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For many types of reactors the failure of fuel elements is still the quantity 
limiting the maximum obtainable burn­up. Since the number of failed fuel ele­
ments that are allowed to be present in the reactor and the capacity of the fuel 
handling machine are limited in all practical cases, one has to study the stochastic 
process of failure and renewal of the fuel elements. This is done in the present 
report. Also are discussed methods of statistical evaluation of experiments for the 
determination of the fuel failure probability. 
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DETERMINATION OF FUEL FAILURE PROBABILITIES 
BY STATISTICAL EXPERIMENTS IN A TEST REACTOR 

WITH REGARD TO THE UNLOADING PROCESS EMPLOYED 

by G. Blaesser (*), W. Matthes (*) and V. Raievski (**) 

SUMMARY. 

For many types of reactors the failure of fuel elements is still the quantity limiting the maximum 
obtainable burn-up. Since the number of failed fuel elements that are allowed to be present in the reactor 
and the capacity of the fuel handling machine are limited in all practical cases, one has to study the 
stochastic process of failure and renewal of the fuel elements. This is done in the present report. Also 
are discussed methods of statistical evaluation of experiments for the determination of the fuel failure 
probability. 

GENERAL CONSIDERATIONS. 

Up to the present, the failure of fuel elements — and not the reactivity limit — is 
still the quantity limiting the maximum obtainable burn-up for many types of reactors. 
The number of failed fuel elements allowed to be present simultaneously in the reactor is 
usually rather limited; if this number gets too high, this may result in operational difficul­
ties due to contamination by fission products. In such a case the reactor operation has to 
be interrupted to replace all the failed fuel elements by new ones. 

This leads to the following problem where continuous loading and unloading of the 
reactor is envisaged : to avoid a shutdown of the reactor caused by the accumulation of 
too many failed fuel rods, it may be stipulated that the fuel handling machine must replace 
a fuel rod as soon as it fails. But we have to admit that a machine with a limited capa­
city which replaces only failed rods gives us no guarantee that no forced reactor shut­
down will occur. This is because the fuel elements in the reactor get older and the 
failure probabil i ty increases with the age of a fuel element. As a consequence, the 

(*) Applied Physics and Mathematics — Ispra. 
(**) Head of the Reactor Physics Department — Ispra. 



failure rate would increase in such a way that the machine could no longer cope with 
the changing of these failed fuel elements. The machine has therefore to replace not 
only failed fuel rods but also those fuel elements whose age exceeds a certain limit T. 

In view of this, we can state that each fuel element spends on an average the time Τ 
in the reactor before it is taken out either as failed or an overaged fuel element. Now 
we have two conflicting facts : 

On the one hand, we want the time Τ to be as high as possible, in order to get a 
good burn-out of the fuel elements. On the other hand, a very high Τ leads to a high 
failure rate which cannot be handled by the discharging machine. 

The problem therefore consists in finding such a value of Τ as will fulfil both con­
ditions satisfactorily, i.e., Τ must be large enough to result in a high burn-up but not so large 
as to give a failure rate which cannot be handled by the machine. 

II. — THEORETICAL EXPRESSION OF THE FAILURE RATE AS A FUNCTION 
OF THE FAILURE PROBABILITY. 

Let p(t) denote the failure probability to time t, that is, the probability that a fuel 
element fails before it reaches the age t. The probability that a fuel element reaches the 
age t without failure is then simply 1—p(t). 

