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STATISTICAL FLUCTUATIONS AND THEIR CORRELATION IN REACTOR 
NEUTRON DISTRIBUTIONS - by W. Matthes. 
Joint Nuclear Research Center. 
Ispra Establishment (Italy) - Reactor Physics Department. 
Brussels, August 1962 - pages 40. 

The purpose of this paper is to establish a method for the determination 
of the autocorrelation function of the output of a detector placed in a reactor. 
The analytical formulas derived for the autocorrelation function contain the 
physical parameters characterizing the kinetic behaviour of the neutrons in the 
reactor system. As the autocorrelation function can easily be measured we have 
a useful tool for the experimental determination of these parameters. 

The following work is divided in three main chapters. In parts A and Β 
we give for the convenience of the reader, a short summary of definitions and 
relations concerning correlation functions. Part C is devoted to a generalization of 
a method elaborated by F. DE HOFFMANN, for determining the physical expla­
nation, as to how correlation between two count-impulses can arise. 
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In part D we develop a method for the computation of the statistical 
fluctuations of the number of neutrons in small space- and energy-regions. This 
is achieved by expressing the space- and energy-dependent Boltzmann transport 
equation in an equivalent probability form. We used the Chapmann-Kolmogoroff 
equation for the neutron balance in the reactor and derived from the corresponding 
probability generating function the formulas for the autocorrelation function. 
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STATISTICAL FLUCTUATIONS AND THEIR CORRELATION 

IN REACTOR NEUTRON DISTRIBUTIONS 

SUMMARY 

The purpose of this paper is to establish a method for the determination of the autocorrelation 
function of the output of a detector placed in a reactor. 

The analytical formulas derived for the autocorrelation function contain the physical parameters 
characterizing the kinetic behaviour of the neutrons in the reactor system. As the autocorrelation function 
can easily be measured we have a useful tool for the experimental determination of these parameters. 

The following work is divided into three main chapters. In parts A and Β we give, for the con­
venience of the reader, a short summary of definitions and relations concerning correlation functions. Part C 
is devoted to a generalization of a method elaborated by F. De Hoffmann, for determining the physical 
explanation, as to how correlation between two count­impulses can arise. 

In part D wc develop a method for the computation of the statistical fluctuations of the number 
of neutrons in small space­ and energy­regions. This is achieved by expressing the space­ and energy­
dependent Boltzmann transport equation in an equivalent probability form. We used the Chapmann­
Kolmogoroff equation for the neutron balance in the reactor and derived from the corresponding pro­
bability generating function the formulas for the autocorrelation function. 

1 — D E F I N I T I O N O F T H E CORRELATION FUNCTIONS 

We consider a reactor as being in a steady state wi th a small neutron detector D„ 

placed at some point in it. 

We assume that each t ime a neutron gives rise to a count, a very sharp (voltage 

or current) impulse occurs at the detector output. T h e he igh t h of the impulse is taken 

as constant during the infinitesimal durat ion dt of the impulse, h goes to infinity if dl 

goes to zero in such a way that the area q = h. dt under the impulse (which can be, for 

instance, the total charge delivered from the detector through this pulse) remains finite. 

If we consider the electrical quanti ty (voltage or current) at the detector output 

as a function of t ime, this function * ( i ) will consist of a sequence of pulses. I t is assumed 

that the distr ibution of the heights of the impulses is independent of the distr ibution of 

the pulse arrival time­points. This is due to the fact tha t a neutron, when entering the 

detector, can release different amounts of charges according to a certain probabil i ty 

distr ibution. 

If the counter is opened for a very long time, a large piece of the function x(t) is 

obtained. We call this piece a record and denote it by xk(t). If we repeat this procedure 

very often, we get an ensemble of sud i records {xk{t)}, A = 1,2... where we can approx­

imate the range of t by : — co < í < ­ | ­ c o . 

Such an ensemble of t ime functions {xk{t) }; — co < f < ­ f ­ c o : k = 1, 2, 3 ... (perhaps 

even uncountable) is called a stochastic, or a random process. 

The form of the function x''(l) varies at random from experiment to experiment. 

For any part icular value of k the function xk(t) is a determinate function. If the time I 

is fixed, the function xk(t) becomes a random variable which we will call x(t). 

The expectation value of the random variable xif) is given by averaging xk(t) 

over the ensemble of tbe records: 

E{x(t)}=<x
k
(t)>,: (1) 

and gives us the mean value of the function x(t) at the fixed time­point f. 



Instead of considering the function x(t) only at one time-point i. we consider the 
values of xil) simultaneously at two time-points t\ and is and compute the second moment 
given as the expectation value of x{t\) x(t2) : 

E{x(h)x{t2)} = <xk(t1)xk(t2) >..„,,; (2) 

If this second moment is invariant against a displacement of the time-points ii, t2 

over the time axis, keeping their relative position fixed, then the random process is called 
stationary. 

For a stationary random process the second moment (2) is therefore only a function 
of the length of the interval between the two time-points r = jt3 — ii | and we write: 

${r)=<xk(t1)xk{t2)>h (3) 

The second central moment, defined by (we write x; for x(ti)) 

E {(xi-E{.r,}) (x-j-Eix»})} = < {x\- <x\>1;) {x\- <x\>;,)>,.· (4) 

is called the autocorrelation function for the random process ixk(t)} and for a stationary 
random process this lakes the form: 

τ(τ)=Φ(τ)-Ε{Χι}Ε{χ2} (5) 
or 

Γ(Τ) = Φ ( Τ ) - Ε { Λ - } 2 (6) 

as for a stationary random process the first moment (mean value of the random variable) 
<.ν'·'ί/) >;.· is also independent of t. 

For our special case of a random process (series of S pulses) it is very easy to 
calculate the autocorrelation function. 

We denote by 
P ' ( - )d rd i 

the probability of having a pair of pulses separated by the time distance τ where the one 
impulse appears in dt at time t and the other pulse appears in the time element dr at the 
later time / - j- r. 

According to (3) we have for the second moment 

Φ(τ) = < 9 > 2 Ρ ' ( τ ) (7) 

This is only valid for τ > 0 ; for - = 0 we have 

Φ ( 0 ) = <xk(t)7> = <q2> PS(-) (8) 

where Ρ is, the mean counting rate of the detector. 

The second moment for the whole range of τ is therefore: 

Φ ( τ ) = < 9
2 > Ρ δ ( 7 ) + < 9 > 2 Ρ ' ( τ ) (9) 

As the pulse pairs separated by τ may be correlated or uncorrelated, we can split 
P'(-) into two parts: 

Ρ'(τ) = Ρ „ ( τ ) + Ρ ( τ ) (10) 
where 

Ρ,,Ιτ) is the probability that the two pulses of the pair are uncorrelated, that means 
Pn{-) = PP and 



Ρ(τ) is the probabil i ty that the two pulses of the pair are correlated. 

The uncorrelated pulses give us in : 

<q>2PP=<xk(t)>\ (11) 

the square of the mean value of the detector output and formula 16Ì gives us for the 

autocorrelation function: 

T(r)=<q2>P8(r)-\- <q>2P(r) (12) 

In the case of two detectors placed at different points in the reactor, we can proceed 

in a similar way. The cross correlation between the detector outputs of the detectors D,¡ 

and D¡, is now defined by the ensemble average: 

Φ<Λ(τ) = <xl{t) xl{t + r)>1: (13) 

corresponding to the two random processes {.r„(f)} and {x],{i)}. 

Analog to P' = P ' we define bv : 

PU\{T) dr dl 

the probabi l i ty of having a pair of pulses separated by the lime distance ­ where the one 

impulse appears at the output of Da in the t ime element dt at t and the other impulse 

appears at the output of D¡, in the t ime element dr at the later lime / ­f­ τ, and we find: 

Φ „ δ ( τ ) = <q„> <qi>> Plb(r) 

The separation of P„¡, in Puu = Pub -\- Pab, where : 

P„b is the probabil i ty that the two impulses of the pair are uncorrela ted; that 

M 

means Pab = Pu.Pt, and 

Pab is the probabil i ty that the two impulses of the pair are correlaled gives us in 

<</a> <<7i i>P u Pj)= Ό ' ά > / . < * & > λ · the product of the mean values of the counter outputs. 
Subtracting this product form Φ,,ι, gives us another form for the cross-correlalion function: 

Talj(-)=<qa> <q„> P,Jr) (14) 

The Four ier transform of the autocorrelation function (second moment) has a 
simple physical meaning. For this we take the Fourier transform to be given by 

+ = 

χ(ω) = Ι Φ(-)θίωτάτ 
— CO 

(15) 

Φ(τ) = — Ι χ(ω) e~iaT du 

where we take Φ(τ) to be an even function of τ, as according to (3) Φ(τ | depends only on 
the absolute value of the difference of the two lime-points \t2 —1 \ \ . 

