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STATISTICAL FLUCTUATIONS AND THEIR CORRELATION
IN REACTOR NEUTRON DISTRIBUTIONS

SUMMARY

The purpose of this paper is to establish a method for the determination of the autecorrelation
function of the ontput of a detector placed in a reactor.

The analytical formulas derived for the autocorrelation function contain the physical parameters
characterizing the kinctic behaviour of the neutrons in the reactor system. As the autocorrelation function
can casily be measured we have a useful tool for the experimental determination of these parameters.

The following work is divided into three main chapters. In parts A and B we give, for the con-
venience of the reader, a short summary of definitions and relations concerning correlation functions, Part C
is devoted to a generalization of a method elaborated by F. De Hoffmann, for determining the physical
explanation, as to how correlation between two count-impulses can arise.

In part D we develop a method for the computation of the statistical fluctuations of the number
of neutrons in small space- and energy-regions. This is achieved by expressing the space- and energy.
depcndent Boltzmann transport equation in an equivalent probability form. We used the Chapmann-
Kolmogoroff cquation for the necutron balance in the reactor and derived from the corresponding pro-
bability generating function the formulas for the autocorrelation function.

1 — DEFINITION OF THE CORRELATION FUNCTIONS

We consider a reactor as being in a stcady state with a small neutron detector D,
placed at some point in it.

We assume that each time a neutron gives rise to a count, a very sharp (voltage
or current) impulse occurs at the detector output. The height h of the impulse is taken
as constant ‘during the infinitesimal duration di of the impulse. h goes to infinity if dt
goes to zero in such a way that the area ¢ = h. dt under the impulse (which can be, for
instance, the total charge delivered from the detector through this pulse) remains finite.

If we consider the electrical quantity (voltage or current) at the detector oulput
as a function of time, this function x(t) will consist of a sequence of pulses. It is assumed
that the distribution of the heights of the impulses is independent of the distribution of
the pulse arrival time-points. This is due to the fact that a neutron, when entering the
detector, can release different amounts of charges according to a certain probability
distribution.

If the counter is opened for a very long time, a large piece of the function x(t) is
obtained. We call this piece a record and denote it by a*(1). I we repeat this procedure
very often, we get an ensemble of such records {x*(¢)}, k=1,2... where we can approx-
imate the range of ¢ by: — oo <t <4 0.

Such an ensemble of time functions {x*(t)}; — 0 <t<+ew:h=1,2,3 ... (perhaps
even uncountable) is called a stochastic, or a random process.

The form of the function x*(t) varies at random from experiment to experiment.
For any particular value of k the function x%(¢) is a determinate function. I the time ¢
is fixed, the function x*(t) becomes a random variable which we will call a:(z).

The expectation value of the random variable x(7) is given by averaging a*(1)

over the ensemble of the records:

Elx(t)} = <a* (1) > (1)

and gives us the mean valuc of the function x(t) at the fixed time-point ¢,
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Instead of considering the function x(t) only at one time-point t, we consider the
values of x(t) simultancously at two time-points t; and ¢2 and compute the second moment

given as the expectation value of x(t1) x(t2):
Elx(t)x(t2) } = <aF(65)a"(t2) > a0 (2)
If this second moment is invariant against a displacement of the time-points t;, t2

over the time axis, keeping their relative position fixed, then the random process is calied

stationary.

For a stationary random process the second moment (2) is therefore only a function
of the length of the interval between the two time-points 7 = |fo— ;| and we write:

Q1) = <xb(t1)ak (L) >3 (3)

The second central moment, defined by (we write x; for x(¢;))

E{(x;—E{v:D{xo—ElxuDl =< (xf— <x7;>1;) (x}é— <x]f_»>7.-)>k (4)

is called the autocorrelation function for the random process {x*(z)} and for a stationary
random process this takes the form:

F{r)= ®(7) — E{a; }E{xs} (3)
or

T(r) = @(r) —E{x}? (6)

as for a stalionary random process the first moment (mean value of the random variable)
<x*(t)>) is also independent of ¢.

For our special case of a random process (series of § pulses) it is very easy to

calculate the autocorrelation function.

We denote by

P’(7)drdt

the probability of having a pair of pulses separated by the time distance = where the one
impulse appears in dt at lime ¢ and the other pulse appears in the time element dr at the
later time t -+ 7.

According to (3) we have for the second moment

()= <g>?P'(7) (1)
This is only valid for r>0; for + =0 we have
$(0) = <ak(£)?2> = <¢*> P8(7) (8)

where P is the mean counting rate of the detector.

The second moment for the whole range of 7 is therefore:
P(r) = <g*> P8(r)+<g>2P'(7) (9)
As the pulse pairs separated by r may be correlated or uncorrelaled, we can split
P’(z) into two parts:
P(r)=P,(7)4 P(7) (10)
where

P,(7) is the probability that the two pulses of the pair are uncorrelated, that means

P,(s)=PP and



P(r) is the probability that the two pulses of the pair are correlated.

The uncorrelated pulses give us in:

<g>PP = <ak(t)>? (11)

the square of the mean value ol the detector ontput and formula (6) gives us for the

autocorrelation function:

T(r) =<g¢*>P8(r) + <q>?P(+) {12)

In the case of two detectors placed at different points in the reactor, we can proceed
in a similar way. The cross correlation between the detector outputs of the detectors D,

and Dy is now defined by the ensemble average:
B (7) = <xalt) 1L+ 7) > (13)
corresponding to the two random processes {x{f(l)} and {x’;,(l)}.
Analog to P’ =P’ we define by:
Py (7) drdt

the probability of having a pair of pulses separated by the time distance = where the one
impulse appears at the output of D, in the time element dt at ¢t and the other impulse
appears at the output of D, in the time element d+ at the later time 7 4+ 7, and we find:

Gl = <q.> <qp> Py (7)

The separation of P, in P, :Pu”z, + Py, where:

P, is the probability that the two impulses of the pair are uncorrelated: that
means P:,ll, = PP, and

P, is the probability that the two impulses of the pair are correlated gives us in

I3 k .
<go> <qy>P. Py, = <x,>;<xp>>; the product of the mean values of the counter outputs,
Subtracting this product form ¢4, gives us another form for the cross-correlation [unction:
1‘(111(7): <CI11> <qb> Pab(T) (14)

The Fourier transform of the autocorrelation function (second moment) has a

simple physical meaning. For this we take the Fourier transform to be given by

+ =
x (o) —_—f@(T)e“""dT
v (15)
1 ( ) ,f—iw-rd
(I’(T):g—_ xlo) e o

B

where we take ®(7) to be an even function of 7, as according to (3) ¢(r} depends only on

the absolute value of the difference of the two time-points lt,—1t; .

We see that:
+ e

1 .
(I)(O):-— fx(m) do = <x"{[,)2>k (1())

2=

-



If x(z) is a voltage or a current for a resistor of one ohm, the mean square of x(2)
is the mean power given to the resistor. Consequently x(w) can be interpreted as the
power density spectrum of x(t). The total power given 1o the resistor from the spectral
components of x(t) with frequencies between, for instance, v, and oy would be given by:

b

Lo = i x(0) do (17)

w

a

For the special form (9) using (11) for the second moment, equation (13) would
lead to:

X(u;ii: <q2>P 2= <x"'(1)> 78(0))—|— <q>2P(aj) (18)

2= 8(0)):f€“‘” dr

42

P)= [rp(s)ds

where we have put:

We see that the first term

<g*>P is constant over the whole frequency range and corresponds to the white noise
yresent in the pulse series,
1

that the second term

2x <k (1) >78(m) gives only a contribution for o« = 0 in the form:

X(0)do =27 <x*(1)>*  and corresponds to the power given to the resistor by the d-c-

component of x(t) and

that the third term <<¢>?Pl{») is a function of o and is due to the correlation between

pulse-pairs.

