

~on tents

Note of the Editor 2

The Operating System OS/MVT: An Overview 3

Statistics on computer utilization: June 12

Utilization by objectives and acmunts 13

Table of equivalent time, summary per month

and cumulative

Note to the Users

Inquiry

15

20

21

Note of the Editor

The present Newsletter is
published monthly except for August
and December.

The Newsletter includes:

• Developments, changes, uses of
Installations

• Announcements, news and abstracts
on initiatives and accomplishments.

The Editor thanks in advance those who
want to contribute to the Newsletter
by sending articles in English or French
to one of the following persons of the
Editorial Board.

· Editorial Board I Comite de Redaction

H. de Walde, D.G. lspra
C. Pignl, C.C. lspra
J. Pire, C.C. lspra

Consultant: S.R. Gabbai, D.G. lspra

Computing Centre References

Manager
Adjoined

Computer Room
Adjoined

Peripherals
System Group

Adjoined
Informatics Support

o General Information
o Program Information Service

Adjoined
o Graphics and Support to Users

Adjoined
Application Packages
Programming Languages

Note de Ia Redaction

L..e present Bulletin est publie mensuelle­
rnent excepte durant les mois d'aout et
decembre.

L..e Bulletin traite des:

• Developpernents, changements et
emploi des des installations

• Avis, nouvelles et resumes concernant
les initiatives et les realisations.

La Redaction remercie d'avance ceux
qui veulent bien contribuer au Bulletin
en envoyant des articles en anglals ou
fran~is lll'un des membres du Comite
de Redaction.

Room

J. Pire 1816
G. Gaggero 1874
P. Tomba 1857
A. Binda 1857
G. Nocera 1825
D. Koenig 1839
P.A. Moinil 1841
G. Gaggero 1874
G. Hudry 1873
G. Gaggero 1874
S. Leo Menardi 1884
H.l. de Wolde 1890
A. Pollicini 1882
A. lnzaghi 1887
C. van den Muyzenberg 1848

Tel.

732
787
797
797
767
742
704
787
787
787
721
753
743
755
781

Editor Sylvia R. Gabbai
Layout Paul De Hoe
Graphical and Printing Workshop, JRC lspra

The Operating System OS/MVT : An Overview

D. Konig, P. Moinil

Introduction

The following article presents excerpts of a number of manuals in the
references ~hich the interested reader may consult for further details.

The actual operating system running on the IBM 370/165-Model 1 of the
computing centre is OS/MVT release 21.8 in conjunction with the HASP-II
system, release 3.1 (see 1). The release 21.8 of OS is the most recent
release and there will be no more future releases of OS/MVT from IBM.
The actual operating system was introduced at the end of the last year to
replace the operating system OS/MFT for mainly two re~sons:

1. to be able to offer to the users of the computing centre more and
better services (for instance an advanced time-sharing service)

2. to facilitate the operating of the enlarged configuration (i.e. three me·
gabytes of core storage).

Since the more recently developed IBM operating systems utilizing virtual
storage techniques for name space management cannot run on an IBM
370/165 Model 1 CPU OS/MVT 21.8 will be the final version of the
operating system for the actual machine.

The operating system consists of a control program and a number of
processing programs. The elements of the control program are

• job management
• task management
• data management
• recovery management

1) HASP - Houston Automatic Spooling Priority system

They will be described in the following section. The elements of the
processing programs are

• languages (such as ALGOL, Assembler, COBOL, FORTRAN,
PL/1, ...)and

• service programs (such as utilities, linkage editor, emulators, etc.).

They will not be described in the sequel. Descriptions can be found in the
appropriate manuals listed and described in ref. 6.

Functions of the OS/MVT Control Program

Job management

The job management programs control the job flow through the systems and
all operator communications. In general, they do the following:

Analysis of the input stream: scanning the input data to indentify control
statements; analysing and interpreting control statements; preparing the
necessary control tables that describe each job to the system.