We see that : 
+ 09 

(16) Φ(0)= — ί χ(ω) dm = <Xk(t)2>k 



If x(t) is a voltage or a current for a resistor of one ohm, the mean square of x{t) 

is the mean power given to the resistor. Consequently χ(ω) can be interpreted as the 

power density spectrum of x(t). The total power given to the resistor from the spectral 

components of x(t) with frequencies between, for instance, ωα and ω;, would be given by : 

b 

Lab = -_ fxMA. (17) 

f l 

For the special form (9) using (11) for the second moment , equat ion (13) would 

lead lo : 

χ ( ω ) = <q2>P + 2- <xk{t)> 2 δ ( ω ) + < 9 > 2 Ρ ( ω ) (18) 

where we have put : 

2 ­ δ ( ω ) = ( e'"Tdr 

53 

-f- Co 

Ρ(ω)= fe^P^dr 

(19) 

We see that the first term 

< f / 2 > P is constant over lhe whole frequency range and corresponds to the white noise 

present in the pulse series, 

that the second term 

'2-<xk(t) > 2 δ (ω) gives only a contr ibution for ω = 0 in lhe form: 

x(0)d(o = 2 ­ <.r ' '(f) > 2 and corresponds to the power given to the resistor by the d-c-

component of x(t) and 

that the third term < ç > 2 P ( < u ) is a function of ω and is due to the correlation between 

pulse­pairs. 

As the correlation function is given by 

Γ(τ) = Φ(τ) -E{x(t)}2 = < [xk(t) -x] [x'it + τ) -X] >k 

the Fourier transform of Γ (τ) gives us the continuous power density spectrum (mean value 

of x(t) subtracted !) and we obta in: 

Φ(ω)= <q2>P+<q>2P(v) 

where (20) 

Φ Ι ω ) = Ι Γ(τ) e'^dr -ƒ 
We therefore arrive at the important result : The power density spectrum and the 

autocorrelation function are coupled by the Four ier transformation. An analogous formu­
lation defines the '"power density" for the cross-correlation, which has no immediate 
physical meaning. 



1.1 — Effect of linear systems on random inputs 

We know, that the output of a linear system is given by: 

r 

y(t)= Cx(è)R(t-é)dè (21) 

where x{£) is the input at time ξ and R(t) is the output at time t if at time 0 a δ­impulse 

with area 1 appeared at the input. 

We shall first explain relation (21) if a random input x(t) is in action. 

We shall assume that a determinate function R(t) is given and the integration 

interval (o,t) fixed. In that case operation (21) gives a certain numerical value of y(i) 

for every ensemble xk{t) of the random variable x(t) : 

y«(t)= fxktt)R(t-$)dt (22) 

CI 

This value varies in a random manner from one realization of xk(t) to another. This 

means that for given R(t) and integration limits the integral transformation (21) is a ran­

dom function of the realization number k of the random function xk(t). 

As we can interpret an integral as a limit of a sum, we can interchange averaging 

over k and integration and find in this way, for instance, for the first moment of y(i) 

(the mean value of the output) : 

<y*(t)>* = ƒ*<**(£) >*Ä(t-|)dÉ (23) 

For a stationary random process we obtain (as the process is stationary, the input 
is present since t = — co ) 

< v > = < Λ > I R( - í - | ) άξ= <x> I R(i)di (24) ƒ*«(*-$) d£= <*> ÍRU)d 

For our case (series of impulses) we found (11) 

<x> = <q> Ρ 

and therefore have for the mean value of the output of the linear system 

<y> = <q> P ÇR{l) dt (25) ■ƒ. 
In the same way, we can compute the second moment (autocorrelation) of the 

output: 

<y ' ( t i )y ' ' - ( t2)>k= Cdh ídÍ2 <xk(li)xk(l2)>R(h-è1)R(t2-è2) (26) 



For a stationary process the second moments for output and input depend only on 
the absolute values of the time differences | t\ —1 2 \ resp | <fi — ξ2 I and after some trans­
formation equation (24) gives 

+ = 

Φ„(τ)= Γφ,,,;(ί) Φ { ( τ - ί ) dt (27) 

where 
+ « 

Φ**(ί)- f Ä ( f ) R ( i + t ) d | 

— w 

and Φ„(τ) is the second moment for the output and 

Φ,(τ) is the second moment for the input 

For the autocorrelation functions we find the relation: 

+ so 

Γβ(τ) = Γ φ » ( ί ) Γ 4 ( τ - ΐ ) Λ (28) 

The power density spectrum of the output can be found by taking the Fourier 
transform of the autocorrelation function of the output and with the aid of (26) we can 
express this in the form: 

Γ0(ω)=[β(ω)|2Γ. ί(ω) (29) 

where : 
Γ,·(<ρ>) power density spectrum of the input (Fourier transform of the input auto­

correlation function according to (13)) 
Γ„(ω) power density spectrum of the output 

|R(„,)]2= |R(<„)R:'(<o)| with (30) 
+ :s co 

ƒ?(«,)= f Ri ξ)β^ dè = [R (ξ) e'^dè as 

R(t) is equal to zero for f<0. 

1.2 — Random transfer systems 

We can generalize somewhat from the results of the foregoing chapter if we allow 

for the possibility that the response function R(ï) used in the integral transformation (21) 

is itself a random variable. By this we mean that the response function R(t) is also a 

function of a set of parameters (αϊ, a2, ... an) which are random variables with a joint pro­
bability distribution function: R(t, αϊ, a2, ... «„). For a given set of a's, this function is a 
determined function over the whole range of t. To find the response of a δ-unit impulse, 
we have therefore to draw a batch of a's out of the corresponding distribution for the a's. 
We take the integral transformation (22) now in the form 

yk(t)= ixk(t- ê)R(í,a t)df (22') 

10 



where α̂  stands for the set (ai,a2, ... a») and lhe index è indicates that we have chosen the 

values aj for the δ­impulse arriving at time (f — | ) . 

The mean value of the output becomes: 

<y*(t)>»= Í<xh(t-è)>!,<R(è,ai)>dè 

— CO 

<y> = <x> / R,AI)dè y> = <x> CR„( 

where <R(è, αξ) > = i ? 0 ( | ) denotes the mean value of R(i,a¿), averaged over the distri­

bution of the random variables av. For the second moment we find the relation: 

+ M -f- « 

<y*(t + T)yMt)> _ ƒ ¿ι ί^<Λ,·''(ί-ξ)Λ;''(ί + τ-4-></ΐ(έ-,«ς)«(,;,αΙ,-τ)> 
— β — Cd 

and for stationary processes: 

Φ„(τ)= \$>i(r-t)<S>m{t)dt (27') 

Φ»(ΐ;= Γ <R(è, at) Ä(f + t, <v,_T)> ¿I 

As the choice for the values of the a's at the time­point ξ is independent of the 

choice for the values of the a's at the time­point £-\-t — r if i Φ ­, we have: 

Φ»»(Ι)= fjUD­Rod + t ) ^ ¿ Φ ' 

+ « 

Φω(τ)= f<Rtt)Rtt + r)>dÇ 
CO 

An analogous formulation holds good for Γ0(τ). We have only to replace Φ;(τ) by 

T i ( r ) . 

In an example we consider a transfer system whose statistical properties are given by 

the following probability distribution for the output: 

p(i,h)dh άξ is the probability that the system emits an impulse in the time ele­
ment άξ at time ξ with an amplitude in the range h .. h -f- dh due to an initiating δ-im­
pulse entering the system at time ξ = 0. 

We obviously have: 
Η to 

<Ä(i)> = Ä„(i) = fpU,h)hdhdi=<q> Ρ(ξ) 

— co 

11 



witli h άξ = <<ƒ> = mean area under the (δ) impulse, and 

<R(l)R(è + τ)> = <p(£, hi) dhr άξ ρ(ξ + -, h2) d h-¿ dr> 

= <q2>8(r) p(t)+<q>2p(Í) ρ(ξ + τ) 

Here we make the assumption that the distr ibution for the height h of the impulse 

is independent of the distribution for the time­points of impulse­emission. 

For an uncorrelated input of δ impulses (all of the same height) we obtain for the 

correlation function of the output : 

-: 

Γ „ ( τ ) = ƒ Γ; ( τ - 1 ) Φ,,,, (t) d i ; 

= δ Φ Μ ( τ ) 

because: 

Γ:(τ) = δ δ(-) with S as the mean rate of lhe arriving δ-pulses. 

Willi the formulas for Φ;,;,(τ) for our special system we obta in: 

Γ„(τ) = S < 7 2 > δ (τ) ίρ(ξ)άξ + S < ( / > 2 Γρ(ξ)ρ(ξ + τ ) άξ 

ρ(ξ)άξ is the mean number of pulses emitted by the system due to an init iating δ-pulse. 

Then S J ρ(ξ)άξ = C = mean rate of pulses at the output of the system. 

0 

S ƒ ρ(ξ) ρ (t -f- ~) de = probabil i ty to have a pulse pair separated by the t ime distance τ 
I at the output [ P ( - ) | 

Final I ν we can wri te: 

T0(T) = C<q2> δ ( τ )+Ρ(τ )< 9 > 2 

We sec now that we have at the output of our system a random series of δ-impulses 
with a correlation term. The impor tant conclusion is that two pulses at the output are 
correlated only if they belong to one and the same response of the system initiatied by 
one of the incoming δ-impulses. Pulses at the output generated by two different incoming 
pulses are uncorrelated. 