Let us now assume that a reactor containing fuel elements of the same kind, i.e. all 
characterized by the same failure probability distribution p(t) , is operated in such a way 
that only failed fuel elements are replaced by new ones, but each element is replaced as 
soon as it fails. After a certain transition period, a stationary age distribution within 
the reactor will be attained. Let us call H(u) the age distribution function, i.e. the proba­
bility that a fuel element chosen at random within the reactor has an age < u. The proba­
bility that the randomly chosen fuel element has an age which falls within the interval 
(u, u + du) is thus 

d H ( u ) = ™ d u du 

This latter probability must be proportional to the probability that a fuel element 
reaches the age u without failure. Thus : 

[1] dH(u)= r ( l - p ( u ) ) du 

where r is a constant factor of proportionality. Integration of (1) leads to : 

[2] H(u) = rM ƒ " ( l - p ( t ) ) d t 

r can be determined by the normalisation condition : 

[3] lim H ( u ) = 1 

which yields : 

[4] r - ! = ƒ " ( l - p ( t ) ) d t 

So far we have dealt with the unloading of failed fuel elements only. If in addi­
tion fuel elements that exceed a certain age limit T are replaced by fresh fuel elements, 



this case can be described within the framework of the above formulae by introducing a 
fictitious "overaging failure", i.e. by also considering the passing of the age limit Τ as 
a certain type of "failure". Thus the probability ρτ(ί) of both types of "failures" before 
time t is expressed as : 

fp(t) t < T 
[5] P i ( t ) = , 

Il t > T 
We then obtain, instead of eq. [2]. 

[6] H T ( U ) = r T y U ( l - p T ( t ) ) d t 

with 

[7] rT"X = J T ( l - p ( t ) ) d t 

since H T (T)= 1 

It is immediately seen that equations [2] and [4] are contained in equations [6] 
and [7] as the limiting case T-*x>. 

Equation [7] can be given another form by partial integration, from which is 
obtained : 

[8] r i ^ T ^ - p m ) + J T t d p ( t ) = T ( l - p ( T ) ) +Ττ 

Γ 1 
since I tdp(t) is the mean value of t in the interval (0, T) which we denote by tT. 
Obviously lim ίτ = t = mean life time of the fuel. Since p(t) is a probability distribu-

tion function, lim p ( t ) = 1. But in order to have a finite r_1 we also require the supple-
f _X txj oo 

mentary condition : 

lim T( l - p ( T ) ) = a < o o 
T->oo v / 

In all practical cases, it is even found that a = 0. This we shall assume from now on, 
unless otherwise stated. Consequently, r simply becomes : 

[9] r = ì 
t 

For very small values of T, in such a way that p(T) « 1, the integration in equation [7] 

simply yields : 

[10] rT = — for Τ so small that p(T) « 1 
Τ 

Thus rT is a monotonously decreasing function of T, falling off at first like — 

and approaching for Τ > t the asymptotic value ■=­· 
t 

In order to calculate the mean rate of (real) failures in the reactor we must know 

the probability /i(t)dt that a given fuel element of age t fails within the time interval dt 

a t t . This probability is not simply p'(t)dt, since p'(t)dt is the probability for a fresh 

fuel element to die afterwards in (t,t + dt). But since we consider a fuel element already 

of age t, we have thus to divide p'(t)dt by the probability of reaching the point t, that is, 

by 1—p(t). Thus the failure rate for a given fuel element at an age t is 

The fraction of fuel elements within the reactor that have an age between t and 
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dH-r(t) 
t + dt is d r I T ( t ) = dt. If we thus integrate the product of these two factors over 

dt 
a 11 ages from 0 to T, we obtain the mean rate of failures per fuel element 

[12] CT = rT Γ p ' ( t ) d t = r i p ( T ) 

In the case of Τ -» co, we obtain 
1 

- lim CT == r = ^^ 
.T— °̂o °° t 

Thus, if unloading is confined mainly to the failed fuel elements, the mean failure 
rate per fuel element will be given by r and is therefore simply the inverse mean life­
time. On the other hand, if it is mostly unfailed fuel, i.e., for p ( T ) « 1, that is unloaded 
we obtain 

P (T) 
CT = — for ρ ( I ) « 1 

The mean failure rate in the reactor, i.e. the mean number of fuel elements that fail per 
unit time, is 
[13] A = A ( T ) = M C T 

where M is the total number of fuel elements in the reactor. 