Allocation of 1/0 devices: ensuring that all necessary 1/0 devices areal­
located; ensuring that direct access storage space is allocated as required;
ensuring that the operator has mounted any required tape and direct
access volume.

Overall scheduling: selecting jobs for execution on a priority basis.

Transcription of input data onto, and user output from, a direct access
device.

Communication between the operator and the system.

· The functioning of the MVT priority scheduling system and the different
parts of the control program involved therein are depicted in Fig. 1.

Task management

The difference between a program and a task is that a program is a se­
quence of instructions whereas a task is the work to be done by the
execution of a program. The task management programs supervise the
execution of all work done in the system. In the multiprogramming en­
vironment they control the allocation and use of CPU, main storage and
programming resources among competing tasks on a job class and priority
basis. They receive a job step (each job step is executed as a task) from the

INPUT JOB
STREAM AND
COMMANDS

OTHER

COMMANDS

COMMANDS

READER/
INTER- r---"'-

PRETER ------

:MESSAGES

Fig. 1 - The MVT Priority Scheduling System

1. Your programs, defined as job steps by the job control language, enter
the system through an input stream from some input device.

2. The reader/interpreter reads in control statements for one or more
jobs and places them on the input work queue. The input on each
queue is arranged by job class, the initiation of a job within a queue is
determined by the priority within the class.

3. The job with the highest priority is selected for execution by the
initiator/terminator.

4. The initiator/terminator turns your job step over to the task manage­
ment programs, which supervise its execution.

5. The master scheduler accepts and takes action on commands.
6. Output is written (by job priority) when the job has terminated and

while other jobs are being processed, if output data sets are being
processed by the system output writer.

job scheduler which initiates a task (see Fig. 1). The functions of the task
management programs are:

• Interruption supervision. The analysis of interruptions to determine
what supervisor processing is required.

• Main storage supervision. The allocating and freeing of main storage,
and recording of what use is being made of any portion of main storage.

• Timer supervision. The setting and maintaining of the interval timer
from information provided in timer macro instructions.

• Contents supervision. The loading of programs into. storage, the
recording of what programs are currently in main storage, and what cha­
racteristics these programs possess.

• Task supervision. The recording of what tasks are currently in the
system, their status, priorities, the programs they require, and the order in
which these tasks have to be performed.

Each system resource is controlled by a different part of the control
program, the so-called resource manager, and the allocation of the re­
sources to competing requests is done by enqueuing the requests and
servicing one at the time. Tasks which cannot proceed further because
their resource request cannot be handled immediatly are placed into a
wait-state and the completion of their request is posted to them. A more
detailed description of the resource allocation and the synchronization
primitives can be found in ref. 1. ·

Data management

The data management programs are primarily responsible for moving in­
formation between main storage and external storage and maintaining it in
external storage. They are capable of locating data, preparing main storage
areas for it, reading it, and writing it. Their majorfunctions are

assign and release space on direct access volumes
maintain the catalog
perform the 1/0 support (open, close, end-of-volume) processing
process 1/0 operations.

Data is stored on external storage in data sets (named collection of data
whose extent (physical boundaries) is known to the system) which reside
on volumes (reel of tape, disk pack, drum). The data in a data set can be
organized sequential, indexed sequential, direct or partitioned. A parti-

tioned data set consists of independent groups of sequentially organized
data sets each identified by a member name. A partitioned data set is often
referred to as a library. More details on data organization and access me­
thods can be found in the references.

Usually the data sets are referred to by their names and in order to find a
data set the system maintains a catalog of data set names and associated
control blocks on a direct access device. This system catalog resides on the
system residence volume and all searches start here. In the general case of a
non-simple data set name there exist a hierarchy of pointers which have to
be followed in the search procedure. An example of the search procedure
which has to be followed to find a data set with the name TREE­
.FR UIT.APPLE is given in Fig. 2 (see next page).

