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distribution is the Maxwellian distribution with the effective temperature defined
by:
=T + w.=2,T.
TQ{X = ————
TN o TPp0

If the mass ratio 1 approaches 1, the distribution deviates from the Maxwellian
distribution.

By means of the perturbation method, the simple expression for the deviated
flux distribution is obtained. The more rigorous calculation is carried out by
expanding the flux in terms of Laguerre polynomials of the first order of energy.
This expansion method was used for the study of time and space-dependent
problem (3). The generating functions for the matrix element of scattering kernel
expanded by the Laguerre polynomials, whose variable E is normalized by a
temperature other than the components’ temperature, are calculated for the free
gas and the crystalline material.

The results obtained from the above two methods show that when the mode-
rator components have the same mass, the neutron spectra are shifted to lower
energy than the Maxwellian distribution calculated by the heavy gas approximation.
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THERMAL NEUTRON SPECTRUM
IN A MEDIUM WITH TWO DIFFERENT TEMPERATURES *

SUMMARY

The energy-dependent equation in the heavy gas model with the first order correction of g is con-
sidered for the case of a non-absorbing homogeneously mixed medium, whose components have the absolute
temperatures T; and T., the mass ratio #, #: (neutron mass to the mass of the moderator atom) and the
macroscopic cross section =i, 2. In the heavy gas approximation, the neutron spectrum distribution is the
Maxwellian distribution with the effective temperature defined by:

wE T+ 12T
Tetp=—m——
I+ e,

If the mass ratio z approaches 1, the distribution deviates from the Maxwellian distribution.

By means of the perturbation method, the simple expression for the deviated flux distribution is
obtained. The more rigorous calculation is carried out by expanding the flux in terms of Laguerre polyno-
mials of the first order of energy. This expansion method was used for the study of time- and space
dependent problem (3). The generating functions for the matrix element of scattering kernel expanded by
the Laguerre polynomials, whose variable E is normalized by a temperature other than the components’
temperature, are calculated for the free gas and the crystalline material.

The results obtained from the above two methods show that when the moderator components have the
same mass, the neutron spectra are shifted to lower energy than the Maxwellian distribution caleulated by
the heavy gas approximation.

1 — INTRODUCTION

In a power reactor analysis, the neutron spectrum is important for determining a
reactivity and a long terin reactivity change, etc. The ORGEL-type reactor which is planned
in our laboratory is composed of a hot fuel assembly and a cold heavy-water moderator.
As a preliminary study of the neutron spectrum in this reactor type, we studied the
neutron spectrum in a homogeneous medium whose components have two different tem-

peratures.

When neutrons are put into a non-absorbing infinite medium with temperature T,
the neutron spectrum approaches the Maxwellian distribution with temperature T. In
the case of a non-absorbing homogeneous medium, whose components have two different
temperatures T4, Ts, the neutron spectrum approaches a distribution lying between the

two Maxwellian distributions with T3 and To.

By measuring the neutron spectrum in the homogeneous medium, a study will be
made of the effect of the chemical binding of the moderator atom on the neutron spectrum.
The neutron spectrum which deviates from the Maxwellian distribution due to the use
of an additional absorber has been measured for this kind of study. Using the homogeneous
medium whose components have two different temperatures, this effect will be studied

without sacrificing the neutron intensity.
In this paper, a medium composed of free gases is studied by using a heavy gas

approximation with a first order correction of the mass ratio p. If a perturbation method

* Paper read at the International Conference on Neutron Thermalization - New York (30-4-62 - 2-5-62)
organised by Brookhaven National Laboratory.



is used, a simple expression for a neutron spectrum distribution can be obtained as a
function of mass ratios, scattering cross sections and component temperatures. The more
accurate formalism is obtained in the case of free gas and a crystalline material. The
case of free gas with mass 1 is numerically calculated and is compared with the result
obtained by the perturbation method.