We now consider our system to consist of a subcriticai reactor with a neutron 
detector. An external source injects neutrons and each source neutron starts the evolution 
of a neutron cloud which gives rise to a series of impulses at the detector output . In this 
case our result reads: two pulses at the output of our detector are correlated only if the 
two neutrons which gave rise to the counts belong to one and the same neutron chain 
initialed by one source neutron. Two count impulses arising from two neutrons belonging 
to two neutron chains initiated by two different source neutrons are uncorrelated. 

12 



Up to now, we have considered only small neutron detectors, which simultaneously 

represented the counters. In the general case, we can have many small detectors, all 

feeding in one counter. We allow for the possibility that the different detectors have 

varying degrees of efficiency for different energy regions. To account for this we divide 

the reactor volume into small space cells S,, and the lethargy axis into small lethargy­

intervals Uß and imagine the detectors to be distributed over these space­lethargy inter­

vals {ν, μ). 

The correlation function for the counter output now takes the form: 

1 » = y j " w . ( ­ ) (31) 
va 
ν·β· 

where Γ^!,, /11.(τ)= <q„ß q,,^>P^ δ(τ)δ„ ( ι„> ' ­f­ <</,,„> <q,,,L>P,,ß νμ·(τ) 

and the summation goes in the case of 

autocorrelation : 

in bo th index pairs over the intervals of one counter, and in the case of 

cross-correlation : 

in the one index pair over the intervals of the one counter and in the other index pair 

over the intervals of the other counter. 

The corresponding power density spectrum becomes: 

Γ ( ω ) = 2 < 9 2 ^ > Ρ ' ^ + 2 < 9 " " > <(1ν·μ·>Ρνμνμ· (ω) (32) 
νμ νμ 

"'β' 

and for later use we note the Laplace transform of the correlation function: 

Y(s) — —­ 2 < 9 ^ > Ρνμ. + 2 < 9 i * í t > <qnv> Ρνβ. νΊν ('s) 
νμ ''μ ν'μ· 

= — Ρ q2 + ξ"P(s) 

Ρ = ν ρ „ μ : Ρ q2 = 2 <4νμ> Ρ,„; Pie) = 2 Ρ " " ">' M 
νμ. νμ. νμ ν'μ' 

We repeat the meaning of lhe symbols: 

<1νμ height of an impulse initiated in the detector Ό,ψ placed in the space cell S,· by a 
neutron with a lethargy in the interval U¡ι. 

ΡνμνμΛτ) probabil i ty density for pairs of correlated impulses separated by the time 

distance τ where the first count is recorded in DVIL produced by a neutron with a 

lethargy in the interval Uμ and the second count is recorded in D„-ß, produced by 

a neutron with a lethargy in the interval 1]μ·. 

The fact that two impulses can be correlated is due to the mechanism of the 

neutron chains. 

A source neutron injected in the reactor generates a neutron chain. This neutron 

chain spreads out in space and time and Iwo neutrons of this chain can give rise to two 

13 



counts: one count in Όνμ in lhe lime interval dt at time t and the other count in ϋν·μ· 
(or in Όνμ again) in the time element άτ at a later time Τ = t-f-τ. These two counts are 
correlated in that the recorded neutrons belong to the same chain. Two counts arising 
from two neutrons belonging to two neutron chains initiated by two different source 
neutrons are uncorrelated. 

The measurement of the correlation functions therefore gives us, apart from some 
constant factors, the probability density Ρνμνμ·{τ). If we succeed in deriving an analytical 
formula for Ρνμνμ·{τ) in terms of the physical parameters characterizing the kinetic 
behaviour of the neutrons which produce the counts in Dvß and Όνμ; we obtain some 
information about these parameters by measuring the correlation function. 
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2 — DETERMINATION OF THE PROBABILITY DENSITY 

FOR CORRELATED PAIRS BY A COLLECTING DEVICE 

Instead of measuring the correlation function to obtain some information about 

the probability density Ρνμνμ·(τ), we can proceed in another way. 

We lead all the charges carried with the pulses emitted at the counter output into 

a collecting device and denote by Q{T) the total charge assembled in this device in the 

time interval T. 

Q(T) as a function of time can be represented in the following way: 

Q(T)=2qaY(T-ta) (1) 
α 

where Y(T) is the unit step function. 

We then have: 

Q2(T) = q2< 2Y(T-ta)>+q <%Y(t-ta)Y{T-tß)> 
a aß 

where in the first sum each term gives a one for each impulse and in the second sum we 

have a one for each different pair of pulses. 

Therefore : 

< YF(T — ta)> = M = mean total number 
α of counts in the time interval Τ 

<2iY(T-ta)Y(T-tß)> = M ( M ­ 1 ) = M 2 ­ M 
α β 

The mean value of the total number of ordered pairs is given by: 

M\ M2-M 

M 
and is made up of the mean number of uncorrelated pairs — and the mean number of 

correlated pairs Mc. 

This gives us: 
2 

M2-M=M +2MC. (2) 

For the mean number of correlated pairs we have the expression: 

Γ Γ—r 

Mc(r)= f (P(r)dtdr (3) 

P ( T ) is here the probability density for a pair of pulses separated by the time 

distance τ. 

We insert this in the expression for Q2 and use lhe fact that the mean value of 

the total charge assembled up to time Τ is given by: 

Q = M.q = P.T.qAP = counting rale) 
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This leads to : 
τ 

1 

Q2-Q =TPq2 + 2q2 ί(Τ-τ)Ρ(τ)άτ i 4 i 

We take the Laplace transform of this equation and obta in: 

1 — 2 2Γ(β) 
UQ2-Q } = - { P q2 + 2 q P(s) } = —^ (5) 

2 

As usual, we pu t : 
2 

ρ2 = ρ +G(T) + Q 
and have 

2 

ρϊ_ρ =G(T) + Q 

Q is given by T.P cy = T./ c [Ic is the mean current into the collecting device). We have : 
_ 2 ƒ 

L{Q2-Q } = G(s)+^ 
s 

and therefore : 
2 r ( s ) = s

2G(s) + /e (5a) 

All we need therefore, is a method to compute the function G{T). 

The power density spectrum Γ (ω) can be found from the Laplace transform Y(s) by : 

Γ(ω) = 2 Real {Y(s)} where s has to be replaced by (—¿ω). 

1 2 

The e q u a t i o n — s 2 L [ Q 2 — Q ] = Γ ( « ) is natural ly equivalent to (by taking the 

inverse transformation) 

l o 2 — _ 2 

V — [ < ? 2 ω ~ < ? Μ ] = Γ(Τ) 

Δ Or' 

which can immediately be seen by differentiating twice the equation (4). 

This is a general result. We consider the stochastic process {.τ^ί)} and introduce 
the following integral transform of xk(t) as a new stochastic process: 

r 

Qk(r)=fxk(£)dè 

We then have: 

(Ρ(τ)= <ρ'-(τ)2>,;= <Γ ƒ XWU)diY>n 

Τ Ί 

= < ίχ''(ξ)άξίχ''(η)άη>,: 
O O 

Τ Τ 

= f άξ f aV<xk(ï)xk(v)>lc 
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With the definition of the correlation function this can be written: 
r τ 

<Qk(r)2>k= ίάξ ίάηΦ(τ-ξ) 

o o 

and after a change of the integration variable η — ξ=θ 

<Qk(r)2>,: = 2 ί(τ-θ)Φ(θ)άθ 

This formula gives us: 
1 Ô

2
 ■ 

2 dr2 <22(τ) = Φ(τ) and 

1 32 — —? 
γ ^ Γ [ < ? 2 ( 0 ­ < ? ( τ ) ] = Γ ( τ ) 

If we apply our consideration to the specific case q — 1, which means that the 

collecting device simply stores the number of pulses up to time T, we obtain: 

2 

~M2-M , 2MC u , 
—— 1 = — — - = *(Τ) (") 

M M 

The principle of an experimental method for the measurement of Φ(Τ) is described 

by A.I. Mogilner (5). 

We notice that the quantity Ψ would be equal to zero, if the pulses arrived 

statistically independent of each other, i.e., if the time­points of the arrival of the impulses 

are distributed according to Poisson's distribution. The deviation of the real arrival 

distribution from a Poisson distribution gives an indication for a correlation between 

the individual events, i ' therefore gives us a measure for the correlation between the 

pulses. 

We see that each of the quantities 

(a) the correlation function Γ(τ) 
2 

(b) ρ
2
-"ρ 

2 

M2-M 
(c) Ψ(Τ) = 1 

M 

stands in relation to the probability density P. The measurement of each of these quantities 

therefore gives us some information about this probability density. To compare the 

experiment with theory, we must have some analytical formula for some of these quantities. 