More details on the labelling conventions of direct access volumes, on the
organization of the volume table of content (VTOC) and on the manage­
ment of volumes in the MVT system can be found in ref. 1.

Recovery managemenc

When a machine malfunction occurs, recovery management routines re­
cord critical machine and program data, and (in some cases) attempt to
recover from the error .. Depending on the specific routine and type of
error, recovery takes place at one of four levels:

Functional recovery
resumption of the task at the point where the error occurred. Machine
or recovery management facilities correct storage errors, retry un­

. successful instructions and 1/0 operations.
System recovery

termination of the task affected by the error, permitting system oper­
ation to continue.

System-supported restart
re-IPL (initial program loading) using system restart facilities.

System repair
total system halt for manual repairs, aided by recovery management
records.

More details about the different functions of the recovery management
routines can be found in ref. 3.

Searcl\

Starts

Summary

Find: Data Set TREE • FRUIT • APPLE

Svstem Residence Volume

TREE

'FRUIT

FRUIT (Index)

•

APPLE 326 1----.

Volume 326

VTOC (Index)

(DSCB) TREE • FRUIT • APPLE

* Data Set: TREE. FRUIT. APPLE

Fig. 2 - Catalog search procedure

In Fig. 3 the relations of the four functions of MVT are depicted. It
should, however, be understood that this is a superficial picture and that
simplifications tend to contain errors if the details are considered.

El

Uo

. wof MVT . 3 . A functional overvle F1g. ·

0

::::::::::::> Data flow

--+ Control prog111m flow

• Beqinnlna 00--lnt-----

The Functions of HASP

The HASP-system operates a compatible extension to the MVT operating
system to provide specialized supplementary support in the areas of job
management, data management, and task management. HASP appears as a
transparent "front-end" processor to OS. Via its SPOOLing functions -
they are normally associatedwith OS input readers and output writers (see
Fig. 1) - it acts as an automatic scheduler and operator of OS and per­
forms the peripheral functions associated with batch job processing.

HASP has four major processing stages which account for its four major
external functions:

Input stage: This stage reads jobs simultaneously from an essentially un­
limited number of various types of on-line card readers, tapes and remote
terminals into the system. These jobs are then entered into a priority
queue by job class to await processing by the next stage.

Execution stage: This stage takes jobs on priority bases from the queue
established by the input stage and passes them to OS/MVT for processing.
Input cards are supplied to the executing program as required and print
and punch records are received and written onto HASP intermediate
storage (spooled).

Print stage: The purpose of this stage is to transcribe the printed output
from the spool to real printers. An essentially unlimited number of various
types of printers and remote terminals can be operated simultaneously.

Punch stage. This stage transcribes the punch records from the spool to
real card punches. An essentially unlimited number of various types of
punches and remote terminals can be operated simultaneously.

Since all of the above functions can occur simultaneously and asyn­
chronously, a continuous flow of jobs may pass through the system.

Summarizing, the use of HASP offers the following advantages:

- Improved performance - Any improvement is of course dependent
upon the configuration and job mix and can only be determined by
actual measurement.

- Improved operational procedures - HASP acts as an automatic inter­
face between the operator and OS/MVT, to perform various OS control
functions which have to be done by the operator directly if HASP is
not used. OS-Readers, Writers and Initiators for instance are started and
scheduled automatically by HASP.

I

- Increased system function- The use of HASP provides functions which
are not otherwise available. These include:

dynamic task ordering based on CPU-I/O characteristics

the inclusion of relevant console messages in each job's output;

the capability of any job to introduce another job into the HASP queue
via an internal reader;

many additional operational control functions and various other
functional enhancements (see ref. 2)

- High-performance Remote Job Entry (RJE) - The supporrfor Binary­
synchronous CPU-workstations employs an advanced technique called
MULTI-LEAVING which provides for simultaneous operation of all
devices on a remote workstation.