2 — FORMALISM

In the non-absorbing medium which is composed of two atom components, the
neutron halance equation is expressed by

[Sa(E) + S0 (E)] ®(E)
(1)

B f(En(E’ = E)+ S (B - E))®(E) dE

where 2,(E), Y,(E’ = E) are the scattering cross section and the differential cross section
respectively.

In the heavy gas approximation corrected in the first order of 1, the neutron balance
equation in a medium whose components have two different temperatures T, and T, the
mass ratios of a neutron to the component atom u; and pe is expressed by the following

equation

i

oo )

| 4- BT de 8 T. B 2 d*®d
PN i —(T: E i E
e [FETE G+ T i)
(2)
4 . .Y dFe
—FE +O6ET,; il ==
+ (3 +GET +T) =

(e ) s () |

where @ is the neutron flux per unit energy interval.

The first terms proportional to n represent the so-called heavy gas approximation,
and the second terms proportional to p* represent the correction for it. In order to solve
this equation by a perturbation method, let us consider the terms proportional to p* as
perturbation, and write:

®(E) = ) (E) + o1 (E) (3)

where ©©(E), ®°)(E) are an unperturbed solution and the perturbed term of the lst
order respectively. From the usual perturbation theory, we get the following equations:
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The equation (3) is rewritten as follows:

2
,Zl“ 2 T 2¢p(0) doW

E{| = E PO =90
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pi 3
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and the unperturbed solution ®© is given by the following Maxwellian distribution:

E
o0 — 2 E © T (6)
Vi Ter
where
'-’Z i T
Ter= -

2 i 24
i=]
From now on this effective temperature T,/ will be expressed by T throughout this
paper.
In the heavy gas approximation, the neutron spectrum becomes the Maxwellian
distribution with T. And, if one of the moderator components has infinite mass, i.e. p =0,
and the energy change by scattering is zero, the effective temperature T becomes the tem-

perature of another moderator component.

By substituting equation (6) for equation (5) and rearranging it, we get:

dze) dot)
T E ol
( dE? aE T ]
3 2
— { (T T)£—2(4T —31)5



E
E T,‘ 4 1 -
. ——T\|—=—1 _— T
+(9T; 4T)T T}(T ) = T‘-’e (7)

Now, in order to solve equation (7), let us expand @ and one term of the right
hand side of equation (7) by the Laguerre polynomial of 1% order as follows:

E

s(B)= y o0 L@ (E) L E 77 (8
T) Ve T

~—

m=0

4 E* E? E
A= (T —T) =—2 i— — i— T,
[3( T) =24 Ti= 3 T + (9 T5—4T) T]

E E

—[r. v (E < o (EY](E
- [Tl mgo n L"l (1‘] _|_ T m2=0 b”l Lnl [T]} (T) (9)

where a, and b, are obtained by using the generating function for the series of the
Laguerre polynomials:

xt

e,

==X LY (x) ¢ ... (£ < 1) (10)

m=0

Let us consider the following integration:

xt

[, )
0 —(1—76 (?x —8x'—|—9x—1) x

1
(1—1)

=8(1—1)"—16 (1—t)49—

= —t4+T7——-0'——..... (11)

On the other hand, from equation (8) this expression is equal to:

oo

i f I fL,‘,}’ (x) LY (x) x e~ dx i (12)

We get: ap =

= —

=

(13)
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but the convergence of the summation of the “a,” terms is very slow. Similarly, we get
the b,, as follows:

bo:bg:b;—_—...:()
1
b, = 5
(14)
bg:——?—

By substituting equations (8) and (9) to (7) and using the orthogonality relation
of the Laguerre polynomial, ®(!) is obtained as follows:

1 oo 2 " T
([)(U(E):q———— :21 Ti m Tbmv ;—1
: T Y ) et Th (1)
Y, (i Z)
i=1
E E -
1 4 -
1L, [—) 2 e (15)
m T) =1

The convergence of the sum of the a, terms in this equation is also very slow.
Therefore the same technique which was used for obtaining @, and b, is applied for
obtaining their summation.