In the following chapters we give some methods of deriving the necessary analytical 

formulas. 
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3 — SIMPLIFIED COMPUTATION OF THE PROBABILITY DENSITY Ρ 

The two neutrons which produce the pair of correlated counts derive from the 
same chain. These two neutrons can therefore be traced back to one common fission 
process. We take this common fission process to be the most recent common fission 
process. Let ν fission neutrons be released at this fission process with probability pv. 
Some of these fission neutrons appear as prompt neutrons, the other fission neutrons appear 
as delayed neutrons. We consider the place of the common fission process as a neutron 
source which at the moment of the fission process emits (1 — β)ν neutrons as prompt 
neutrons and subsequently βν neutrons as delayed neutrons according to a certain emission 
distribution. 

We introduce the quantities: 

χ the place of the common fission process 

t' the time-point at which the common fission process occurred 
s the time-point of the emission of the neutron which generates the chain out of which 

one neutron gives rise to a count in Όνμ 
r the time-point of the emission of the neutron which generates the chain out of which 

one neutron gives rise to a count in Όν·β· (or in Dvß) at the time τ later. 

According to the properties of the delayed neutron emitters we have for the emission 

probability of neutrons from the place where a fission process occurred: 

0( ί ) = ( 1 - ί 8 ) δ ( ί ) + 2 ^ λ ί β - \ ' ; £/?! = /? (1) 
ι 

We account for the fission spectrum by the following definition: R{v, μ; χ; t) is 
the number of neutrons in the interval S„ Uß at time t due to one fission neutron starting 
at time zero in the cell Sx. 

We now calculate the probability of having one count in Όνμ in the time element 
at at t and another count (from the same chain) in Dy.ß. in the time element άτ at the 
time ΐ -f- τ. 

The fission neutron which leads to the count in the interval Dyß in at at t has pro­

duced R(v^\ χ; t — s) neutrons in Drit at time t. 

The probability that we shall have a count in dt due to one of these neutrons is 

given by: 

dt 
R(v,ju; χ; ί — 8)ν{μ)^(ν,μ)άί = R(v^; x; t — s) 

ΙΛν,μ) 

The fission neutron which leads to the count in Όν,μ· at time t -f- τ has produced 
R(v'/x',x'; t-\-r — r) neutrons in the interval Dv.ß· at time t-\-τ. 

The probability of having a count of one of these neutrons in άτ in D„,ß, is given by: 

R(v>y;x,t+T-r). '
! 

ic(vV) 

The probability for both of these events is then: 

R(»­,u; x; t — s) Α(ν'μ', .τ; t + T —r' 
10{ν,μ)10{ν'μ') (2) 
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We now have to sum this expression over all conditions which lead to this pair 

of impulses: 

(1) The probability that ν neutrons are released is pv 

(2) A pair of two of these neutrons generate the chains out of which the counts 

are produced. There are 2(a) = v(v — 1) such pairs of fission neutrons which can assume 

the role of the initiating neutrons leading to the counts. 

(3) The two neutrons leading to the counts can be emitted between t' and t (resp. 

tf and t ­4­ τ) according to the emission probability e(z) : 

t í+ r 

Çds fdre{s-t')e(r-t') ... 

I ' l ' 

(4) The time point of the fission process can lie somewhere before i: 

ƒ*... 
— CO 

(5) The position χ of the common fission process is distributed according to the 
distribution Φ(χ)ΧΡ(χ), where Φ is the neutron flux in the reactor for the steady state. The 
steady state can, for instance, be maintained by a source of neutrons in the subcriticai 
reactor or it can be represented by the critical state. 

We first collect the terms due to time integration: 
t t Í + T 

I dt? I cts i dre(s — t,)e(r—l')R(v^;x,t — s)R{v'^',x,t-{-T — r) 

—°> t' ι' 

The substitutions s — t' = í;,r—t' = η change this expression into: 
f t — t' t + T — t' 

j af fdie(i)R(v,^x,t-t'-$) j ave(v)R(v'/,x,t + T-r--v) 

As R(v,fi;x9t) is zero for r < 0 and e(z) is also zero for ζ < 0 we can transform 

this expression into: 
Í + CO + CO 

fat' fdèe(l)R(v^,x,t-t'-i) f dve(v)R(v'^',x,t + T-t'-v) 

— co — « — to 

and with t — tf = a we come to: 

ce + co + cc 

J da I die(è)R(v^^x;a — è) J άη e^)R(v'ß'x,a-{-T — η) 

o — es — co 

The lower boundary (0) in the integral over a can now again be replaced by ( ­ c o ) , 

as, if a becomes negative, in the second integral over ξ, ξ must become negative to have 

R(a — ξ) different from zero. But for ξ negative e{¿) is zero, so that we get no contribution 

at all for a < 0. Finally we arrive at: 

τ co 

Ι ^(ν,μ^κ·,α)^(ν'μ'^,α-\-τ) 
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where 
+ co 

•ir(ν,μ^χ,α) = I R(v^¿c,a — ξ)β(ξ)άξ 
— to 

Ψ(ν,μ,Χ,α) = 0 for α < 0. (3) 

For the probability density we obtain: 
+ a 

Ρνβ.β·ν(τ) — Ύρ,,ν{ν — 1) ■ I $(x)Zr(x)ax Ι Φ(ν,μ^,α).ψ(ν'μ',χ,α-\- τ)άα 
ν Ια(νμ)Ια(ν'μ') J J 

gpaco — « 

and we have the property that 

ινμ,ν'μ,Λ T)z==' ν'μ·,νμ{~\~ τ) 

The sum ^ipvv(v — 1) gives us the mean value v(v — 1) if there is only one fissionable 
isotope (for instance U235) present. If we have more than one isotope and if we assume 
that all parameters determining the fission neutrons (fission spectrum, decay-time con­
stants) are the same for all isotopes, we have to replace %pyv{v — 1) by Ξ, γ;Υρί(ν)ν (ν —1), 

Ρ 

with y¡ as the fraction of the fissionable material due to the isotope i and p»(v) as the 

probability for releasing ν fission neutrons by a nucleus of the isotope i in a fission act. 

We then have: 

^yi^Pi(v)v(v — l ) = 2 > ' i "(" — !) 
i V i 

To calculate the power density spectrum we need the Fourier transformation of P. 

For this we consider first the following transformation: 

4- co - f co 

Ι άτβ'ωτ I fiMfnia + ^da 

— CO — » 

which gives us: ƒ*(*>) f2{u>) where a* is the conj. complex of a. If f(y) is of the form: 
+ co 

f(y)=fh(y-ï)g(è)ài 

then the convolution theorem leads to: 

f{a>) = h(ü>)g{ü>) 

Using these results for the transformation of Ρ{ν,μ,ν',μ'τ), we obtain: 

Ãv~^I)\e(o>)\2 

777 1 '■ -

, ν ( ν ­ 1 ) | β ( ω ) | 2 Γ 

Ρ ( ν , μ , ν ν , ω ) = — Φ(x)y(x)R*(V,μ,x,o>)R(v',μ',X,ω)άx (3a) 
¿c(v,u.)íc(v μ') J ή? 

The integration over the space has to be extended only over those regions of the 
space where the macroscopic fission cross-section is different from zero. This is obvious, 
because the source of the correlation is concentrated in the fission processes. Our derivation 
of formula (3a) can therefore be applied to a situation where we have, for instance, a 
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small space region in which fissions can occur (converter plate) and the space between 
the fission source and the detectors has only moderating properties for the neutrons. In 
this case the function R contains those parameters of the medium which are important 
for the diffusion and moderation of neutrons. 

The same method could be used for an experimental arrangement with a pulsed 
neutron source. A neutron pulse coming in this case from the source is in analogy to 
the fission burst in our derivation. Apart from this point, which gives us that part of 
the correlation which is due to the spatial distribution of the neutron source (at the fixed 
time-point of a pulse) we have to take account of the fact that the individual pulses are 
now no longer independent of each other; instead the time-points of the bursts are 
strongly correlated because these time points are controlled by electronic devices. 

This gives us another source for correlation and we must consider not only neutrons 
from one burst but also neutron pairs from bursts at different times. 

For the application of the formulas (3) and (3a) for P, we consider only the simplest 
space- and energy-independent case. The formulas take the form: 

p ( T ) =
 v ( v - 1 ) f ΓάαΨ(α)Ψ(α + τ) (4) 

with 
+ a 

*(«) = f R{a-è)e(è)dè 

Ρ(ω)= V{v
n
1] F\RMe(e>)\2 (5) 

here we have put ΦΣ/· = F = total fission rate. 

If we neglect the delayed neutrons (β = 0 ) we have for R(l) the number of neutrons 

present in the reactor at time t generated by one fission neutron starting at time / = 0. 