III . — R E L A T I O N B E T W E E N M E A N FAILURE RATE, CAPACITY OF T H E 

U N L O A D I N G DEVICE A N D M A X I M U M ADMISSIBLE N U M B E R OF 

FAILED FUEL ELEMENTS I N T H E REACTOR. 

The capacity of the fuel handling mechanism, briefly denoted as unloading device, 
is determined by the maximum number h of "services" per unit time that the device can 
execute. By a "service" we mean the complete exchange of a failed fuel element for a fresh 
one. If s, the "service time", is the duration of a service, then h = 1/s. We shall take 
s as a constant for the reactor with given fuel handling machine, although one can also 
easily generalize the theory to include statistical fluctuations in the duration of a service 
time. 

If there are fuel failures during the time that the machine is engaged in exchanging 
already failed fuel elements, the fuel elements waiting to be unloaded form a "wait ing l ine" 
or "queue". Let P>-(t) be the nrobib i ' i tv of having exactly Ν failed elements in the queue 
at time t. Let pk be the probability that during the time interval s, i.e. during a service time, 
there will be k new failures, li Λ ^- O, the machine replaces one failed fuel element by a 
new one during the time s. Thus the balance equation for the probabil i ty Pu(t) becomes 

[14] PN ( t + s ) = S pkP>-+1-k (t) + p.xPo(t) 
k=o 

Under steady state conditions equation [14] is invariant against translations of the 
time and we may as well drop this variable. In order to be able to solve equation [14] 
we have to know the pk. For its determination we assume that the failures of the fuel 
elements appear statistically independent of one another. The failure probabili ty during 
the service time for any fuel element chosen at random within the reactor is 
[15] 7 = CT S 

where CT as defined in equation [12] is the mean rate of failure per fuel element. Thus 
the probability that of the M elements in the reactor k fail during the time interval s is 
given by the binomial law 
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[16] p k = ( ^ ) ( l ­ ï ) H ­ V 

which, for large M and small γ, but finite yM = As, can be approximated by Poisson's law 

—As k 

[17] pk = 
k ! 

The general solution of equation [14] for arbitrary values of (As) is given in the 

appendix. Here we are especially interested in its solution for small values of (As), so 

small that terms of the order of (As)k+1 can be neglected in comparison with terms (As)k. 

Then we can write approximately 

(AS)* 
Pk 

k ! 

Thus pk = 0 Í (As)k ) . As is shown by the general solution in the appendix 

[18] P „ = ( l _ A s ) ~ l 

Therefore Po = 0(1) . We prove by complete induction (i) that PN = OÍ ( A S ) N J 

and even (ii) that 

[19] PN = PN Po + o f (As)K+i) 

Equation [19] holds good for N = 0. Let us assume that it is valid up to PN. WC 

then read directly from [14] that 

PN Po + 0 ( (Xs)*+' ) = Po P N + ! + I Pk Ρκ+1­k + PN PO 
x ' k = i 

The first and the last terms cancel. The sum is 0 ( (As)N+1 \ even for arbitrarily 

large N since 

0 ( (ASF+1 ) 

(As)kPK+i­k V / 
Pk PN+l­k = ­ k ! k ! 

and the sum S — converges. Thus 
k = l k ! 

p0 PN+I = 0 f (As)™ ) , whence PN+I = 0 f (As )^ 1 j 

and the first assertion (i) is proved. The second assertion ( i i ) , then, is trivial, since in 

N+l 
P N + I = S Pk Px+2­k + px+i Po 

k=0 

the sum is 0 ( (As)N+2) by the already proved assertion ( i ) , while p.\+i Po = 0 Í (As)­N+1 J 

so that the sum can be neglected in comparison with this term and we have 

PN+1 = PN+,P„ + o f (As)N+2j 

and (ii) is proved. This completes the proof of [19]. Since [19] can also he written 