As the correlation [unction is given by
T(r)=®(r) —E{x(t) P = <[a*(t) —%|[2*(t + ) =X >

the Fourier transform of I'(7) gives us the continuous power density spectrum (mean value
ol x(t) subtracted !) and we obtain:

Blw) = <q2> P+ <q>2 P(w)

where (20)

boas

q’(\u)):f]‘(?) évrdr

—_»

We therefore arrive at the important result: The power density spectruin and the
autocorrelation function are coupled by the Fourier transformation. An analogous formu-
lation defines the “power density” for the cross-correlation, which has no immediate

physical meaning.



1.1 — Effect of linear systems on random inputs

We know, that the output of a linear system is given by:

13

y(t)=fx($) R{t—¢)ds (21)

o

where x(£) is the input at time £ and R(t) is the output at time 7 if at time 0 a §-impulse
with area 1 appeared at the input.

We shall first explain relation (21) if a random input x(¢) is in action.

We shall assume that a determinate function R(t) is given and the integration
interval (o,t) fixed. In that case operation (21) gives a certain numerical value of w(z)
for every ensemble x%(¢) of the random variable x(t):

t

y'f(t)=fx'f(s) R(t—¢)d¢ (22)

o
This value varies in a random nanner {rom one realization of x*(t) to another. This

means that for given R(¢) and integration limits the integral transformation (21) is a ran-
dom function of the realization number k of the random function x*(t).

As we can interpret an integral as a limit of a suin, we can interchange averaging
over k and integration and f{ind in this way, for instance, for the first moment of y(¢)
(the mean value of the output):

<y"(t)>z.-:f<x"(£)>z;R(t—$)d§ (23)

For a stationary random process we obtain (as the process is stationary, the input
is present since t — — )

t an

<y> =<a> fR('t—é) dé = <:c>fR($)d$ (24)

For our case (series of impulses) we found (11)
<x>=<q>P

and therefore have fov the mean value of the output of the linear system

<y> = <g> PfR(t)dt (25)

]

In the same way, we can compute the second moment (autocorrelation) of the
output:
[ 2

Lyk () 5 (L) >x :fd&fdf: <xk(&)ah(E2) >R (6 —&)R(t2— &) (26)

9



For a stationary process the second moments for output and input depend only on
the absolute values of the time differences |t1——52{ resp ‘51—52[ and after some trans-
formation equation (24) gives

Bo(r)= f Biu(t) Bi(r—r) dt (27)
where
B ()= f R(£) R(E+ 1) de

and ®,(7) is the second moment for the output and

®;(7) is the second moment for the input
It

For the autocorrelation functions we find the relation:
+

To(r)= f ()T (r—1) de (28)

The power density spectrum of the output can be found by taking the Fourier
transform of the autocorrelation function of the output and with the aid of (26) we can
express this in the form:

Ty (0)= [R(0) T () (29)

where:

1"i(0) power density spectrum of the input (Fourier transform of the input auto-
correlation function according to (13))

To(w) power density spectrum of the output

‘R((I))P: IR(U})R:;.((D)I with (30)

+ )

R(m):j‘ng)o"‘”E dé :fR(g) etdE  as

- 0

R(t) is equal to zero for <0.

1.2 — Random transfer systems

We can generalize somewhat from the results of the foregoing chapter if we allow
for the possibility that the response function R(t) used in the integral transformation (21)
is itsell a random variable. By this we mean that the response function R(z) is also a
function of a set of parameters (a1, as, ... a,) which are random variables with a joint pro-
bability distribution function: R(t, @1, as, ... ay}. For a given set of «’s, this function is a
determined function over the whole range of . To find the response of a §-unit impulse,
we have therefore to draw a batch of a’s out of the corresponding distribution for the a’s.
We take the integral transformation (22) now in the form

+ oo

yk(t)=fx"(t—E)Rté,ﬂs‘!dé (227)

— =

10



where «; stands for the set (ai, @, ... ¢,) and 1he index ¢ indicates that we have chosen the
values a; for the 8-impulse arriving at time (r—§).

The mean value of the output becomes:

+ =
<yh(t) >4 =f<xh(t—§) >n <R(E ag) >dé

<y> = <.\'>fR,,($) dé

where <R(§,a¢)> = R,(£) denotes the mean value of R(¢, a;), averaged over the ustri-
bution of the random variables a,. For the second moment we find the relation:

+ = T+
<yh(t 4+ T)yh(t) > :fd§ dp<lat(t—&)ah(t + 71— > <R ) Ry, dy-r) >
and for stationary processes:
+ ==
@,,(r):f(b,-(-r—t)(I);,;,(t) dt 27)

=T

su(t)= [ <REeORE+a,,_)> de

As the choice for the values of the «’s at the time-point ¢ is independent of the
choice for the values of the o’s at the time-point { +t—17 il ¢ r, we have:

+

‘I)hh(L):fRo(g)Ru(g + [) dé t=+r

—®
4

<r>,,,,<7>=f<R(s>R<g+v>>d§

-—

An analogous formulation holds good for T',(7). We have only to replace ®;(7) by
Ti(7).

In an example we consider a transfer system whose statistical properties are given by
the following probability distribution for the output:

p(& h)dh df  is the probability that the system emits an impulse in the time ele-
ment dé at time ¢ with an amplitude in the range h..h + dh due to an initialing §-im-
pulse entering the system at time £=20.

We obviously have:

+ e

<R(E)> =Ro<§>=fp<§,h‘md hdE= <q> p(é)

—e

11



with h dé = <¢.> = mecan area under the (8) impulse, and
<RERE+7)>=<p&h)dhidéplé+ 7 ha)yd hadr>
= <@>3(7) p(&)+<g>?p(&)p(é+ 1)

Herc we make the assumption that the distribution for the height & of the impulse
is independent of the distribution for the time-points of impulse-emission.

For an uncorrelated input of 8§ impulses (all of the same height) we obtain for the
corrclation function of the output:

].‘,,(T):fl‘i(‘r——l) ‘I’},),([) dl;

=S Dy, (7)

because:

Ti(r) =S 8(r) with S as the mean rate of the arriving 3-pulses.

With the formulas for &y, (r) for our special system we obtain:

= =2

Tyir) =S <> S(T)f,)(g)dg+s <(1>2f1)($)p($—{—7) dt

o o
=

fp(é)d;‘ is the mean number of pulses emitted by the system due lo an initiating 8-pulse.

[

Then Sfp(é)dg = C = mean rate of pulses at the output of the system.

[

e

S [ p(é) plé+7) dé = probability 1o have a pulse pair separated by the time distance =
- at the output [P(7)]

o

Finally we can write:

Do(r)=C <qg*> 8(r)+ P(7) <q>?

We sec now that we have at the output of our system a random series of §-impulses
with a correlation term. The important conclusion is that two pulses at the output are
correlated only if they belong to one and the same response of the system initiatied by
one of the incoming §-impulses. Pulses at the output generated by two different incoming
pulses are uncorrelated.

We now consider our system to comsist of a subcritical reactor with a neutron
detector. An external source injects neutrons and each source neutron starts the evolution
of a neutron cloud which gives rise to a series of impulses at the detector output. In this
case our result reads: two pulses at the output of our detector are correlated only if the
two neutrons which gave rise to the counts belong to one and the same neutron chain
initiated by one source neutron. Two count impulses arising from two neutrons helonging

to two neutron chains initiated by two different source neutrons are uucorrelated.