All these functions are accomplished via transparent operation to both the
operating system and to the user program. This means neither the oper­
ating system nor the user program has to be changed to benefit from the
above mentioned advantages.

References

1) IBM Operating System /360 Concepts and Facilities (excerpts) in: S. Rosen (Ed.)
Programming Systems and Languages, pp. 598-646 McGraW-Hill, 1967

2) The HASP System, February 26, 1977 - Houston Automatic Spooling Priority,
IBM Contributed Program Library

IBM Manuals

3) IBM System/360 Operating System: Concepts and Facilities, GC28-6535-X

4) IBM System/360 Operating System. Introduction. GC28-6534-X

5) IBM System/360 Operating System: MVT Guide. GC28-6720-X

6) IBM System/360 and System/370 Bibliography. GA22-6822-X

The Newsletter is available at:

Mrs. A. Cambon
Support to Computing
Bldg. 36- Tel. 730

Des exemplaires du Bulletin
sont disponibles chez:

Mme A. Cambon
Support to Computing
Bat. 36 - Tel. 730

Statistics of computing installation utilization

Report of computing installation exploitation
for the month of June

Number of working days
Work hours from 8.00 to 24.00for
Duration of scheduled maintenance
Duration of unexpected maintenance
Total maintenance time

YEAR 1977

22 d
16.00 h
17.84 h
14.61 h
32.45 h

Total exploitation time
CPU time in problem mode

319.55 h
143.71 h

Teleprocessing:

CPU time
1/0 number
Equivalent time
Elapsed time

Batch processing:

Number of jobs
Number of cards read
Number of cards punched
Number of lines printed
Number of pages printed

3.93 h
854,000

9.85 h
351 h

10,392
2,895,000

166,000

------ 28,265,000
6,321,000

YEAR 1976

18 d
16.00 h
24.17 h

3.83 h
28.00 h

262.00 h
128.86 h

1.18 h
218,000

2.71 h
133 h

8,056
2,614,000

177,000

23,617,000
524,000

BATCH PROCESSING DISTRIBUTION BY REQUESTED CORE MEMORY SIZE

100 200 300 400 600 800 1000 1400 total

Number of jobs 2443 3833 2048 1114 451 17 5 34 10005

Elapsed time (hrs) 56 174 198 149 150 34 0.7 4 766

CPU time (hrs) 3.7 19 33 24 47 11 0.2 130

Equivalent time (hrs) 17 51 66 64 64 16 0.5 1.6 280

Turn around time (hrs) 0.4 0.7 1.3 2.5 2.2 2.9 1.9 2.1 1.1

PERCENTAGE OF JOBS FINISHED IN LESS THAN

TIME 15' 30' 1h ~ 4h gh 1D 2D aD aD

%year 1976 41 58 73 86 95 98 99 99 99 100

%year 1977 46 64 80 90 97 99 99 99 100

@]

Utilisation of cnmputer center by the objectives and
appropriation accnunts for the month of June

1.20.2 General Services · Ad ministration · lspra

1.20.3 General Services· Technical · lspra

1.90.0 ESSOR

1.92.0 Support to the Commission

2.1 0.1 Reactor Safety

2.1 0.2 Plutonium Fuel and Actinide Research

2.10.3 Nuclear Materials

2.20.1 Solar Energy

2.20.2 Hydrogen

2.20.4 Design Studies on Thermonudear Fusion

2.30.0 Environment and Resoura!s

2.40.0 META E

2.50.1 Data Proa!ssing

2.50.3 Safeguards

TOTAL

1.94.0 Servia!s to external Users

TOTAL

IBM 370/165

equivalent time in hours

34.85

0.97

5.59

7.32

133.89

6.73

4.88

0.68

0.05

1.49

12.18

6.63

53.37

0.13

268.76

21.89

290.65

EQUIVALENT TIME TABLE FOR ALL JOBS OF THE GENERAL SERVICES ·Monthly and CUmulative Statistics

January February March April May June July August September 'October November December