R(t) = e-a' (6) 

with 

1-k 
a = 

I 

1 . . . , k ­
(multiplication factor) —■ = v v S F S,i 1 + L 2 ß 2 l l 

1 
/ = /0(1 ­4­ U B2)'1 (total neutron lifetime) la 

Vi. Λ 

We define the detector efficiency as the probability that a fission process will be 

recorded (E = S C / S F ) · 

The counting rate Ρ of the detector is then given by P=eF. 
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Now we find from equation (4) with 

¥ ( a ) = J?(a) 

Ρ ( τ ) = V(V
 2

1] F e-" fe-^άξ 

v ( v - l ) k2 

K' J 2a I2 

This is the result given by F . De Hoffman (1) and J.D. Orndorff (2) . 

For the quanti ty Ψ(Τ) we find wi th the aid of (7) 

v ( v - l ) /c2 ( l-e-aT ï 

2
 ( i _ f c ) » I «T 

(8) 

If we take into account the delayed neutrons, we have to find R{t) as the solution 

of the kinetic equations 

an k-1 kß 
—— = —­— η — η ­+­ A ApCp 

à t I Ι Ρ 

dCP _ . r , k ß , (9) 
— — — — Ap^p -\ — η 
d t I 

under the init ial conditions 

re(0)=l 

CP(0) = 0 <10> 

The Four ier transformation of the equations (9) under the conditions (10) gives us : 

fe­1 kß 
- ί ω ί ? ( ω ) - 1 = Κ ( ω ) = — RiuyJ + XXpCpM 

Ι Ι ρ 

kßp 
— ¡<oCp(«>)= —XpCp{o>)-\ R(U>) 

Upon solving for Λ (ω), we have 

I 1 

RM k k - i il , ^ βρ ·\ ( H ) 
­ Ι ω — + ?■■ 

k \k ρ λ„ — ρ Ιω 

The Four ier transformation of the emission probabil i ty e( t ) is found to be 

e(«) = ( l ­ ) 8 ) + S λρβρ 

= 1 + ίω S 
ρ 

Finally we arrive a t : 

" λρ-ίω (12) 

ßp 

ι 
Κ(ω)β(ω) = — Τ ( - ί ω ) 

k 
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where 

ßp 
1 ­ S S 

" λρ + S 
T ( S ) = ¿ZÍ—7J- -τττ (i3) 

+ s U " λ ρ + s j 

We again have εΡ = Ρ and equation (5) gives us for the power density (E.F. Ben­

net (3)) 

v(v —1) , , (14) 
Φ ( ω ) = <q2> P + < q > i p E - ^ - ­ L | Γ ( , · ω ) | 2 

The formulas for the probabi l i ty density Ρ (ν,μ',ν'μ';r) can be generalized if there 

are more possibilities which lead to a correlation between two pulses. 

We shall ment ion one generalization which arises if fission chambers are used as 

neutron detectors. 

In this case we have the fact that a fission process can be recorded immediately 

it occurs and the released fission neutrons travel outwards starting neutron chains, and 

neutrons out of these chains may possibly lead to counts at a later t ime. These two counts, 

the first at the moment of the fission process, and the second th rough a neut ron out of 

the chains generated by the fission neutrons, are therefore again correlated, in tha t their 

cause lies in the same fission process. 

T h e derivation of the probabil i ty density for this correlation goes as follows: 

T h e probabil i ty of having a count in dt at t ime t (a fission process) is given by : 

Φ(ν,μ) S(v,u.) Xc{V,IX) at; Φ(ν,μ) = ν,Ν(ν,μ) 
F SA(V,JU.) 

The probabil i ty that one of the released ν fission neutrons will lead to a count in 

the detector Ό„·β· in the t ime element dr at the later t ime t + τ is : 

r 

fe{i)RW,v,T,-è)div(ï)icW)dT 

υ 

For the probabil i ty density Ρνμ,νμ>{τ) we find: 

r 

Ρ^(τ)=ΪΦ (ν,μ)$Ρ (ν,μ) ^ ^ ^ fR(vV,v,T-|) efàdfrWcW) ( ί 5 ) 
S,i(v,/¿) J 

o 

In the space and energy­independent case, formula (15) gives us the term (first 

wi thout delayed neutrons, Φ = vN) : 

P ( T ) = v — v2%2Ne-«T 
SA 

ke ( n 
Ρ ( τ ) = ρ — β ­ " Κ = — 

r, { VÏF ) 

(16) 
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The presence of delayed neutrons changes equation (15) in this case into the form: 
r 

P ( r ) = i ; 2 S 2 N f e Γ Α ( Τ - | ) β(ξ)άξ 

and for the power spectrum we obtain: 
Ρ(ω) = Ρ —2 Real \ Γ ( - ί ω ) il') 

where -we have made use of the fact that we must have 

P(.T) = P ( - T ) 

We must point out that the method of calculating the probability density described 
in this chapter is only a rough approximation and is only for the purpose of giving some 
insight into the cause of the correlation. 

We have made some approximations, for instance: 

(a) that it is always the same portion of fission neutrons that is released as prompt 
neutrons and the same portion (β) of fission neutrons that is released as delayed neutrons, 
and 

(b) we have replaced the number of neutrons in the interval (ν,μ) at time t due 
to one fission neutron starting at time t = 0 at the place χ by their mean number, which 
could be calculated from the Boltzmann equation. 

To remove, for instance, the approximation mentioned under (b), we should replace 
the product : 

R(ν,μ^χ,α — è)R(ν',μ!, χ,α-f-τ — ξ) 

in formula (3) for Ρ(τ) by the mean value: 

<&(ν,μ,χ,α-ξ) Rk(V'y,x,a+T-l) >k 

the compulation of which is a more involved problem. We shall see that the study of 

2 

this problem is connected with the problem of calculating the quantity {Q2 — Q ) which 

we considered in chapter B. 
2 

But as the exact computation of (Q2 — Q ) already gives us the solution to the task 

of finding the correlation function, we do not need to revert to the formulation showing 

this chapter. In the next chapter, we start to deal more precisely with the treatment of the 

statistical fluctuations in a reactor. 
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4 — STATISTICAL FLUCTUATIONS 

OF THE NUMBER OF NEUTRONS IN A REACTOR 

We mentioned in chapter 3 that we want to find an exact expression for die quantity 
2 

Q2 — Q, where Q{T) is the charge in a collecting device and is the sum of all charges given 

to this device in the time interval Τ by the small detectors distributed over the reactor. 

We have therefore to consider the whole system consisting of the reactor and the collecting 

device, which we can characterize at any time­point t by the following quantities: 

(a) Ννβ: number of neutrons in the interval Sy Uß 

(b) Γ „μ ι : number of delayed neutron emitters of type I in the interval S„ which 

on decaying give neutrons in the interval Uß 

(c) Qvß' total charge delivered from the detector Όνβ up to time t. 

What we have to do now is to write down the probability for the change of the 
state of the system in a time element dt and then to construct the equation for the 
probability generating function (p.g.f.) for the probability of finding the system in a given 
state at a given time. 

We know that the p.g.f. gives us the equation for the mean values for the quantities 
which characterize the state of the system. This equation must coincide with the Boltzmann 
equation for the neutron population of the reactor. We therefore choose first the form 
of the Boltzmann equation which we want to derive from the general equation for the 
p.g.f. We take the Boltzmann equation to be of the form: 

i(x,u,t) 
■v(u)%T{x,u)n{x,u,t)+ j n{x,u',t)v(u')Xs(x,u'->u)áu' 

dt 
— zo 

­4­ Si Χι Yi{x,u,t) + D(u)An(x,u,t) + S(x,u,t) + Fn (1) 

dYi(x,u,t) 

dt 
— A¡ T¡ (*,w,t) + Pi « 

The symbols employed have their usual meaning. 

a. — 

Fn = {l-ß)f0(u) J n{x,u',t)v{u')XF(x,u')v{u')au' 

+ os 

Fin — ßl / i(u) ƒ n(x,u',t)v(u')3,F(x,u')v(u')du' 

n(x,u,t)dxäu: number of neutrons in the volume element ax and in the lethargy interval 
áu at time t. 

v{u) : velocity of the neutron with lethargy u. 
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Sf(x,it) : macroscopic total cross­section at the point χ for neutrons with lethargy u. 

Yi(x,u,l)dxdu: number of delayed neutron emitters of type I in the volume element dx 

which give neutrons with lethargy in the interval du. 

S(x,u,l) dx au at: number of neutrons in the element äx au emitted by an external source 

in the time element at. 

■1 « 

I n(x,u',t)v{u')^,¡,(x,u'-^u)au' au at ax: number of neutrons scattered into the element 

_ » dx du in the time element dt from all the other lethargy elements du'. 

Diu) An(x,u,t)ax au: number of neutrons leaving the element ax au per sec by leakage. 

Fndxau = (1—■/?) ¡,,{u) I a(*,ii',t)i;(u')SF(A­,ii')v(ii') au' άχ au : number of prompt η eutrons 

generated in άχ áu per sec. by fissions in all the other lethargy elements au (f0(u) 

fission spectrum for prompt neutrons. 