Up to now, we have considered only small neutron detectors. which stmultancously
represented the counters. In the general case, we can have many small detectors, all
feeding in one counter. We allow for the possibility that the different detectors have
varying degrees of efficiency for different energy regions. To account for this we divide
the reactor volume into small space cells S, and the lethargy axis into small lethargy-
intervals U, and imagine the detectors to be distributed over these space-lethargy inter-

vals (v, u).

The correlation function for the counter output now takes the form:

T 221'““,-“-(7) (31)
vu
ot

where T”IJJ”#'(T): <qpu qy"u'>Pyu 8(7)81/#]!'#' —+— <(]u;1> <q:r'//.'>1)x'u. V'u‘(\".)

and the summation goes in the case of

autocorrelation:

in both index pairs over the intervals of one counter, and in the caze of

cross-correlation B

in the one index pair over the intervals ol the one counter and in the other index pair

over the intervals of the other counter.

The corresponding power density spectrum becomes:
g Y sp

r(“’) :z<q2uu> Px'u. —+_ Z<qyu> <(]u~uv>P,lu o hu) (32'
v v
v

and for later use we note the Laplace transform of the correlation function:

famd

L) = S<qu> P+ 3<qu> <quw> Py (5)
~ v i vt

1 2
=—Pqg*+ q P(s)

)
where:

P :EPM? r (I_ZZZ <q2v#> Puu: Pis) :zl)!'ﬂ e (s)

ik v i o't
We repeat the meaning of the symbols:
quu  height of an impulse initiated in the detector D,, placed in the space cell S, by a
neutron with a lethargy in the interval Up.

Pyuyu(v)  probability density for pairs of correlated impulses separated by the time
distance 7 where the first count is recorded in D,, produced by a neutron with a
lethargy in the interval U, and the second count is recorded in D,,. produced by

a neutron with a lethargy in the interval U,.

The fact that two impulses can be correlated is due to the mechanism ol the
neutron chains.
A source neutron injected in the reactor generates a neutron chain. This neutron

chain spreads out in space and time and two neutronz ol this chain can give rise to two

13



counts: one count in Dy, in the time interval dt at time t and the other count in D,
(or in D,, again) in the time element dr at a later time T =t} +. These two counts are
correlated in that the recorded neutrons belong to the same chain. Two counts arising
from two neculrons belonging to two neutron chains initiated by i1wo different source

neutrons are uncorrelated.

The measurement of the correlation [unctions therefore gives us, apart {from some
constant factors, the probability density P,u.. (7). If we succeed in deriving an analytical
formula for P,,,,. (7} in terms of the physical parameters characterizing the kinetic
behaviour of the neutrons which produce the counts in D,, and D,,, we obtain some
information about these parameters by measuring the correlation function.

14



2 — DETERMINATION OF THE PROBABILITY DENSITY
FOR CORRELATED PAIRS BY A COLLECTING DEVICE

Instead of measuring the correlation function to obtain some information about

the probability density P, ,. (), we can proceed in another wayv.

We lead all the charges carried with the pulses emitted at the counter output into
a collecting device and denote by Q(T) the total charge assembled in this device in the

time interval T.
Q(T) as a function of time can be represented in the following wav:

Q(T)ZZ% Y(T —t,) (1)
where Y(T) is the unit step function.

We then have:

PN =< SY(T—1)> +§ < SY(—1)¥(T—15)>
a aB

where in the first sum each term gives a one for each impulse and in the second sum we

have a one for each different pair of pulses.

Therefore:

< ZY(T—IQ) > — M = mean total number

of counts in the time interval T

<ZY(T—ta)Y(T—t6) >=MM-1)=M*-M
aB

The mean value of the total number of ordered pairs is given by:

My M—-M
2) 2
2
: .M
aud is made up of the mean number of uncorrelated pairs — and the mean number of
correlated pairs M..
This gives us:
2
M—M =M + 2M. (2)

For the mean number of correlated pairs we have the expression:
T T—r

M.(+) :f fP(r)dtd-r 3)

P(r) is here the probability density for a pair of pulses separated by the time
distance 7.

We insert this in the expression for Q? and use the fact that the mean value of

the total charge assembled up to time T is given by:

Q= M.§ = P.T.3.(P = counting rate)

15



This leads to:

T

24 f(T—T>P<7>dT )

v

92_62 =TP

y

e}

We take the Laplace transform of this equation and obtain:

L{Qz Q }———{Pq +2q P(s)}— S(S) (5)

As usual, we put:

~

*=0Q +6G(1+0Q

and have
2

Q'—Q =G(T)+Q

Q is given by T.P G =T.I. (I, is the mean current into the collecting device). We have:

L{Q Q}_ s)—l——

and therefore:
(5a)

2T (s) =s*G(s)+ 1.
All we need therefore, is a method to compute the function G(T).

The power density spectrum I'(w) can be found from the Laplace transform I'(s) by:
T(w)=2 Real{I'(s)} where s has to be replaced by (—iw).
] 2
The equation _9—52L [Q*—Q ] =T(s) is naturally equivalent to (by taking the

Z

inverse transformation)
32 2

[Q*) —Q (1)]1=T(x)

which can immediately be seen by dlfferentlatlng twice the equation (4).

This is a general result. We consider the stochastic process {x*(z)} and introduce

the following integral transform of «*(z) as a new stochastic process:

T~

0H(r)= f @) dé

o

We tlien have:

Q)= <Qr)>r= < [f x“"(é‘bdéJ;k

— f g)dg—f ) dn>;
= fdg'fdn<x"’(§)x"‘(77)>k

16



With the definition of the correlation function this can be written:

<Q"(r)’>;;———fd$fdn O (7—§)

and after a change of the integration variable »—£=209

QM) P>y = 2f (r—8)@(0)d0

[
This formula gives us:

1 @

2 o

0 () = @(r) and

1 ©2 — _2 .
E' o [Q*+) —Q ()] =T1(7)

If we apply our consideration to the specific case q¢ =1, which means that the
collecting device simply stores the number of pulses up to time T, we obtain:
. .._‘2
M2—-M 2M.
— 1=""L=w(T) (6)
M M

The principle of an experimental method for thie measurement of ¥(T) is described
by A.L Mogilner (5).

We notice that the quantity ¥ would be equal to zero, if the pulses arrived
statistically independent of each other, i.e., if the time-points of the arrival of the impulses
are distributed according to Poisson’s distribution. The deviation of the real arrival
distribution from a Poisson distribution gives an indication for a correlation between
the individual events. ¥ therefore gives us a measure for the corrclation between the
pulses.

We see that each of the quantities

(a) the correlation function I'(7)
2

(b) Q*—Q
(c) \If(T)_—_M——l

stands in relation to the probability density P. The measurement of each of these quantities
therefore gives us some information about this probability density. To compare the
experiment with theory, we must have some analytical formula for some of these quantities.
In the following chapters we give some methods of deriving the necessary analytical
formulas.
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3 — SIMPLIFIED COMPUTATION OF THE PROBABILITY DENSITY P

The two neutrons which produce the pair of correlated counts derive from the
same chain. These two neutrons can therefore be traced back to one common fission
process. We take this common fission process to be the most recent common fission
process. Let v fission neutrons be released at this fission process with probability p,.
Some of these fission neutrons appear as prompt neutrons, the other fission neutrons appear
as delayed neutrons. We consider the place of the common fission process as a neutron
source which at the moment of the fission process emits (1—pg)v neutrons as prompt
ueutrons and subsequently Bv neutrons as delayed neutrons according to a certain emission
distribution.