Now, we assume that the sum of the ¢, terms is obtained as follows:

Y Ln (%) x = f(x) (16)

m=0

By using equations (16) and (10), we get:

e —xt/(1—1¢) e —*

f _W_ . flx)dx

0

m—+41

—_— ; am:( - )— '
= n
n =0

7., rr
:—t—{‘—?t—?—j—?...-

=4—-8(1—¢t)+4(1—¢)* —log(l1—1t)

From this equation, f(x) is easily obtained by an inverse Laplace transformation,

that is:

f(x):4x—4x2+§—x3— [x¥(2) —xlog x| (18)

where ¥(x) is the Euler’s Psi function.

In a similar way, we get for the b, terms:

9



hod Lm 2
glx)= Z b (%) x:Zx"'——?:x3 (19)

m=0

m

Thus, the neutron spectrum distribution is:

™

T

T
v ox e (T [ T (20)
i; i i [?—l]l[T) E + E_

Now, if we substitute the following ratio for the values of two components, thus

obtlaining equation:

=1 =£ - 21
= "W T (21
we get:
E
(I)(E):_i_g e_; 1—*—/1.1(l—1)mn
V= T?
E E
) G
(1+Imn)* E (1+Imn) (1l 4+ mn)

£
T

where

o 1_:_{—]mn
T=T, (1+mn] (23)

In the case of [ =1, i.e., when the two components have the same temperature, and
when m or n is equal 10 zero or infinity, the correction factor vanishes and the neutron
spectrum becomes Maxwellian. When m equals zero or infinity, the energy change due
to neutron scattering by either component is negligible, and when n equals zero or
infinily, the neutron scattering by either component is negligible. Thus, the neutron

spectrum distribution becomes the Maxwellian distribution of other components.

In the case of m =1, i.e., when the masses of the iwo components are the same,

the correction term proportional to g(— vanishes, and if Im =1 is satisfied the cor-

T

rection term proportional tof(——) vanishes. These correction terms proportional to f[—]

E 1 1
and g[—,l—; have maximum coefficients in the case of n = ; and n = —, respect-
! m my/1

ively, for {ixed values of I and m.

10



So far, the neutron spectrum for the free gas has been calculated in the heavy gas
model corrected in a first order of p by a perturbation method. However, this is not a
good solution for the light atom. A more accurate spectrum is oblained in this section
by using the expansion of scattering kernmel in terms of a orthogonal set of Laguerre
polynomial of energy in the 1% order, which was used in the analysis of the space-depen-
dent problem in paper I(3). i.e. it 1s assumed that the fluxes ¢ in the equation (1) are
expanded in the following way:

o A; Ey E -
S(E)= ) L (*] Eoer (24)
=0 V(4 1) T) T*
substituting eq (24) into eq (1) and multiplying the resulting equation by
1 E
—— L, (—) and integrating over E, we get
Vii+D ‘ A
[_Sij1+sij2J Ai:0 (25)
where

rr o (BN o (ENE =
. [ [ [z apsae — p (Gue () o
ViFDG+1) T T)T
0 0
.

1 ".’ EI _— )
J favar e G (7]

In this case, the temperature used in the expansion of flux equation (26) is

different from the component temperatures, since the generating [unction S can be
calculated in the samie way as the case of the space-dependent problem in the paper 1(3).
The results are shown in the following. In the case of free gas, we get:

a mT;,

/ MT P I
1+ ()
Si=—435,— T’f[( 1]+T;.P] 1+A’Zf} 1—P " 11
= —4 3, Lk : |
M, T(l—Pl)g(l_‘_MZ] JTem (1_£) _(1_%)

The generating function S in the case of crystalline material is obtained by the mass
expansion method as follows