We now use the following approximation: 

ƒ η — aìx'—xì Γ ρ — α\χ'— χ\ 

/(*'), ι, .a <**-ƒ(*) / Τ Ι — ψ ^ = ~ Δ / ω 4·ττ\χ — χ\* J 4ΤΓ|Λ; — Χ ρ οα ' al l ull 
• ¡lac« spacw 

If we take the arbitrary function f{x) as η(ι)ι>Ε,= Φ(.ΐ) Ss (Ss independent of x) 
we obtain: 

/

e — α|ι'— x] r· Q — alx'—x] J? 

Φ(χ'^^ΓΤ-, ¡τάτ-Φ(χ)^ — — d r ^ - ^ - Δ Φ ι 4-j.x-' — Λ;|2 J 4-|Α· — Χ']2 3a2 

χ) (2) 

all all 
spare spato 

where we can choose a in such a way as to obtain the used D through 

v{u)Xs{u) 
D(u) 

3a2(u) 

These two integrals give us a simple formulation for the leakage term: 

A neutron can become scattered without energy change from one point χ in space 
to another point x' in space. 

The first term in (2) gives us all the neu trons which are scattered into the unit volume 
around χ per sec from scattering collisions in all the other volume elements of the reactor, 
and the second term in (2) gives us all the neutrons which are scattered out of the unit 
volume around Λ: per sec to all the other space cells of the reactor. 
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This is in symmetry with the scattering collisions in a volume element which lead 
to a change of energy where the neutrons remain in the same volume element and only 
change their lethargy interval. 

Now we are ready to establish the equation for the neutron balance. We look for 
the probability of finding the system at time (t-\-at) in the state given by the numbers 
W » νμι J- νμϋ^νμ) : 

/ liVj/μ, Ι νμ€ι\?νμ·ί ') 

We have in general: 

Ρ\Ννμ'·} f vße '·> ν * Ά ' ^ "Τ" dt) : = Ι \ίι νμ ï­t vße 5 \?νμ'·> ' / / \ 

(Probability that nothing happens in at) -\- S (Probability for a changed state) χ 
changed 
stales 

Probability for the change in at which after at gives the right slate. 

Now: 

Probability that nothing happens in at = 

Probability for a change out of the state (Ννμ', I V ; Qvß) in dt ν 

overall 
possible 
changes in dt. 

Wre collect now all the jiossible state­changes in dt out of the state (Npß; Yvßc',Qvß) 

(with a minus sign) and into this state: 

(a) We have at time t the state (Nyß; I V ; Ç«/t) and the source emits in at a neutron, or 

we have at time t the state (ΝΡμ— 1; I V , Qvß) and the source S„ß emits one neutron 

in at: 

Ρ(ΝΡμ·, Yyße;Qvß) ί-^μάί | + 2 P ( N ^ - 1 ; I V , Q„ß; t)S„ß at 
\ νμ J νμ 

In the same way we can immediately write down the other possibilities (wc mention 

only those quantities which change) : 

(h) Ρ 

( c ) 

\ Vfie 

2 λ«, i v dt +yp (Ννμ ­ 1 ; I V + 1 ) 0 V + 1 ) λβ di 
νμ,β ) VfLC 

Ρ[ ^νμν{μ)^Ανΐ^μ')\+^Ρ^νμ-\-\;Νμν.-\)\Ννμ+\) ν(μ)ϊ*(ν,μ^μ')άΐ 
\ ν 'ν 
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(d) P(-%Nvß Vß Χτ(μ, ν ­> v')dt) + ^P(Nvß + l,Nv,ß-l)(Nvß + 1) Vß %τ(μ ν ­> v')dt 

(e) Ρ ί - y Ννμ Vß Έ,α(νμ)άί + 2 Ρ ( Ν " " + 1' Crß-Ίνμ) (Ννμ + 1 ) % Sc ( ν,μ) ^ νβ (q)át 

V νμ ) νμη,ιμ, 

(f) P Í ­ 2 ^ ^ 2 ("rOífci+^W' 
V. vu π ι vß 

Γ ' ' h i 'Vi/j»' ' μ ' ; 1 vpe ' 'pc ) 

(Ννμ + I — ηβ)νμ^.α(ν μ) dt Ρ νβ(ηβ; y pc) 

Here we have in t roduced: 

Sc(i'/j.) : macroscopic cross­section of the detector mater ia l in the space cell ν for neutrons 

with lethargy in the interval μ 

""i'ß(q) : probabil i ty for the generation of the charge q th rough a neutron capture in the 

detector mater ia l 

S,i(v/x) : macroscopic absorption cross­section for fission and γ absorption 

­ a if T^ — γ 

S:r(/u.,v—»v') : total macroscopic scattering cross­section for a scattering out of space cell ν 

into space cell v' 

S.s(ν,μ—-* μ') : total scattering cross­section for a scattering out of lethargy interval μ into 

lethargy interval μ' 

Ρνβ(ημ; y pe) · probabil i ty that a neutron capture in reactor mater ia l leads to the generation 

of ηβ. p rompt neutrons with lethargy in the interval μ' and to the generation of YDC 

delayed neutron emitters of type e which leads to neutrons in the lethargy inter­

val p. 

The neutron balance equation now reads : 

P(t + dt) -P(t) = expressions (a) + (b) + (f). (3) 

The p.g.f. for the distribution Ρ is defined by : 

ιΐνμ \¿ν μ i. νμβ 

* Ι­Λ r/ii * νμ,ι ¿νμ,β ) —— y r \1ι ¡>μ·, t i/jie» \^νμ)Λ^ ί νμ 11 ¿νμβ 

IV νμ {¿νμ 1 νμβ β 

We therefore mult iply equation (3) by the factor of Ρ in equation (4) and sum 

over all values of Ννμί TPfLe, QVfL. 
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In this way we obtain the Fokker­Planck equation as an analogous stochastic 

formulation for the Boltzmann­equation (1) (5) 

oF_ r dF 

— — y^sVß(x.vlL—i)F -\-y^Ae(Xvß—zyße) ———\-
tìt νμ vßc C/,νμβ 

dF , DP 
-\-y^Vß(Xvß· — Χνμ)%3(ν,μ~^μ')—- h yvß 2r(ja,v­>v') (Xril — X,ß)—— 

νμμ' <-Χνμ p¡lp· Ολρμ 

dF dF 
-Τ^μ Sc(v,/l) (Χρβ — ΧΡβ) — \-^νβ~ϊΆ(ν,μ) (Φνβ — Χνβ)~ 

0 Α Μ .... ' Λ μ ( ι 

where Φ ^ ( Χ ^ ) is the p.g.f. for the distr ibution Ρ,,μ^νμ) 

y 
Φνμ=^Ρνμ(ημ;γρ€) Π Χ , , , . Π Zvpe 

vy /t* pc 

χ 
q νμ 

We have he re : 

Ρρμ = 1 ■ Soo.vy Η 5— P"ß (W) 

with ρνμ(νμΊ7ρβ) as the probabil i ty for the generation of ηβ· p rompt neutrons in the inter­
val μ' and ypC delayed neutron emit ter of type e which give neutrons in the lethargy inter­
val ρ by a fission act in the interval (ν,μ). 

Υ Π (q)=y^pvß\V,y)=l 
q νμ 7)7 

we have, if we give the value 1 to all variables Ar, Υ, Z: 

Χρβ=\; Φ,,β = 1. 

We notice that we have in (5) one term for the detectors and one term for the 

fissions (absorptions). This is due to the explicitly stated assumption that we can have 

an absorption in the detector mater ia l (Sc) which can lead to a count (according to ■",.ß: 

we can have ""vß(o)^0) and an absorption which can lead to fission (or parasitic capture) . 

Here we consider every fission process which leads to a fission, whether we have or we 

have not fission neutrons, as a fission process. 

It can happen, as we mentioned on page 23, that an absorption process leads 

simultaneously to the generation of fission neutrons and charges (counts) . In this case 
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we have in equation (5) only one term for t h e absorption process instead of the last two 

terms. 

This term is then: 

2 Vß SA Ο,μ) Φρβ Χ,,μ-Χνμ ^ — (6) 
νμ V ) dXvß 

with <\>,,u as in (5) with SA = Sc + S(1 and xpß is changed in to : 

X „ / i = y n (q)Yvß 

,, νμ 

whore ηολν: 

Π = il-— i δ0, + — Π (q) 
νμ { S.t J S.I »" 

Before we proceed to draw some conclusions from the general equat ion (5) we make 

some assumptions about the p.g.f. ΦΡβ for the distribution ρρβ. This is now the place to 

remove the approximation (a) shown on page 24, where we assumed that the same port ion 

of prompt neutrons ( (1 — β)ν) is always released in any fission process. But this statement 

is only t rue in the mean and we must take account of this. 

A plausible physical hypothesis (Raievski, (4)) enables us to calculate in a simple 

way the p.g.f. Φνβ· As in a fission process we almost always have two fragments, it is 

improbable that bo th fragments are excited to such an extent tha t they could emit delayed 

neutrons. We assume, therefore, tha t in a fission process there is at most one fission 

fragment which emits one delayed neutron. In that case there are only two possibilities 

which can arise in a fission process: 

(a) all ν fission neutrons appear as p rompt neutrons (probabil i ty P(v)) 

(b) one neutron appears as a delayed neutron and the other neutrons are prompt 

neutrons (probabil i ty 1—P(v)) . 

