur­
ther announcements is foreseen.

REFERENCES

[1] American National Standards Institute
ANS FORTRAN (ANS X3.9-1966)

(2] American National Standards Institute
ANS Basic FORTRAN (ANS X3.10-1966)

(3] Clarification of FORTRAN Standards- Initial Progress
Comm ACM 12,5 (May 1969) pp. 289-294

[4] Clarification of FORTRAN Standards- Second Report
Comm ACM 14,10 (Oct. 1971) pp. 628-642

l5) European Computer Manufacturers Association
ECMA Standard on FORTRAN (ECMA-9) 1965

[6] International Organization for Standardization Programming
Language FORTRAN ISO recommendation No. 1539 (1972)

22

[7] Draft proposed ANS FORTRAN (X3J3/76)
Sigplan Notices 11,3 (Mar. 1976) special issue

[8] Draft proposed ANS FORTRAN (X3J3/90)
Working document (20.6.1977)

[9] Amendments to ANS FORTRAN (X3J3/97)
Working document (6.10.1977)

[10] American National Standards Institute
ANS Programming Language FORTRAN X3.9-1978.
(Revision and Consolidation of X3.9-1966 and X3.1 0-1966)

[11] Prinzivalli G., Studio di problemi inerenti alia portabilita di pro­
grammi in linguaggio FORTRAN
Tesi di Laurea in Matematica (1976). Universita di Torino.

[12] Meissner L.P. (editor). FOR-WORD. FORTRAN Newsletter
Vol. 4, No.2 (July 1978) p.7

The Newsletter is available at:

Mrs. A_ Cambon
Support to Computing
Bldg. 36- TeL 730

23

Des exemplaires du Bulletin
sont disponibles chez:

Mme A. Cambon
Support to Computing
Bit. 36 - Tel. 730

Les personnes interessees et desireuses de recevoir n!guliere­
ment "Computing Centre Newsletter" sont priees de remplir
le bulletin suivant et de l'envoyer a

Mme A. Cambon
Support to Computing
Bit. 36, Tel. 730

Nom •.•..••••••.•••••••••••••••.•••••.••••••• • • • • • • • • •

Adresse ••••••••••••••.•••••.••••••••.•••••••••••••••••

Tel. • ••••••••••••••

The persons interested in receiving regularly the "Computing
Centre Newsletter" are requested to fill out the following form
and to sa1d it to:

Mrs. A. Cambon
Support to Computing
Building 36, Tel. 730

Nom .••

Address •••

Tel ...•••.••••••••

	Contents
	Note of the editor
	A look at Fortran 77
	Statistic of computing installation, September
	Utilization by the objectives and accounts, September