We introduce the quantities:

x the place of the common fission process

¢’ the time-point at which the common fission process occurred

s the time-point of the emission of the neutron which generates the chain out of which
one neutron gives rise to a count in D,,

r the time-point of the emission of the neutron which generates the chain out of which
one neutron gives rise to a count in D,.,. (or in D,,) at the time r later.

According to the properties of the delayed neutron emitters we have for the emission
probability of neutrons from the place where a fission process occurred:

e()=(1=p)8(t)+ SPihie ™ FBi=f 1)

We account for the fission spectrum by the following definition: R(v, p;x;¢t) is
the number of neutrons in the interval S, U, at time ¢ due to one fission neutron starting
at time zero in the cell S..

We now calculate the probability of having one count in D,, in the time element
dt at ¢t and another count (from thc same chain) in D, in the timec element d+ at the
time ¢ -} 1.

The [ission neutron which leads to the count in the interval D,, in dt at ¢ has pro-
duced R(v,u; x; t—s) neutrons in D,, at time t.

The probability that we shall have a count in dt due to one of these neutrons is
given hy:

dt
R{vou; x5 t—s)v(p) Z(Va#)dt =R(vp; x5 t—5)—F

detector C(th')

The fission neutron which leads to the count in D, at time ¢-} r has produced
R(v'y',x; t4-7—r) neutrons in the interval D, at time ¢ -} 7.

The probability of having a count of one of these neutrons in dr in D, is given by:

R(v.u; x,t 4+ r—r) ———dt
lc("l#’)
The probability for both of these events is then:
dtdr
R{vips x5 t—s) R(Vioast Fr—r) 7
Le(vop) Le (v'p') (2)
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We now have to sum this expression over all conditions which lead to this pair
of impulses:

(1) The probability that v neutrons are released is p,

(2) A pair of two of these neutrons generate the chains out of which the counts
are produced. There are 2(s) = v(v—1) such pairs of fission neutrons which can assume
the role of the initiating neutrons leading to the counts.

(3) The two neutrons leading to the counts can be emitted between ¢’ and ¢ (resp.
t and t - ) according to the emission probability e(z):

t t+r
fdsfdre(s——t’)e(r—t’)

(4) The time point of the fission process can lie somewhere before t:

1

fdt’...

(5) The position x of the common fission process is distributed according to the
distribution ®(x)Sr(x), where @ is the neutron flux in the reactor for the steady state. The

steady state can, for instance, be maintained by a source of neutrons in the subecritical
reactor or it can be represented by the critical state.

We first collect the terms due to time integration:

fdt’fdsfdre(s—t')e(r—l’)R(v,,u;x,t—s)R(v’,,u',x,t+ T—r)

The substitutions s—t' = §,r—t' — 5 change this expression into:

17—t

fdz’fdée(é) R(v,‘u,x,t——t’——-g)fd'r] e(m)R(V i s x,t47—t/ —9)

As R(v,u;x,t) is zero for t<<0 and e(z) is also zero for z < 0 we can transform
this expression into:

fdt'fdge(é)R(v,/,L,x,t——t'—g)fd'r] e(n)R(v',/.L',x,t+T—t'—n)

and with t—t'—a we come to:

fdafdge(g)R(v,‘u.,x;a—.f)fdn e(nR(Vu'x,at1—7)

]

The lower boundary (0) in the integral over a can now again be replaced by (— «),
as, if o« becomes negative, in the second integral over £, £ must become negative to have
R{a—§) different from zero. But for £ negative e¢(£) is zero, so that we get no contribution
at all for @« < 0. Finally we arrive at:

T e

f ¥ (v 30) ¥ (v s 7)

— =

19



where

+ =

¥ (i) = f R(vyprvsa—£) e(8)dt

—=

¥ (vopox) = 0 for a < 0. (3)

For the probability density we obtain:

+
1
Pvu.ww(T):’Z pVV(v_l)ic(V‘u.)lc(v,p.’) f‘I’(x)Sp(x)dxf‘I'(v,‘u,x,a).‘I’(v',u.',x,a + T)da
spaco —

and we have the property that

Pvu.,v'u.' ( —T):Pv'u'.vu(+7)

The sum Xp,v(v—1) gives us the mean value v(r—1) if there is only one fissionable
isotope (for instance U235) present. If we have more than one isotope and if we assume
that all parameters determining the fission neutrons (fission spectrum, decay-time con-
stants) are the same for all isotopes, we have to replace Sp,v(v—1) by X; 7,-Zpi(v)v (v—1),

14

with v; as the fraction of the fissionable material due to the isotope i and p;(v) as the
probability for releasing v fission neutrons by a nucleus of the isotope i in a fission act.
We then have:

(i)

Zy;zl);(l')v(v—l):zw v(v—l)

14 i

To calculate the power density spectrum we need the Fourier transformation of P.
For this we consider first the following transformation:

fd'r e"“”'[ fl(a)fg(a—[—'r)da]

which gives us: f*(w) f2(w) where «* is the conj. complex of a. If f(y) is of the form:
+ =
1= [hiy—o@as

then the convolution theorem leads to:

_f(w) = h(a)) g(w)

Using these results for the transformation of P (v,n,’,s/7), we obtain:

, viv—=1)|e(w)|? . .
P(th’v afk 7‘”) :m)l f(I)(x);(x)Rm(Valirrs‘-”)R(V’#",,x,w)dx (33)

space x

The integration over the space has to be extended only over those regions of the
space where the macroscopic fission cross-section is different from zero. This is obvious,
because the source of the correlation is concentrated in the fission processes. Our derivation
of formula (3a) caun therefore be applied to a situation where we have, for instance, a
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small space region in which fissions can occur (converter plate) and the space between
the fission source and the detectors has only moderating properties for the neutrons. In
this case the function R contains those parameters of the medium which are important

for the diffusion and moderation of neutrons.

The same method could be used for an experimental arrangement with a pulsed
neutron source. A neutron pulse coming in this case from the source is in analogy to
the fission burst in our derivation. Apart from this point, which gives us that part of
the correlation which is due to the spatial distribution of the neutron source (at the fixed
time-point of a pulse) we have to take account of the fact that the individual pulses are
now no longer independent of each other; instead the time-points of the bursts are
strongly correlated because these time points are controlled by electronic devices.

This gives us another source for correlation and we must consider not only neutrons
from one burst but also neutron pairs from bursts at different times.

For the application of the formulas (3) and (3a) for P, we consider only the simplest
space- and energy-independent case. The formulas take the form:

a

P(r)= _”(_”lz;llp fda‘lf(a)‘lf(a—}—'r) (4)

with
+ e

‘P(a)=fR(a—§)0($)d$

and
—1

Plo)= —vgv—lz—lF[R(a))e(c))lz (5)

here we have put &=, = F = 1otal fission rate.

If we neglect the delayed neutrons (8 =0) we have for R(t} the number of neutrons

present in the reactor at time t generated by one fission neutron starting at time ¢ =20.

R(t) = e (6)
with
1—k
o= —
l
e ! (1t'1't'ft)k'v
= 1 1cation 1acior})— — v v Xp
1 s 1+L2B2 multip ] 1 l;
1

l=1,(1 4 L?B?)~' (total neutron lifetime) [, =

v,

We define the detector efficicney as the probability that a fission process will be

recorded (e = 3¢/3F).