PN = PN + Of (As)x+] j 



we see that the distribution PN is also a Poisson distribution for very small As. For larger 

values of As the departures of PN from the Poisson distribution become appreciable. Also, 

in the same approximation, the probabili ty SG that the number of failed elements in the 

queue is larger than G turns out to be : 

[20] So = S PN = I PN + 0 f (As)G+2i = pG+i + o f (As) G +0 

N = G+1 N = G+1 \ / \ / 

Thus 

(As)«3*1 / \ 
S O =

7GTI)!
 + 0

(
( A S ) G + 2

) 
We now assume that at most G failed fuel elements can be tolerated in the reactor 

at the same time, but if there are more than G failed fuel elements, the reactor has to be shut 

down in order to limit contamination by fission products. Since such a shut­down is a 

costly process in the case of a power reactor operating on a continuous load­unload cycle, 

it is desirable to limit the probabil i ty of such an event to a low value 8. Since our 

description of the queuing process in equation [14] is essentially a sampling of the 

reactor state at discrete points of time corresponding to multiples of the service time s, a 

probabili ty δ means that the event occurs with a mean rate of S/s = h8 times during the unit 

time interval. Thus if we want, for example, to have a shut­down only once in τ days and 

we take the day to be our unit of time, we have to choose hS = l / τ or δ = 1/hr. Thus for 

a given τ — which will be determined by economic considerations —· a given h — which 

will be fixed by the engineering lay­out of the unloading device — and a given G — 

which is to be found by safety and operational arguments —■ we can determine A by inver­

ting the relation 

obtaining 

1 (As )^ 1 ( A / h ) ^ 1 

hi
 = 8

 ~ (G + D!
 =

 (G + l ) ! 

_ h [
( G + 1 )

' ]
1 / ( a + 1

' _ h — [
( G + 1 ) !

]
1 / 1 G + 1 ) 

Using equation [13] we finally have 

[21] hQ/<G+i> = AcT 

with 
J l/IG+l) 

Mi 
L(G + 1)Ü 

One can interpret equation [21] either as an equation for Τ if h is given or as an 

equation for h if Τ is given. The first procedure would correspond to an operational limi­

tation for a given unloading device, whereas the second would correspond to a condition 

on the unloading device for a chosen operational procedure. 

But in addition to the capacity of the device necessary to deal with the fluctuations, 

the capacity of the device also has to be sufficient to unload the fuel (failed on overaged) 

at a constant mean rate rrM. Thus for a given irradiation time Τ the capacity h0 necessary 

to have a continuous operation at least for a time τ is given by 

[22] he = f h ( T ) , M r r ) 

Since, from equations [21], [12] and [7] , it is clear that h ( T ) is a monotonously 

increasing function of T, while, as we have seen above, ΓΤ decreases monotonously with T, 

and since, for small T, h(T)­> 0 as T­> 0 while rT=* — ­*x>. there exists one unique point To 

where 
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[23] h„ = h ( T 0 ) = Mr T o (= ho say) 

At this point, evidently, the necessary capacity h„ has the minimum. With an 
unloading device of smaller capacity than h0 a continuous reactor operation for r days is 
impossible under the stated conditions. If the unloading device has a capacity hi > h0 one 
has multiple choices. One might fix the fuel lifetime at a minimum value Ti given 
by h = Mm; this choice is not likely for power reactors since the minimum value of Τ 
is economically unattractive. It contains, however, an additional safety margin reducing 
still further the number of elements that fail before being unloaded. The other extreme 
choice would be T2 such that h = MT2). Then one goes as far as one can in the economi­
cally promising direction of higher burn-up. But one is at the limit of safety tolerance. 
All choices between these extreme values, that is, all values Τι =% Τ =ξ Tj are admissible. 
The situation is sketched in fig. 1. 