_P)-t (11— &
S = —25, =P b Z (_EK/;]Q Z L f sinh

(1—Pl) 4=1 =1 Tlg—n+1)T(n 4 1)

T N P P 1y,
[(1~ +1_E]:] smh(l—_—l-é'](;”(é')é' K,,H((l—i— 4 ]g]dm (28)

and by the Phonon expansion method, we get:

11



(1—P)—'(1=D~ = (mY? 1 [on | P TY .
= — 2 — ] = s - 41
Si 22, e ; [Mk) 41 fo inh (( l—P+ T;;Jé)

q

P Ly,
] Koo (7 (14 525 4925 ¢)

sinh [—é] G (8)gn+! dw (29)
1-1 a yla+l)

In these equations the same notations are used as in paper I. We can also get the

L . . o . ()
generating function by using the two Phonon dividing models. The matrix elements S;;

are obtained as the coefficients of /(i 4 I} {j+ 1) Pi U terms.

Let us consider the case of heavy gas, that is M—) 0, the generating function of

equation (27) becomes

2 Sp= —4 2 \"-“137.-—,—; ; 7 : (30)
k=1 == g : :

2 Sy (T
k=1 k
we get
3 m Pl
= —4 AL L
iZ] S I.Z=:1 “ M, (1—Ph)* (32)

which is the generating function in the case of heavy gas with

2

EBL‘ Ny

]u k

1
i=1

instead of

and its matrix is diagonalized. Thus, the lowest eigenfunction becomes the Maxwellian

distribution with the effective temperature

Z (,U~k -\:k Tlr)

k=1

o B (33)
Z (e Zx)
k=1

This is the result obtained in the last section.
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3 — NUMERICAL RESULTS

In figures 1, 2 and 3, the neutron spectrum is calculated using equation (22) for
the cases where 1 =2.0 and 3.0 and ;= 1.0, m =1, n=1 for both cases. Also the
1

case of | =—, 41 =10, m =20, n=1 is shown. In all cases neutron spectra with

2
effective temperature T, which are calculated from the heavy gas approximation, are also
shown as Maxwellian distributions.

In the first two cases, the deviation from the Maxwellian distribution is due to the
term proportional to f —?— and the peak of the neutron spectrum is shifted to the lower
energies. In the third case, the deviation is only due to the term proportional 1o g [?]
and the peak of the neutron spectrum does not shift appreciably. Furthermore, the case

1
of p;y =1,1=2.0, m :?, n = 1.0 are added in figure 3 where both correction terms

(f and g) are included. These deviations decrease as the moderator atom mass is increased.
E E EN /E
In table 1, the coefficients of proportional to f (F)/? and g [T]/T

C— (I—1D)mn(ml—1)
T (14 lmn)?

o (I—1)ymn(m—1)

(1 4 lmn) (1 + mn)

are tabulated for several typical cases.

2

Table 1 THE VALUE OF C, AND C,

1 2 3
2 3 2 3 2 3
. 1 1 1 8 3 1
9 4 8 25 25 3
1 2 4 2
C, — 0 J— 0 — 0 —
2 25 49 9
1 1 1 3
— — 0 - 0 - 0
3 25 32 121
1 0 0 0 0 0 0
1 1 2 1 4 3 2
C 2 BT T T T3 | T 56 | 2
1 1 1 1 8 3 1
3 10 T 14 63 55 BT




In order to compare the spectrum obtained by the expansion method with the
spectrum obtained by an approximate method, the neutron spectra in the free gas medium
with mass 1 are calculated in the case of T./T: =2 and 3. Their spectra are shown in
figures 1, 2 with the numerical results calculated by the perturbation method.

Their deviations from the Maxwellian distribution of the heavy gas approximation
are smaller than the deviation which results from the perturbation method. In the medium
which is composed of atoms with the same mass, we find that the energies where the
maximum of neutron spectrum is located deviate to an energy lower than the one cal-

culated by the heavy gas approximation.

Ispra, March 2, 1962
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