The counting rate P of the detector is then given by P =:F.
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Now we find from equation (4) with

¥(a) = R(a)
P(T):—-———V(V;l) F e_‘"fe_gasdf
or:
vl Ko, (7)

P(r)=P 2 2a 2

v

This is the result given by F. De Hoffman (1) and J.D. Orndorff (2).

For the quantity ¥(T) we find with the aid of (7)

y(v—1) 2 (1_1—e‘"] )

¥(T)=c¢
(T) T —

If we take into account the delayed neutrons, we have to find R(t) as the solution

of the kinetic equations

dn k-1 k
B + Ep/\,,C,,

= n— n
1

de 1
dC kB (9)
TR
under the initial conditions
n(0)=1
Cy(0) =0 (10)

The Fourier transformation of the equations (9) under the conditions (10) gives us:

CiwR(0)—1="T2R(w) :"TﬂRw)Jr 5 ,Cylw)

l

0 Cyl0) = _x,,c,,(w)+’“f” R(w)

Upon solving for R(w), we have

l 1
R(ow)=—
=75 , (l B ) (11)
— —lw —_ + 3
k k P /\,,—iw
The Fourier transformation of the emission probability e(f) is found to be
A
elo)=(1—-p) +3 22
P Ap—lo (12)
=14io 3 Py
L4 /\p—iw

Finally we arrive at:



where

1_55,\/15
T(S)= 71— — 5 (13)
—— S|+
P (k+fu\,,+5)

We again have e = P and equation (5) gives us for the power density (E.F. Ben-
net (3))

p—1 .
(o) = <> P+ <g>? Pt 1) 2 (14)

2
v
The formulas for the probability density P(v,u;v'p’;7) can be generalized if there
are more possibilities which lead to a correlation between two pulses.

We shall mention one generalization which arises if fission chambers are used as
neutron detectors.

In this case we have the fact that a fission process can be recorded immediately
it occurs and the released fission neutrons travel outwards starting neutron chains, and
neutrons out of these chains may possibly lead to counts at a later time. These two counts,
the first at the moment of the fission process, and the second through a neutron out of
the chains generated by the fission neutrons, are therefore again correlated, in that their

cause lies in the same fission process.
The derivation of the probability density for this correlation goes as follows:
The probability of having a count in dt at time ¢ (a fission process) is given by:

Ec (V7IJ~)

(I)(Val-") E(Vvl’l') s, dt; (I)(V’IJ') = U'N(V’IJ')
F

a(vap

The probability that one of the released v fission neutrons will lead to a count in
the detector D, in the time element dr at the later time -7 is:

fe(f)R(V'#',v,n—é)dé v(p)Z (V') dr

For the probability density P, v (7) we find:

f R( oty —) e(8)div(p)Se(v)  (15)

- Selvep)
Py (1) =v @ (v,u)Sp (vop) —————
wele) () 3r (o) Sa(vep)

In the space and energy-independent case, formula (15) gives us the term (first

without delayed neutrons, ® = vV):
3F

Pr)=v—— 1?32 Ne~or
sS4 ‘
k 1

P(T):P——ie_“"'("/: ) (16)
T/ ‘UEF
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The presence of delayed neutrons changes equation (15) in this case into the form:

r

Pry=v 3Nk [RG—8 cl)ds

o

and for the power spectrum we obtain:

P(w):P8—k2Rea1 (T(—iw)) (17)

v

where we have made use of tlie fact that we must have

P(r)=P(—7)

We must point out that the method of calculating the probability density described
in this chapter is only a rough approximation and is only for the purpose of giving some
insight into the cause of the correlation.

We have made some approximations, for instance:

(a) that it is always the same portion of fission neutrons that is released as prompt
neutrons and the seme portion (f) of fission neutrons that is released as delayed neutrons,
and

(b) we have replaced the number of neutrons in the interval (v,u) at time ¢ due
to one fission neutron starting at time ¢t = 0 at the place x by their mean number, which
could be calculated from the Boltzmann equation.

To remove, for instance, the approximation mentioned under (b), we should replace
the product:

R(vyux,a—&) R(v'yp!, xa47—§)
in formula (3) for P(r) by the mean value:
<R* ( Volhy X0 — g) R* ( V,’IJ',ﬁxia + T— §) >

the computation of which is a more involved problemi. We shall see that the study of
2
this problem is connected with the problem of calculating the quantity (Q*—Q ) which

we considered in chapter B.
2

But as the exact computation of (Z)—z—a ) already gives us the solution to the task
of finding the correlation function, we do not need to revert to the formulation showing
this chapter. In the next chapter, we start to deal more precisely with the treatment of the

statistical fluctuations in a reactor.
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4 — STATISTICAL FLUCTUATIONS
OF THE NUMBER OF NEUTRONS IN A REACTOR

We mentioned in chapter 3 that we want to find an exact expression for the quantity
2

Q*—Q , where Q(T) is the charge in a collecting device and is the sum of all charges given
to this device in the time interval T by the small detectors distributed over the reactor.
We have therefore to consider the whole system consisting of the reactor and the collecting

device, which we can characterize at any time-point ¢ by the following quantities:
(a) N,,: number of neutrons in the interval S, U,

(b) Tyu: number of delayed neutron emitters of type ! in the interval S, which
on decaying give neutrons in the interval U,

(c) Quu: total charge delivered from the detector D,, up to time t.

What we have to do now is to write down the probability for the change of the
state of the system in a time element dt and then to construct the equation for the
probability generating function (p.g.f.) for the probability of finding the system in a given
state at a given time.

We know that the p.g.f. gives us the equation for the mean values for the quantities
which characterize the state of the system. This equation must coincide with the Boltzmann
equation for the neutron population of the reactor. We therefore choose first the form
of the Boltzmann equation which we want to derive from the general equation for the
p.g.f. We take the Boltzmann equation to be of the form:

éﬁ%ﬂ = —-U(U)ET (x’u)n’(xsuyt) +fn(x’u’st)v(u,)xﬂ (x’u"_)u)du,
t
S a Dia,u,t) D (w)An (xu,t) + S(au,t) + F n (1)
arl (x’u’t)

= —nT(xut)+Fin
ot

The symbols employed have their usual meaning.

Fn=(1-8)fo(u) fn(x,u',t)v(u' Sr(au’)v(u)du’

Fin = g; fi(u) fn(x,u’,t)v(u’)Ep(x,u’)v(u')du’

n(x,u,t)dx du: number of neutrons in the volume element dx and in the lethargy interval
du at time t.

v(u): velocity of the neutron with lethargy u.
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%,(x,1) : macroscopic total cross-section at the point x for neutrons with lethargy u.

Ty (xa,t)dxdu: number of delayed neutron emitters of type I in the volume element dx
which give neutrons with lethargy in the interval du.

S{a,u,t) dx du dt: number of neutrons in the element dx du emitted by an external source
in the time clement dt.

+w
n(xut)v(w)s (x> u)du’ du dt dx: number of neutrons scattered into the element

—= dxdu in the time element dt from all the other lethargy elements du’.

D () An(x,u,t)dx du: number of neutrons leaving the element dxdu per sec by leakage.

+ @

Fndxdu = (1 —,B)_/,,(lb)fn(x,u’,t)v(u’)ip(x,u’)v(u’) du’ dx du: nuinber of prompt neutrons

— ®
generated in dx du per sec. by fissions in all the other lethargy elements du (f,(u)

fission spectrum for prompt neutrons.