Year 1976 84 82 101 77 57 64 73 54 61 59 36 46
accumulation 84 166 267 344 401 465 538 592 653 712 748 794

Year 1977 44 74 78 32 26 36
accumulation 44 118 196 228 254 290

EQUIVALENT TIME TABLE FOR THE JOBS OF ALL THE OBJECTIVES AND GENERAL SERVICES· Monthly and Cumulative Statistics

January February March April May June July August September October November December

Year 1976 206 237 270 241 229 248 249 223 233 244 159 150
accumulation 206 443 713 954 1183 1431 1680 1903 2136 2380 2539 1689

Year 1977 135 218 312 193 180 269
accumulation 135 353 665 858 1038 1307

EQUIVALENT TIME TABLE FOR THE JOBS OF THE EXTERNAL USERS· Monthly and Cumulative Statistics

January February March April May June July August September October November December

Year 1976 18 19 28 16 25 32 14 11 27 31 29 12
accumulation 18 37 65 81 106 138 152 163 190 221 250 262

Year 1977 13 14 18 16 13 22
accumulation 13 27 45 61 74 96

EQUIVALENT TIME TABLE FOR ALL JOBS OF ALL USERS. Monthly and Cumulative Statistics

January February March April May June July August September October November Deeember

Year 1976 233 271 313 280 277 281 260 245 273 287 206 172
accumulation 233 504 817 1097 1374 1655 1915 2160 2433 2720 1926 3098

Year 1977 158 241 314 242 202 294
accumulation 158 399 713 955 1157 1451

Testing by Assertions

H. Fangmeyer, K. Hanke, C.L. van den Muyzenberg

Introduction

"Correctness" is an evermore requested property a computer program
should possess. Different approaches to prove correctness have been
developed during the past but each of them demonstrate the complexity
of the problem rather than give a solution.

There is a common feeling that correctness can only be proved if a precise
specification of what the program should do is given.
On the other hand program correctness may even not exist per se since a
program can only be considered together with its input space which often
is not well defined.
There are algorithms e.g. to invert matrices which work only well when the
input matrices are not "ill-conditioned". But ill-conditioning is a very
vague property which can't always be easily recognized. Thus, a program
may be correct but doesn't work for some input data.
The activity "Software Engineering" concentrates on these problems and
it is hoped that some valuable contribution can be given during the course
of the actual pluriannual research program.
This paper presents an easy to realize testing aid (consisting of macro
instructions) using assertions for PL/1 programmers. The approach is a
first step versus a more complex solution which aims at using the predicate
calculus as a specification language. Problems of consistency and complete­
ness are not yet considered.
Assertions can be introduced everywhere in the program. When an asser­
tion is encountered its logical expression is evaluated and in respect to its
value an action can be chosen by the programmer.
Assertions should be inserted after each logical section of the program to
test if the result of the calculus corresponds to the specification expressed
by a logical predicate calculus expression.

Introduction to the Predicate Calculus

It is well known, that a predicate is a kind of function whose values are
propasitions. Therefore, functional notations are used in the predicate
calculus except in cases where some other notation is in common usage.
The predicate a < b could also be written as L(a, b) in which L expresses
the predicate "is less than". The variables of the function are called
objects or individuals. The range of the objects for which the predicate is
valid is called their domain. To express the fact that a predicate is valid for
all objects of the domain the notation

is used and read :
"For all objects ai of the previously defined domain A, ai is less than b"
Likewise the symbol 3 is used to express the existence of at least one
object out of a domain which has the predicate stated. T-hus

3i (L(ai, b)

is read:
''There exists at least orie object ai in the domain A which is less than b".
The validity range of the quantifiers Vand 3is defined by parentheses.
The whole predicate formula is assigned a proposition (FALSE{fR UE). In
the first example the formula has the value 'TRUE' only when the predi­
cate is satisfied for all objects ai otherwise FALSE. The formula of the
second example has the value TRUE if one object a; can be found in the
domain A so that the predicate is TRUE otherwise it is FALSE.