(h.Mr) 

Numerical example : 

We consider a reactor consisting of 4000 elements and operating at a specific 
power of 25 MW/T„at.rj. We assume that the lifetime distribution of the fuel is a trun­
cated Gaussian: 

P(T) N O ( V - ) —(—)] with<i>(x)=^£ — y=/2 
e dy 

and N = [ 1 _ Φ ( _ Ε / < Γ ) ] - Ι 

The mean ς shall correspond to 5000 MWd/Tnat.u, the standard deviation «- to 
1000 MWd/Tnat.u. Expressed in days this corresponds to £ = 200 d, a- = 40 d. Since 

/ T - £ \ 
ξ/α- = 5, Φ( — ί /σ · )» 3.10~7 can be neglected. Thus we can use simply ρ ( Τ ) = Φ ( 1. 

In the case of a Gaussian distribution 

tT= ƒ T t - ^ d t 
dt 

1 /*T 

t e 

( t ­ ¿ ) » 

2σ* dt 
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( t - É > * ( t - 0 2 

1 / " 2 o-2 dt £ ΓΊ 2 °"2 d t JT 2σ- dt £ ΓΤ 

(t_£)e + — 
T Λ/ 2 - «Λ, ( t - £ ) 2 

2cr= 2 
e —e 

ν/ 2* 

-£2/2„-2 

} + É [ . ( I=í ) _ . (_! ) ] 

Since the terms e and Φ(—£/«­) can be neglected, we obtain 

(T—¿)2 

— (Γ 

t i = 
V 2-

2 o­'2 / T — £ \ 

+ £ Φ ( ) 

One sees immediately that for Τ - > ο ο ί τ - > ί = £ as it should. 

Thus : 

'('-•(^))^(¥)-7S 
(T—£)2 

2 σ^ 

The values of Γτ, CT, h ( T ) , ΜΓΤ and h e (T) for different values of Τ 
are given in Table 1 : 

TABLE 1 

T(d) 

rT (d"1) 

cT (d-1) 

h(T) (d"1) 

MrT (d-1) 

h,(T) (d"1) 

40 

2.5 X10- 2 

0.8 X10- ' 

7.4 X10- 4 

100 

100 

120 

s.sóxio-3 

2.4X10-4 

3.8 

33.4 

33.4 

160 

6.38X10-3 

1.01 χ i o - 3 

33 

25.6 

33 

200 

5.44χ IO"3 

2.7Χ10-3 

145 

21.8 

145 

400 

5.00Χ IO-3 

5.00Χ10-3 

365 

20.0 

365 

IV. — EXPERIMENTAL DETERMINATION OF THE PROBABILITY p(T). 

Up to now, the failure probability p ( T ) has been assumed to be accurately known. 

For practical purposes, it will have to be determined for a part icular type of fuel under 

operating conditions, possibly simulated in a test reactor or in a prototype. There an 

attempt is made to find an estimate of the function p ( T ) by making an experiment with 

a sample of some fuel elements all under the same conditions as they are in the reactor. 

To establish these same conditions, Ave have to locate these elements in a realistic lattice 

arrangement in a test reactor within a flux of the same magnitude as in the real power 
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reactor, and to replace an element which has failed during the time of this experiment 

by a new element. This way we observe the lifetimes of fuel elements (original or repla­

ced) Li, L2,... Ln, where we assume n to be the number of failed elements at the end of 

the experiment. Also, at the end of the experiment there are m unfailed elements with 

i rradiat ions ln+i, ln+m as a result of the replacement procedure. 

There are two different ways of extracting an estimation of p ( T ) from such an 

"ensemble" of observed lifetimes : 

a) For different discrete values of times T¡ we count the number r¡ of elements, for which 

the lifetime is larger than Ti : let ru be the number of elements k for which Lk> r iY, 

1 < k ^ n; let r2i be the number of elements k for which h > Τι; n + 1 O ^ n + m; 

then ri = ru + r2¡. 