We now use the following approximation:

, e—-a|z’—xl . e-—-a.|x’—x| . 1
ff(t) 4| —x|? dT_f(x)fL—.lx—-x'P dr = 3a? Afix)

all all
space space

Il we take the arbitrary function f(x) as n(x)v ¥;= ®(x) X; (¥, independent of x)
we obtain:

( ean.f.l“—.\'[ d ( ) c—a’x’—:d S(s

G2 ) Sy——————dr— D ()3 dr = Ad(x 2
f ) 47l —xf? h~]<47r|x—x’[2 3a? ) 2)
all all

space spaco

where we can choose « in such a way as to obtain the used D through

v(u) 3, (u)

D(u)= 5

These two integrals give us a simple formulation for the leakage term:

A neutron can become scattered without energy change from one point x in space
to another point 2’ in space.

The first term in (2) gives us all the neutrons which are scattered into the unit volume
around a per sec from scattering collisions in all the other volume elements of the reactor,
and the second term in (2) gives us all the neutrons which are scattered out of the unit
volume around x per sec to all the other space cells of the reactor.

26



This is in symmetry with the scattering collisions in a volume element which lead
to a change of energy where the neutrons remain in the same volume element and only
change their lethargy interval

Now we are ready to establish the equation for the neutron balance. We look for
the probability of [inding the system at time (¢ 4 dt) in the state given by the numbers
(qu Ty (’901’#) :

P(NV,LL7 Tvuc,Qm: t)

We have in general:

P(Nvu§rvue§Qvu§ t+dt):P(NV,u;ru,uc§QwL§ I) ><

(Probability that nothing happens in dt) 4+ X (Probability for a changed state) X

changed
slates

Probability for the change in dt which after dr gives the right state.

Now:

Probability that nothing happens in dt =

1- Probability for a change out of the state (N3 Tipes Quu) in dt

overall
possible
changes in dt.

We collect now all the possible state-changes in dt out ol the statc  (Nyu; Tipes Qug)

(with a minus sign) and into this state:

(a) We have at time ¢ the state (Nyu; Tipes Que) and the source emils in dt a neutron, or
we have at time t the state (N, —1: Type, Qsp) and the source S,. emits one neutron
in dt:

P(Nv#; Topes Quu) [—ZSWL dt] +Z P(NWL'— 15 Topes QWL? ’)Sl'# dt
vi i

In the same way we can immediately write down the other possibilities (we mention

only those quantities which change):

(b) p[—zxermdt)Jrzp(Nm—l;1‘W+1>(rm+1>,\edt

vie vpe
(¢) P[ ZNV# v(f-")ES (Vl*_):“")) +ZP(NWL +1; N,uw—l) (va. + 1) ‘U(I-L)Es(l’, p—>p)dt
" n
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((1) P (—ZN"” Uy .\.:1-(/1,, v —> v')dt)—f—ZP(Nm + l,N,,-#-—l)(N,,,,_ + 1) vy ST(‘u. v —> v')d’t
u.v;’:u‘ u,v;’:v'

(e) P (*wa v :,;(V,L)dt]-#ZP(NM + 1, Cou— o) (Vo 1w Selvan) T (q)dt

vi VEqG i

() I)('—ZNW- Uuz (".“')dt]‘f‘z PNy +1—nu; Ny — "u';rupc_ym')
Vi a Via
L

(N + 1—mu)vp X (v dt Py (s oe)

Here we have introduced:

Y.(vp): macroscopic cross-section of the detector material in the space cell v for neutrons
with lethiargy in the interval

“,u(q) : probability for the generation of the charge g through a neutron capture in the
detector material

Yo (vp): macroscopic absorption cross-section for fission and y absorption
iu - S-l + i",’

Nr(umv—>1'): total macroscopic scattering cross-section for a scattering out of space cell v
into space cell v

Sg(vu— ) : total scattering cross-section for a scattering out of lethargy interval ;. into
lethargy interval u’

Py (74, yoe) ¢ probability that a neutron capture in reactor material leads to the generation
of 5, prompt neutrons with lethargy in the interval p’ and to the generation of v,
delayed neutron emitters of type e¢ which leads to neutrons in the lethargy inter-
val p.

The neutron balance equation now reads:

P(¢t4dt) —P(t) = expressions (a) 4 (b) 4+ ............ (f). (3)

The p.g.f. for the disiribution P is defined by:

- . . Nuw  Qua Tigo
F(.X,,,“ Yl'uq Zwu') = Z PN s Vopes QU}L)XWL YV)L IT Zup.e

Ny Quu Tiso .

We therefore multiply equation (3) by the factor of P in equation (4) and sum
over all values of N,u, Toue, Qyp
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In this way we obtain the Fokker-Planck equation as an analogous stochastic

formulation for the Bolizmann-equation (1) (5)
or YS (X DF 4 S A( Zoe) oF
2t == viL v W'th e vu."‘ vie azyue +
or oF
+Zvn v — Xou) S5 (vy p— ) = +Zuﬂ_,w =) (K= Xo) ——
vpp' oXou vy’ X
oF oF
—'—%‘U,L pOpS 1',/1) (X,,#—X,,ﬂ) +;L# ..‘lh,‘u) (D, l'#) qu

where ®,,(x,,) is the p.g.l. for the distribution P,,(7,,):
Yﬁﬂ
Vn—zpvu 77#97/30) II pr,' I1 vae
v w pe

Xyp = Z I1 ‘VCI)YZ;L
q

vi

We have here:

<
=
P,= (1_ S J oo. n"/’*‘ Pm(’?’/)

-—tl "'IL
with p,. (7., vc) as the probability for the generation of 5, prompt neutrous in the inter-
val p/ and vy, delayed neutron emitter of type e which give neutrons in the lethargy inter-

val p by a fission act in the interval (v, ).

As:
E 11 (q) :ZI)I’M' "77"/) =1
4 vik v
we have, if we give the value 1 to all variables X, Y, Z:

Xvn — 1; (I)y# =1.

We notice that we have in (5) one term for the detecltors and one term for the
fissions (absorptions). This is due to the explicitly stated assumption that we can have
an absorption in the detector material () which can lead to a count (according to =,,:
we can have 7,,(0)7 0) and an absorption which can lead to fission (or parasitic capture).
Here we consider every fission process which leads to a fission, whether we have or we

have not fission neutrons, as a fission process.

It can happen, as we mentioned on page 23, that an absorption process leads

simultaneously to the gencration of fission neutrons and charges (counts). In this case
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we have in equation (5) only one term for the ahsorption process instead of the last two
terms.

This term is then:

ol

Z vu X lvyp) (‘I’lm Xou— XWL) v (6)
” Xy

with @,, as in (5) with X4 =X, 4 =, and x,, is changed into:

q

Xpp = Z 11 (:q)Yy,u,
P Vi

where now:

o (g

L v

<
N

-1

* Se
In = (l— ] 80!1+

«
Vi

Before we proceed 1o draw some conclusions from the general equation (5) we make
some assumptions about the p.g.f. ¢,, for the distribution py,. This is now the place to

remove the approximation (a) shown on page 24, where we assumed that the same portion

of prompt neutrons ((1—pB)v) is always released in any fission process. But this statement

is only true in the mean and we must take account of this.

A plausible physical hypothesis (Raievski, (4)) enables us to calculate in a simple
way the p.gf. ¢,. As in a fission process we almost always have two fragments, it is
improbable that both fragments are excited to such an extent that they could emit delayed
neutrons. We assume, therefore, that in a fission process there is at most one {ission
fragment which emits one delayed neutron. In that case there are only two possibilities

which can arise in a fission process:
(a) all v fission neutrons appear as prompt neutrons (probability P(v))
{b) one neutron appears as a (lelayed neutron and the other neutrons are prompt

ncutrons (probability 1—P(v)).