To complete, a predicate formula is inductively defined as follows:
A predicate is a formula;
If A and Bare formulae then (A) C(B)*, (A) & (B), (A) v (B) and., (A) are
formulae.;
If it is a variable and A(i) is a formula, then Vi (A(i)) and 3i (A(i)) are
formulas.
These are the only formulae of the predicate calculus.

*) The implication "C "cannot be expressed directly in the macro language
presented here below.

A Testing Aid

The predicate calculus is already widely used in higher level · pro­
gramming languages. It is here introduced as a testing aid.

A series of macros has been developed and included in the module called
ASSERT (see figure 1).

,ASSERT evaluates the predicate formula (p.f.) given as argument and
assigns a proposition (TRUE or FALSE) to a system inherent logical varia­
ble SLV. The same proposition can also be assign~d to a logical variable
(second argument), if present, in order to be used in subsequent ASSERT­
statements as part of a predicate formula.

Ex.

ASSERT(A > B & 8-,= 0, LX);

The predicate formula A > B & B-, = 0 is evaluated and its proposition
assigned to SLV and to the user defined logical variable LX.
By the use of ALLDO and EXDO full predicate formulae can be ex­
pressed.
ALLDO stands for the universal quantifier {V) while EXDO represents the
existential quantifier (3). The range of validity of a quantifier is deter­
mined by ENDAX.
Ex. The predicate formula

Vi c.fj(AR(i, j) =-1))

postulates that in each row of the array AR is at least one column with an
element having a value of -1.

In the macro-language this is written as follows:

.ALLDO (I= N1 TO N2);
EXDO (J = M1 TO M2);
ASSERT(AR(I, J) = -1);
ENDAX;
ENDAX;

(N1, N2 and M1, M2 being the limits of the variable I and J respectiv~ly).
As can readily be seen, ALLDO and EXDO open a parenthesis while
ENDAX closes the innermost still open parenthesis.

The system variable SLV is assigned TRUE, if the predicate formula is
satisfied otherwise FALSE.

N.B. The analysis of the predicate formula is stopped as soon as one row is
found for which no element has the value -1.
IFTRUE and IFFALSE are two macros which act on the logical system
variable SL V. They can be used to take specific actions in respect to its
value. Since there is only one SL V these macros refer to the last active
ASSERT.

Generally these two macros Will be used to print specific messages.

Ex.

ALLDO(I = 1 TO 100);
ASSERT(V(I) = 0);
ENDAX;
IFFALSE(PUT DATA (V(I)); PUT('xxxERRORxxx');STOP;);
IFTRUE (PUT(' ALL ZERO') SKIP(2););

N.B. In order to maintain the logic, IFFALSE and IFTRUE must follow
the ENDAX macro instruction of the sub-formula to which it belongs.
Finally there are some convenient macros which render the tool flexible:

ACTASSERT(O) indicates that all assertions will be suppressed.
ACTASSERT(1) indicates that all assertions are included into the source

program (default)
ACTASSERT(2) indicates that the assertions will be included as com­

ments
The SETASSERT macro will only be expanded if ACTASSERT(1).
SET ASSERT(Ol the proposition of the p.f. is assigned to the system vari­

able SLV
SETASSERT(1) the proposition of the p.f. is assigned to the system vari­

able and a standard error-message is generated if
SLV =FALSE (default).

SETASSERT(2) the proposition of the p.f. is assigned to the system vari­
able, a standard error message is printed if SL V=FALSE
and a 'PUT DATA'-statement is generated.

SETASSERT(3) is similar to SETASSERT(2); after the 'PUT DATA'
-statement a 'STOP'-statement is generated.

SETASSERT(4) similar to SETASSERT(1); after the error message a
'STOP'-statement is generated

Further useful macro-functions to facilitate the representation of p.f. are
available:
SUBRANGE checks the validity of an index value;

TRUE·

FALSE

ONLY

generates the proposition TRUE

generates the proposition FALSE

a function which operates on logical arrays.