Let n¡ be determined by m = n —ri¡. Define h¡ by 

n¡ ni 
hi = 

n i Γ21 

. Then hi can be taken as an estimation of p(T¡) . 

b) Often from theoretical considerations the functional form of p ( T ) is known except 

for some undetermined parameters. In such a case it is better to use the experimental 

results for an estimation of those parameters. 

We shall discuss both methods below. Method a) has the advantage that it can be 

used without any a pr ior i knowledge of the form of the distribution p ( T ) , and also that it 

includes even the unfailed rods in the estimation procedure. The drawback consists in 

the high possibility of error due to statistical fluctuations which has to be offset by a 

large safety margin. Therefore, if possible, method b) is preferable. But here, usually, 

only the failed rods can be used for estimation purposes. 

Case a : The problem of estimating probabilities on the basis of frequencies is a 

classical problem of statistics. It is a well­known theorem of probability theory that for a 

large number of observations the observed frequency tends towards the probability 

("law of large numbers") . Also, there exist already tabulations of fiducial limits (Ref. 1, 

2) which give values PN as a function of the frequency IIN observed in N independent 

trials, such that the true probability ρ is not likely to exceed PN (i.e. the probability that 

ρ > PN is smaller than a given small value s; in the following table R = 0.025). A few 

values for such fiducial upper limits are given in the following table. In the application 

of our method a, IIN is hi, Ν is n + r2¡ and PN is the fiducial upper limit of p(T¡). 

TABLE 2 

Fiducia l upper l imits of p . 

Ν 

8 

12 

20 

50 

100 

500 

CO 

hN 

0.0 

0.369 

0.265 

0.168 

0.079 

0.036 

0.007 

0.000 

0.1 

0.499 

0.405 

0.320 

0.225 

0.179 

0.130 

0.100 

0.2 

0.605 

0.520 

0.443 

0.340 

0.285 

0.230 

0.200 

0.3 

0.695 

0.622 

0.545 

0.450 

0.400 

0.340 

0.300 

0.4 

0.775 

0.710 

0.640 

0.550 

0.505 

0.445 

0.400 

0.5 

0.843 

0.785 

0.730 

0.645 

0.600 

0.540 

0.500 

0.6 

0.900 

0.860 

0.835 

0.745 

0.697 

0.648 

0.600 

0.7 

0.950 

0.923 

0.880 

0.825 

0.785 

0.740 

0.700 

0.8 

0.980 

0.965 

0.945 

0.900 

0.875 

0.838 

0.800 

0.9 

0.998 

0.995 

0.985 

0.970 

0.950 

0.925 

0.900 

1.0 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 
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We shall not, however, apply this table in its most general form for the interpreta­

tion of low frequencies, but we shall make the hypothesis that /*(t), the failure rate, is a 

monotonously increasing function of the age t. Then /»(t)^ ¿i(0) for all t and thus, for 

small values of p, from eq. (11), /¿(t)°== p'(t) ^ MO), so that p ( t ) > M 0 ) t for small values 

of t (such that p(t) is small). If, in this region, a value p(t0) is known, then for all 

t íS t«, p( t )<( t / to) , ρ (to). We apply this by choosing T„ to be the highest of the Ti for 

which hi = 0. If then p0 is the fiducial upper limit of p(T0) we take the fiducial upper 

limits for all p(T) with T ^ t„ to be (T/T„)p0. 

We illustrate method a) by two examples : 

Example 1 : 

The true distribution p(T) which is to be determined by the experiment is assumed 

to be 

_ (T/300 for 0 < Τ < 300 days 
P l l for Τ > 300 days 

In order to obtain an idea of the divergences in the experimental results, four 

independent experiments, using 8 elements each, have been simulated by drawing lifetimes 

from the distribution p(T) using a table of uniformly distributed random numbers. The 

"experimental" results are given in table 3. 

TABLE 3 

Observed lifetimes (days). 