If p, is the probability that a fission process gives us v {ission neutrons, we must

have for the mean number of prompt f(ission neutrons:

1=y =X p, [Pv)v +(1—P()) (v —1)]
or.

l—B;:.?;p,,P(v)

which gives us:

~
[
—
i
»
™
|
alZ
™
a
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The p.g.i. can now be written:

(I),,# =

= 14

Pou(p) [(1—=Bp) 3 polyrga...) 11 AW
- A

MmN -.=p

— A
F 3 Bep X polnr ) X SFi(k) Zue]
A k

N TL=p—1

Here

P,,(p): the probability that a fission process in the interval (v,u) gives p fission nenirons

\

PV#(P): [l— :F ) 8po+

—~u

Po
(L

Polmina...): the probability that 5; of the prompt fission neutrons lic in the lethargy

interval i

f1(k): the probability that the one delayed neutron has a lethargy in the interval k (fission

spectrum for the delayed neutrons).

Let f,(k) denote the fission spectrum for the prompt neutrons, then:

!

po("]l 772-~-):—P"—“f0k1)f0‘9)f (3)
mM.n2 7];....
and:
Dy = X Prulp) [(1—Bo) Sl XBep )l ave] (7)
with:

Jav - :\\-: fo(/\)Xv\

lec — %‘ fl (/\-)ZVM'

The summation over A in J,, (or Jy,.) covers all lethargy intervals.

For later use we state here the values of some derivatives, when all the variables

X, Y, and Z take the value 1:

by Np_ o Splvp) - 5 @

=TV (V) = Ve f1(0) s ———— = 0;
a-Xu\ = ale,\e lu(",l‘) YA CZI')L/)

2wy, M ( 1) BY oo (p) Dy Sp— ( 1 By O (p
_____————-——v Yy — / ’———ﬁ = ——Vviv— i Jotd
X 0X,y | N, SO X ey N ! '
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For equation (6), ¥, has to be replaced by =,

Under these conditions the kinetic reactor equations take the form (analogous to the
formulas(1)):

ANi:

CE — Qi Niw + S A Te(i, B)+ Si

Dt - - €

hrc 'sk . . -

g_g_)_ = — A Leli k) —|—>;: ve N(u)Sp(iu)v Be f1(k)
t

where the Operator Qi is defined by:

Qi =—v: S (LE)+D(k)A + S vy Es(i,#'—)k)-F:’(l—ﬂ)fa(k)E vy Sp(ip)

N
total ,u. I3

‘\-:t ::1+ :s::c +S-u+£s

and the bar under the index k means, that in the summation over the lethargy intervals
in the operator @ this index has to be replaced by p.

We start now to make use of equation (5) for the computation of the correlation
function. Formula (5a) on page 16 shows us that we need for this the Laplace-transform
of the function G(T) which was defined by:

2
Q*—0Q =6G(T+Q
The mean value
Q=3xQ(ik)

can now be found out of the p.g.f. by (all variables equal 1)

and the mean value

can be calculated by using:

a2F _— . —_—
T = Qik Qnm _Qik 81’]: = Qik an + G (lk-mn)
('Y,'];OY,,,,, mn
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Our next task is therefore to calculate the two partial derivatives ¢F/6Y;x and
0?F/0Y x0Y mn of the p.g.f.F. Equation (5) will give us the time derivates of these quan-

tities and the result is:

aQik

= v Sc(ik)Nix X!, = Pir @ir. = I (ik) (9)
at ik

where

, Xy —
= qix

T oY

X

Pi. = v, Sc(ik) Ny = mean counting ralte of the detector Di; [or both cases (35)

and (6).

We have further:

oG (ik,
3%'"—") =Y/ H(mn,ik)+Y’ H(ikmn)+Y" Nu 8 (10)
c 115 mn W mn

with:

and where we have put:

Qik ann : 61'1; Nnm + H(ik,"lll)

Equation (10) gives us for the function: G(t) =3 G(ikmn;t)
ik,m

mn

G 9 Y'N
—_ =9\ YV ! X ”
a2 Y, H(mn,ik) + ~ X

ik

SY'N =2 o(k) 3Lk Na (g —q ) =3 Pu g} —3 Pix G

ik ik ik

and the last term is just the total mean current I, into the collecting device.

Therefore:

dG . —
= 2Y Y’H(mn,ik)—i—f, Pi]; qlz—-lc
dt ik,mn ik ik i
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and the Laplace-transform is:

§*G(S)=2% Y’ S H(mn,ik)+ P q—?k—I,

ik
mn

According to formula (5a) on page 16 we obtain:

1 _
r(S)= —2—3 P q?k-l— b Y:; S H(mn,ik; S)

ik ikmn
and with:

Ri(S)= 3 H(m,n;ik; S)

1 —
T(S)= T)—E Pi g+ = Yi’kRik(S) .S
i

~ ik

Our aim is then to compute the function R;;.

The next step is to establish the equation for H (ik,mn). In doing this we are again

forced to introduce new quantities and we have to find their equations. Instead of pro-

ceeding step by step we collect the results with the corresponding definitions:

<

ik Nmn - @;» Nnm ;|_ H('k:mn)

Qil: Toine = @k Tutne + Fe(ikymn)

Nik Nmn = ]v—tl: Nmn + lb(ik,mn) + Nl_k Sik,mn

Nik Tinne = ]V_ik Tmne + ‘I'e(i"@mn)

Tike rmnp = Like 1‘nmp + Fep (lk’mn) + Like S'ihe,mnp

The equations are:

0H (ik,mn)

- = Qun H(ik,mn)<4 5 A, Fe(ik,mn)
t —_ —_ €

Y7 [®(ik,mn)+ v(L—B)fo(n) NudimSr(ik)/.a(ik) |
2 Fylikmn) ==, Fy{ihmn)+ v Bof (m)3 0 (1) () H(ikmp)

+Y! ¥, (ikmn) + v Bof1(n) Nik 8im Sr (ik) /34 (ik) ]
% ®(itk,mn) = Qix @(ifc,mn)—}- Qmn (I’(mr_l,ik)—|— EA e Vo (itk,mn)+ S A, Y. (mn,ik)

+ v (=1 (A=28)fo(n)fo (k)% v(p) Nip 2r (i)
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[5}
= ¥,y (tk,mn)=—\,; ¥, (ik,nn) 4 g,\c Fep(ik,mn)+ Qi ¥ ,(ik,mn)

+vByf1 (n)E v(p)Sp(m,u) @ (ik,mp) +V(v—1)/3pfo(k)f1(n)f~ Uy Ny -:-(m.u) (16)

0 _
. Fep(ikymn) =— (A + M) Fop(ik;mn) 4+ v Befs (k)§ v(p)Sr(in) ¥y (ip,mn)

—|—;Bp_f1(n)§v(,u).‘:p(m,,u)\If,(m.,u;ik) (17)

Equations (13)-(17) as they stand are valid for the condition of equation (6). In
the case of equation (5), only equations (13) and (14) change in that their last term has
to be replaced by zero. It is physically plausible that equations (15), (16) and (17) are
not influenced by the change of the counter properties because these equations describe
only the statistical behaviour of the neutrons in the reactor and can be used to calculate

the fluctuations of the number of neutrons in the space and lethargy intervals.
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5 — APPLICATION OF THE THEORY OF FLUCTUATIONS
IN SOME SPECIAL CASES

For the application of the method developed in the last chapter we shall deal only
with the case of equation (5).