If pv is the probabil i ty that a fission process gives us ν fission neutrons, we must 

liave for the mean number of prompt fission neutrons: 

( l ­ j 8 ) v = S p „ [P(v)v + ( 1 ­ P ( v ) ) ( v ­ 1 ) ] 
V 

or: 

l ­ / ? v = S P „ P ( v ) 

which gives us 

P(v) = l ­ j 8 v β = Ζβ, 
e 
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The p.g.f. can now be wri t ten: 

Φ,/i = S I V ( p ) [ ( l ­ í 8 p ) 2 P » ( ' ? I ' ? 2 · . . ) Π Α * 

+ S ße Ρ 2 Po dii vs ■ ■ ■ ) Π X A T / I ( fe) Ζ,,,,, 
e η,+τί3+..=ρ—ι λ Τ* 

Here 

Ρνμ(ρ)· the probabil i ty that a fission process in the interval (ν,μ) gives ρ fission neutrons 

Ρρμ(ρ)= | Z - — ^ SP° + -TT - PP 

p0(víV----) '■ t n e probabil i ty that T;¡ of the p rompt fission neutrons lie in the lethargy 

interval i 

fi(k): the probabil i ty that the one delayed neu t ron has a lethargy in the interval A: (fission 

spectrum for the delayed neutrons) . 

Let /o(fe) denote the fission spectrum for the prompt neutrons, t hen : 

Po(vi V2 · · ·) = , P ; , / e ( l ) M 2 ) / . ( 3 ) . . . 
ηι· V2iV3i... 

id : 

witli: 

Φνβ = S Ρνμ(ρ) [(1-βρ) JÕv + ZßepJZ'v1 Jive] (7) 
ρ <■· 

7„„ = S / „ ( A ) A A 

Ju,e = ïfl(k)Zv> 
λ 

\e 

The summation over λ in J0P (or Jive) covers all lethargy intervals. 

For later use we state here the values of some derivatives, when all the variable: 

X, Y, and Ζ take the value 1 : 

οΦνβ S F d^>pß S F ( V ^ ) ­ 52 g g η 

_ — ν(1 -β) f „(λ) ; — = — — vße fi (λ) ; = 0; 
0 Λ „ \ Α α σΖ^λο ­ u ( ' ' , / . t ) ΟίνΚκΟίνμρ 

ο2Φνμ S F θ2 Φ ν/χ S F · 
- v ( v - D ( l - 2 / ? ) / 0 ( A ) / „ ( p ) ; ' = -v(v-l)ßl,f0(X)f1(p) 

0ΛΡ\ ΟΑ,,ρ -,α 0Λ„\ CLvpii —α 
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For equation (6) , Su has to be replaced by SA· 

Under these conditions the kinetic reactor equations take the form (analogous to the 

formulas (1) ) : 

— - = n-,k Nik + S λ, r e ( i , fc)+ S « 
dt ~ e 

oYe(i,k) 
= -XeYe(i,k) +^vßN(i,u)ZF(i,u)v ßefi(k) 

dt * 

where the Operator Q¡;; is defined by : 

n i f c = ­ « t 2 ( i , f c ) + D ( f t ) A i + S « A S a ( » , f i ­ > Ä ) + T ( l ­ j 8 ) / . ( f c ) a « i i 2 , ( i » 
lolal μ ß 

V , — V . _ L V — V _ 1 _ ^ _|_ ν 
— ί ι,ι Τ ^ *HS c Τ^—d Τ ^ —s 

and the bar under the index k means, tha t in the summation over the lethargy intervals 
in the operator Ω this index has to be replaced by μ. 

We start now to make use of equation (5) for the computat ion of the correlation 
function. Formula (5a) on page 16 shows us that we need for this the Laplace-transform 
of the function G(T) which was defined by : 

2 

Q2-Q =G(T)+Q 

The mean value 

Q = XQ(i,k) 
i,k 

can now be found out of the p.g.f. by (all variables equal 1) 

dF 

9Fi* 

and the mean value 

Q(i,k) 

< P = S QiiíQmu = Q + S G(ik,mn)+Q 
iii,mu il;,mn 

can be calculated by using: 

32P 
Qik Qmn — Qik Sue = Qu; Qm„ + G (ik,mn) 

cYii;dYmn 
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Our next task is therefore to calculate the two part ia l derivatives cF/dY^ and 

d2F/dYikdYmn of the p.g.f. F. Equat ion (5) will give us the time dérivâtes of these quan­

tities and the result is : 

dQik 
­ f ­ = Vk $c(ik)Nik χ' = Pik qik = Ie(ik) (9) 

at '" 

where 

cXik ■ 

'* 3Yi;, 
que 

Pik = Vk Sc(ife)Nifc = mean counting rate of the detector D ,k for both cases (5) 

and (6) . 

We have fur ther : 

dG(ik,mn) 

It 

rith : 

= Y' H(mn,ik)+Y' H(ik,mn)+Y" Nih Sik (10) 
ili mn ih x ' 

y ;= v , , Sc ( ¿ f e )x ; ; i 

Y" = Vk Sc (¿fe) χ" 
ι « »ή 

and where we have pu t : 

Qik Nmn = Qlk Nmn - f H(ik,mn) 

Equat ion (10) gives us for the function: Gl i ) = S G(ik,mn; t) 

áG 
— = 2 S Y' H(mn,ik) + S Y" Ν , 

Now: 

SY" Ν =%v(k)MLk)NikW -q ) =ZPikq
T-%Pikqik 

ik ilt ik ik ik ¡;. lA" ] / ; 

and the last term is just the total mean current ƒ,. into the collecting device. 
Therefore : 

= 2S Y' H(mn,ik)+Z P i ; . ^ - / , , 
Cl t t k, nm ' ik 
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and the Laplace-transform is: 

S 2 G ( S ) = 2 S Y'SH(mn,ik) + tPiltq^-le 
ik ik 
mn 

According to formula (5a) on page 16 we obtain: 

r ( S ) = — S PiW!L+ S Y;. S H(mn,ik; S) 
ik,mn 

and with: 

Rik(S)— S H(m,n;ik; S) 

r ( S ) = — S P « g2 + S Y' Älfc(S) .S (H) 
ώ ι/; ι/; 

Our aim is then to compute the function R¡k. 

The next step is to establish the equation for H (ik,mn). In doing this we are again 

forced to introduce new quantities and we have to find their equations. Instead of pro­

ceeding step by step we collect the results with the corresponding definitions: 

Qik Nmn = Qik Nmn + H(ik,mn) 

Qik Tinne — Qik Γ»ηηβ + Fe(ik,mn) 

Nik Nmn — Nik Nmn + Φ(Μ,πιη) + Nik SiKmn (12) 

Nik T-mne = Ν¡k Ymnc + ^e(ik,mn) 

­I­ ike ­1 mnp — ­1 ike J­ mnp ­ρ Γ ep {lri,mn) ­p 1 ike 0 ike,mnp 

The equations are: 

dH(ik,mn) , _ ... 
= nmnH(ife,mre)­r S Xcte(ik,mn) 

dt e 

+Y' mik,mn)+V(l-ß)fo(n)NikSimtF(ik)/%A(ik)] (13) 
1
 ih 

Λ _ 

— Fp(ifc,mi»)=­XpFf,(iÄ,mii)+v)3p/i(n)a«(/i)S (m,/*)H(ifc,m/i) 

+ r [*, (¿fc,mn) +vJ8n/i(n)iVjfc8imSF(¿fe)/SA(¿fc)] (14) 

— Φ(ί/£,τηπ) = Ω{& Φ^/τ,^ηπ)-}- Ω„,„ Φ(πιη,ιΑ:)+ SX e ^(¿A^mT^­f S λβ *,(irara,ifc) 
3ί - - - « 

+ ν(ν-1)(1-2/3) / < , (α) / 0 ( / ε )5υ(μ)Νί^ Ρ ( ί ,μ) (15) 
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g 

— <¡rp(ik,mn) — — Xp Yp(ik,mn)-\-ZXe Fep(ik,mn)-{- Ω«· * p(ik,mn) 
dt e - -

-ΓVJ8pƒl(7^)S1;(μ)SF(/?^,μ)Φ(¿fe,mμ)­Γv(v­l)J8pƒí,(fe)ƒl(7^)SvíltiVm^S(77^μ>; (16) 
ß μ F 

d 
— Fep(ik,mn) = — (Xe + Xp)Fep(ik,mn)-\- ν ßc / i(fe)S ν(μ)$Ρ(ίμ)<ί'ρ (ίμ,ηιη) 
ót ß 

+ 7βΡί1(η)ϊ;ν{μ)ϊΑιη,μ)*,(ηι,μ;ΐν (17) 

Equat ions (13)-(17) as they stand are valid for the condition of equation (6). In 
the case of equat ion (5), only equations (13) and (14) change in tha t their last term has 
to be replaced by zero. I t is physically plausible tha t equations (15), (16) and (17) are 
not influenced by the change of the counter properties because these equations describe 
only the statistical behaviour of the neutrons in the reactor and can be used to calculate 
the fluctuations of the number of neutrons in the space and lethargy intervals. 
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5 — APPLICATION OF THE THEORY OF FLUCTUATIONS 

IN SOME SPECIAL CASES 

For the application of the method developed in the last chapter we shall deal only 

with the case of equation (5). 