Interested users may contact the authors for further details on these func­
tions.
The only restriction of the macro-language is that not more than 1 0 nested
ALLDO/EXDO-statements can be coded.
The module ASSERT can easily be accessed by using the following
JCL-statements:

II EXEC PLPCLGS

·1/CMP.SYSI N DO •

*PROCESS M; }
%INCLUDE ASSERT;

<procedure>

This part must be repeated for every
separately compiled procedure

We advise the user of the assert-module to use separate variable names for
the ALLDO/EXDO-macros (bound variables) in order not to get into
conflict with the variables of their procedures . .
The PL/1 programmer of our installation will find the tool very helpful in
writing reliable software. We therefore recommend its use and hope to get
some suggestions to further develop it.

Bibliography

- Parr, F.N., Lehman M.M., State-of-the-Art Survey of Software Reliability
Final Report, May 1977, Research Contract No. 613.76.05 SISPE

- Kleene, S.C., Introduction to Metamathematics North Holland Publish
ing Co. 1952.

,._
$yn1u

1. ASSERT ASSERT I< predicate formula without quMtlfllr > (< laglcal V1riab1e >] I;

2. ALLDO ALLOO I<PL/1-farmat of the DCHtatement without the lc-vwoni 'DO'>);
EXDO EXDO I<PL/1..fonn8t of the 00-s~nt without the keyword 'DO'>);
ENDAX END AX;

3. IFTRUE IFTRUE I< llqU8IIC8 of any number of PL/11tltlmlnt&>);
IFFALSE· IFFALSE I< sequence of any number of PL/11lltemen1S >);

4. ACTASSERT ACT ASSERT I< 111 integer betwen 0 111d 2 > I;
SET ASSERT SET ASSERT I< 111 Integer bet-n 0 llld 4 > I;

Figure 1

Note to the U•s

Due to reas~ns beyond the control of the involved people ,an information
meeting on the time-sharing system TSO which was scheduled for June 20,
1977 could not take place. This meeting is now planned for tuesday
September 27, 09.00 h in the amphitheatre of the CETIS. All users who
intend to use TSO in the future are invited to come. All users presently
using the PSO/FILEDI system are recommended to come.

D. Konig

The Editorial Board invites you to fill the form on
page 23 of the No. 11 issue and reprinted on the
next page.

INQUIRY

Name ..

Surname

Are you still interested in receiving
the Computing Centre Newsletter?

If yes, is your address correct?

o no o yes

o no o yes

If no, please write it in capital letters:

Address:

Can you please indicate the subjects you found more interesting and point
out other items you wruld like to be treated?

Data base

High level languages

Simulation techniques

Network

Others

Please send to:

Mrs. A. Cambon
Support to Computing
Building 36, Tel. 730

Portability

Structure programming

Time sharing

Graphics

Les personnes interessees et desireuses de recevoir reguliere­
rnent "Computing Centre Newsletter" sont priees de remplir
le bulletin suivant et de l'envoyer a

Mme A. Cambon
Support to Computing
Bat. 36, Tel. 730

Nom •••••••••••••••.••••••••••••••••.••••.••••••••••••

Adresse

Tel.

The persons interested in receiving regularly the "Computing
Centre Newsletter" are requested to fill out the following form
and to send it to:

Mrs. A. Cambon
Support to Computing
Building 36, Tel. 730

Nom ••••••••••••••••••••••••••••.••••••••••••.•••••••

Address•...••..•...•..•.••.•••.•..••.•.•

Tel •....•....••.•..

	Contents
	Note of the editor
	The operating system OS/MVT : An overview
	Statistics of computing installation utilization - June
	Utilization by the objectives and accounts - June
	Table of equivalent time, summary per month

and cumulative
	Testing by assertions
	Note to the users