We note that if we were to take the case of equation (6) the results would differ
only by an additional term from the results for equation (5). This is due to the last

terms in equations (13) and (14), which are only different from zero in the case of
equation (0).

As the special cases we take:

(a) one-space cell (space-independence)
one-lethargv cell (one-group theory)
no delayed neutrons (B =0)

Equation (11) is in this case:
1 — -
I‘(S):?PQZ—I—USCqR(S)

where:
R(s)=sH(s)
Now (equation (13)):
- 1 o
sH(s)= —vS H4+vosp,H+ —0vX.q0
s
and (equation (17) for the stationary state):

=20(—v, v+ rv(v—1)vSp N

With:
— Sp 1
E=v——; l=— and:
Sa v,
1—k
a:—l we find:

b =v(v—1) l.‘N/;Zal and:
sH(s)=v3.q%/(s + a)
We take the inverse transformation and obtain:
R(r)=v =, qP exp{ —ar}
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and with:

we finally get:

Pt D K
1

This result was found in Chapter 3, formula (7):
(b) one-space cell (space-independent)

one-lethargy group (one-group theory)
For this case equations (15)-(19) take the following form:
sH(s) = H(s) (=1 + E(1=P) /L4 X X Fi(s) + v % § /s
sFi(s)= =\ Fi(s)+vBivSpH(s) FvS.q¥,/s
0=2(¢[—1 4 k(1= 1/I+ XX ¥1) 4 v(v—1) (1-28) NvXy
0=~ ¥p+ 3N Fipls) + %) [ =1+ k(1= ) ]/L+v By vp +rvlv—T1) Bw¥pN
0= — (A +X)F1, 381 vXp¥,(s) + VB, v ¥ (s)

Equation (14) gives:

;\:./\1 FI(S):;USIHY\_ /\1 /31/(3—*—/\1)—}—1)):,_« qll /\1 ‘1’1‘/8 (s—}—/\l)

We insert this in (13):

sH(s){s +(1—k(1=B))/I—k3 \afi/Us + X)) = vRed[@ + XA /(s + M) ]

and obtain: (p =(1—k)/k)

R(s) = sH(s) = (lvX.q4/k) (([)_}_E\PI)_SE ¥p ]//lip_*_s(i_*_l‘ B J:l

’ Ps+ A E s+
Now:
kE

E /\zF”,:,B—E‘I’,,
L.p l

k E(1—8)—1 EB®  viv—1) ,
VR SR et NP kR ALt By YUY
p [ r l l vl
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1—k(1—B) =T) 1-28

2 —— L = 2X MY —— N (15)
l t v 1
. . viv—1) EN
We use (16) in (15) and obtain: O+ Ty =
L v 2al
We now write:
X -
¥ GN v —1) == —|—’:\
) v XegN v{v— s »
R(s) = — I ;
2al v s (——'—.\: L ] +P
- k S—|—/\] -
with:
X,,:‘I’,,Zal;/kNv(‘v—l)
and have:
_ X
1 G—1) 1 1= +I:\
I(s)=—P g+ Pg'e— _ T
2 2 2p s 1 s B )_'_
v J—
_ (k s+ N\ f

The power-density spectrum becomes:

— e vlv=1) 1
Ieo)=Pq*+ g ~PFL2-—)—- —— Real (T'(s))
- P
where s has to be replaced by ( —iwv) in:
X
1— s> p/\
T(s)= ; S+Bp
L
‘[k ,s+,\,]+”
As:

Real {T( —im)} =p |T(lm) 12 (Raievski 4-)
we again have Bennet’s result (3):

T(o) =P q? + § Pe|T (io) 2 v(v—1)/

(¢) one-lethargy cell (one-group theory).

In the one-group theory it is assumed that all fission neutrons are released with
the group energy. This is a point where we can make a slight generalization if we take
into account the fact that the fission neutrons are produced as fast neutrons with a high
energy and only after moderation reach somewhere in the reactor the slow energy of the
group. This means that the fission source in the space cell v (number of fission neutrons

with group energy generated in the space cell v) is made up of all fission neutrons which
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are generated somewlere in the reactor and which reach the group energy in the space cell v.
The fission source in space cell v can therefore be expressed as a sum over the contributions
of all the other space cells. If p,, is the probability that a fast fission neutron born in

space cell u reaches the group energy in space cell v the prompt fission source is:

v (1-8) E v 3p Ny puy
where the summation extends over all space cells.

In our general theory the fission source in the lethargy interval v was expressed as

a sum over the contributions of all the other lethargy intervals.

For our problem we therefore need only replace the summation over the lethargy
axis in every fission source term by a summation over the reactor cells and to replace the
fission spectrum f,(u) resp. fi(n) by the slowing-down kernel py,:

In this case J,» = X, is replaced by J,,ZEAp.,;\X;\ in @,
(summation over all reactor cells).

If we take for p,, the slowing-down kernel of the age theory
pre = €xp (—/xy—x,/*/47)dr./(477)?

our equations (13)-(17) reduce to the fundamental equations on which Raievski’s work (4)
is based.

It is also very easy to derive with our general method the results obtained by
A. Medina (5) and L.I. Pal (6). We mention only that Medina uses directly equation (3)
(Chapmann-Kolmogoroff-equation) for some very simple cases (space- and energy-indepen-
dence; no delayed fission neutrons) and is mainly interested in the solution of our equation
(15) in the time-dependent case which gives some information about the time behaviour
of the fluctuations in the number of neutrons. L.I. Pal considers the same special case
with delayed neutrons and makes some study of the solutions of equations (5) and (15)

under the initial condition of one neutron being present at time t =0.

In order to estimate, for instance, the fluctuations in the number of neutrons in
the lethargy cells (we consider only the stationary space-independent case and neglect
delayed neutrons) we calculate the quantity:

2

N(k)*—N S -
NN ) 4 (k) /N TR = 1 4+ 0 (k) /NTE)
N(k)
=1+y(k)
where ®(k) is the solution of equation (15) for the special case under investigation.
We set:
v(k)Sr(k)®(k) = x (k)
v(k)ET(k)N(k) = ¥(k) (total collision density in the real system)
and have:

y(kB) = x(k)/¥ (k)
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Equation (15) for ®(k) takes in this special case the form:
X(k):‘EX(F)Ys(#_)k)+;fo(k)‘EX(IJ«)"/F(IJ«) (18)

v =D fo(k)™% ¥ (n)yr(n)/2

where we have put:

yslp—= k) =3, (n—= k) /Se () yrlu) = Sp(p) /Se(p)

We write equation (18) in the form:

u

(@)= fx(u'm(u'—m) duw’ + S(u) (19)

o

with:

1
Sw)=vfow)xr + —vlv=1)f (u)¥r

&

Xp = fx(u)vp(u)du

Ty = [*If(u)yp(u)du = (total fission rate in the real system)

— o

Equation (19) is the neutron balance equation for slowing down with S(u) as an
external source, and with x(u) as the collision density. In our case x(u) is a measure of
the statistical dependence between the neutrons in the lethargy interval u. We see that
this statistical dependence is fed into the system by the source S(u), which in turn owes
its existence to the presence of fissions. This is in agreement with the considerations in
Chapter 3. If we had no fission the source term S(u) would be zero and the solution of
equation (19) would be x=0. This is, in other words, the expression for the fact that
in this case we have no statistical dependence between the neutrons in the reactor and
y(u)=o0. The neutrons in the system are statistically independent and the number of

neutrons in a lethargy interval is therefore distributed according to Poisson’s distribution.
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