We note that if we were to take the case of equation (6) the results would differ 

only by an additional term from the results for equation (5). This is due to the last 

terms in equations (13) and (14), which are only different from zero in the case of 

equation (6). 

As the special cases we take: 

(a) one-space cell 

one-lethargy cell 

no delayed neutrons 

(space-independence) 

(one-group theory) 

(0 = 0) 

whe 

Equation (11) is in this case: 

lYs) = — Pq2 + v*cqR(s) 

R(s) = sH(s) 

Now (equation (13)): 

s H(s) = -v SA H + ν ν SF H -\ ν Sc q Φ 

and (equation (17) for the stationary state): 

0 = 2Φ( -v SA + v v S F ) + v ( v - l ) v SF N 

With: 

fe=;^ and : 

1- fe 

~1~ 
find: 

Φ = ν(ν-1) kN/v2al and: 

εΗ(β)=νΖ€ξΦ/(ε + α) 

We take the inverse transformation and obtain: 

Ì ? ( T ) = J ) S C ξΦ exp{ — a-} 

36 



and with: 

we finally get: 

Nvlc = P 

r(r) = Ρ q2 δ (τ)+ q2Ρ, " ( " ­ ^ ­ ^ ­ e" 
2 at 

This result was found in Chapter 3, formula (7) : 

(b) one­space cell (space­independent) 

one­lethargy group (one­group theory) 

For this case equations (15)­(19) take the following form: 

sH(s) = H(s) (­1 + k(l-ß))/l + S X, Fi(s) + υ Sc ξ Φ/β 

SFí(s) = ­ λ , F,(s) + ν β, ν SF ff (β) + ν Sc q *,/» 

0 = 2(Φ[ —1 + Jfe(l —jS)]/l + 2 λι * ι ) + ν(ν —1) (1 —2j8) NvSf 

0 = ­λ„ * ρ + SA, F/p(») + *„(«) [ ­ 1 + k(l-ß)]/l + r jBptórí» + V ( V ­ 1 ) / Î ^ S F A ' 
I 

0 = ­ (λ, +Xp)F,p + vß, vtF*p(s) + vft VSF^Í (S) 

Equation (14) gives: 

S λ; F, (s) — vv SF i/2 λ, β,/(s + λ,) + tSc gS λ, Ψι/s (s + λι) 

ι i ι 

We insert this in (13) : 

sH(s){s +(l-k(l-ß))/l-k% Xißi/l(s + λ,)} = νΈ,0ξ[Φ + S λ, Ψ,/fs + λ,)] 

and obtain: (ρ = (1 — k)/k) 

R(s) = sH(.s) = (lvll-q/k) Ψ ρ 
[> + S*„- sS — 1/ fe ' .S + λ, ) J 

Now: 

S λ. Fip = β — S *„ (17) 

fe k(l-ß)-l , fe/βΦ , ν(ν­1) 

ρ ; Ρ ί ί 1' Ζ 
(16) 
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l-k(l-ß) „ v ( v ­ l ) 1 ­2)8 , Λ, 
2 Φ — = 2S A ¡ * , + _ — fe Ν 

l v i 

(15) 

We use (16) in (15) and obta in : Φ - 4 - 5 Φ ί = 
ι 

v ( v - l ) feN 

We now wri te : 

K(*) = 
Z n S c g N v ( v - l ) 

2aZ 

with: 

and have: 

1 - s S 
s + Xp 

+ P 

X„ = Y p 2 a Z v / f c i V v ( v - l ) 

1 _ _2 v ( v - l ) 1 
Y(s) = -Pq2+Pq 

- 2p 
V 

1 - s S 
X» 

s + λρ 

2aZ 

■
s
 ι - + Σ 

fe ' ^ S + λ; J 

The power­density spectrum becomes: 

+ P 

Γ(ω) = Ρ g
2 + g 2 P F

V ( V , 1 } — Real (P(s ) : 

where s has to be replaced by ( — ι'ω) in : 

1 ­

— Ρ 
ν 

A"„ 

T(s): 
s + Xp 

kfc+?S+A ;J + P 

As: 

Real {Τ(-ίω)} = Ρ \Τ(ίω)\2 (Raievski4) 

we again have Bennet 's result (3) : 

Γ(ω) = P g2 + ξ'Ρε\Τ(ίω) \2 ν ( ν - 1 ) / ν2 

(c) one-lethargy cell (one-group theory) . 

In the one-group theory it is assumed that all fission neutrons are released with 
the group energy. This is a point where we can make a slight generalization if we take 
into account the fact that the fission neutrons are produced as fast neutrons with a high 
energy and only after moderat ion reach somewhere in the reactor the slow energy of the 
group. This means tha t the fission source in the space cell ν (number of fission neutrons 
with group energy generated in the space cell v) is made up of all fission neutrons which 
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are generated somewhere in the reactor and which reach the group energy in the space cell v. 
The fission source in space cell ν can therefore be expressed as a sum over the contributions 
of all the other space cells. If ρβν is the probability that a fast fission neutron born in 
space cell μ reaches the group energy in space cell ν the prompt fission source is: 

ν(\-β)%νΧΡΝμΡβν 
β 

where the summation extends over all space cells. 

In our general theory the fission source in the lethargy interval ν was expressed as 
a sum over the contributions of all the other lethargy intervals. 

For our problem we therefore need only replace the summation over the lethargy 
axis in every fission source term by a summation over the reactor cells and to replace the 
fission spectrum /0(μ) resp. /ι(μ) by the slowing-down kernel ρβρ: 

In this case Jop = Xv is replaced by J„ = X pp\X\ in Φ,, 
(summation over all reactor cells). 

If we take for ρρβ the slowing-down kernel of the age theory 

ρ„μ — exp (-/χρ-χβ/2/4τ)άτμ/(4-τ)3''2 

our equations (13)-(17) reduce to the fundamental equations on which Raievski's work (4) 
is based. 

It is also very easy to derive with our general method the results obtained by 
A. Medina (5) and L.I. Pal (6). We mention only that Medina uses directly equation (3) 
(Chapmann-Kolmogoroff-equation) for some very simple cases (space- and energy-indepen­
dence; no delayed fission neutrons) and is mainly interested in the solution of our equation 
(15) in the time-dependent case which gives some information about the time behaviour 
of the fluctuations in the number of neutrons. L.I. Pal considers the same special case 
with delayed neutrons and makes some study of the solutions of equations (5) and (15) 
under the initial condition of one neutron being present at time t = 0. 

In order to estimate, for instance, the fluctuations in the number of neutrons in 
the lethargy cells (we consider only the stationary space-independent case and neglect 
delayed neutrons) we calculate the quantity: 

N(k)2-N(k) 
1 4^(fe,fe)/rV(fe)= 1 +Φ(Λ:)/ΛΚΛ) 

N(k) 

= l+y(fe) 

where Φ/'Λ) is the solution of equation (15) for the special case under investigation. 

We set: 
v(fe)Sr(fe^ffe) =x(fe) 
u(fe)Sr(fe)Ñ(fc) = *(fc) (total collision density in the real system) 

y(/c) = x(fe)/*(fe) 
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Equation (15) for Φ(&) takes in this special case the form: 

x(fc) = SxU)7s(M^fc) + v/0(fe)Sx(M)vFU) (18) 
β μ 

+ ν(ν-1) /„( / ί ) 2 5*(μ)γ Γ (μ) /2 
μ 

where we have put: 

ΐΗ(μ^^^^Λμ^^ηΑμ);1Λμ) = %Λμ)/^τ(μ) 

We write equation (18) in the form: 
l i 

X(u)= fX(u')ys(u'^u)au' + S(u) (19) 

idi: 

1 
S(u)=vfo(u)xF+ —v(v-l)Po(u)^fF 

+ =5 

X F = I x(u)yF(u)du 

M>F = | ^(u)yF(u)du = (total fission rate in the real system) 

Equation (19) is the neutron balance equation for slowing down with S(u) as an 
external source, and with x(u) as the collision density. In our case x(u) is a measure of 
the statistical dependence between the neutrons in the lethargy interval u. We see that 
this statistical dependence is fed into the system by the source S(u), which in turn owes 
its existence to the presence of fissions. This is in agreement with the considerations in 
Chapter 3. If we had no fission the source term S(u) would be zero and the solution of 

equation (19) would be χ =s 0. This is, in other words, the expression for the fact that 
in this case we have no statistical dependence between the neutrons in the reactor and 
y(u)—o. The neutrons in the system are statistically independent and the number of 
neutrons in a lethargv interval is therefore distributed according to Poisson's distribution. 
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