Experiment 

1 

45 

231 

3 

192 

207 

207 

174 

120 

2 

255 

120 

153 

120 

30 

45 

99 

282 

3 

141 

207 

105 

270 

285 

48 

51 

135 

4 

39 

78 

261 

120 

60 

120 

243 

138 
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This yields the following table for the fiducial probabilities as compared with the 
true probability p(T) : 

TABLE 4 
Experimental fiducial probabilities. 

Τ (days) 

10 
20 
30 
50 
80 

100 
120 
150 
200 
250 
300 

1 

0,527 
0,527 
0,527 
0,651 
0,651 
0,651 
0.755 
0.755 
0.915 
1,000 
1,000 

Exp er 

2 

0,185 
0,369 
0,527 
0,651 
0,651 
0,755 
0,915 
0,915 
0,968 
0,968 
1,000 

iment 

3 

0,123 
0,246 

0,369 
0,527 
0,651 
0,651 
0,755 
0,915 
0,915 
0,968 
1,000 

4 

0,123 
0,246 

0,369 
0,527 
0,651 
0,755 
0,915 
0,968 
0,968 
0,997 
1,000 

P(T) 

0,033 
0,066 
0,100 
0,167 
0,267 
0,333 
0,400 
0,500 
0,666 
0,833 
1,000 

Example 2 : 

The true distribution p(T) is assumed to be Gaussian with a mean of 200 days and 
a standard deviation o- of 40 days. Again, we have simulated four experiments, using 
8 elements each, by sampling from a table of Gaussian distributed random numbers. The 
resulting lifetimes are given in table 5. 

TABLE 5 
Observed lifetimes (days). 

Experiment 

1 

179.5 
179.0 
223.8 
235.2 
218.6 
205.5 
298.2 
187.1 

2 

197.3 
211.8 
188.4 
202.4 

99.0 
178.8 
122.4 
221.7 

3 

137.7 
207.5 
259.4 
185.8 
174.6 

227.9 
237.0 
255.0 

4 

231.4 

240.9 
181.1 
251.2 
340.8 
222.8 
126.0 
207.6 

We obtain the following table for the fiducial probabilities as compared with 
the true probability p(T). 
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TABLE 6 

Exper imenta l fiducial probabi l i t ies . 

Τ (days) 

100 

150 

180 

200 

220 

240 

300 

Experiment 

1 

0.246 

0.369 

0.651 

0.755 

0.915 

0.997 

1.000 

2 

0.527 

0.651 

0.755 

0.915 

0.997 

1.000 

1.000 

3 

0.369 

0.527 

0.651 

0.755 

0.843 

0.968 

1.000 

4 

0.369 

0.527 

0.527 

0.651 

0.755 

0.915 

0.997 

P(T) 

0.00621 

0.1075 

0.3085 

0.5000 

0.6915 

0.8413 

0.9938 

Method b : 

As a concrete example of method b, let us assume it to be known that p ( T ) is given 

/ T —£ \ 
by a Gaussian distribution Φ I I but that the parameters £, o­ are unknown. On the 

basis of the η observed lifetimes Li..., Ln one can obtain the usual estimations for £ and 

σ (we denote the estimators by an asterisk) : 

[24] £* = — S Li 
1 

2 ( L i ­ £ * ) 2 

n ­ 1 i=1 

Classical statistical theory (Ref. 3) gives us the following distributions which cha­

racterize these sampling values : 

__ £*­£ 
(i) the Student distribution H(a, v) which is the distribution of t = V η — 

or 

is defined by : 

[25] Η (a, v ) s P r o b [t < a 

r(Z±l) 

*/v*T{v/2)J-<> X ' 
dt 

.(v+D/2 

where v = n — 1 is called "number of degrees of freedom". 

(ii) the χ2— distribution G(u, v) is the distribution of χ 2 = (n —1 ) (<r*/°­)2 and is 

given by : 

[26] 
ι r

u
 — 

G (u, v )= Prob [χ2< u] = — I y 2 
Vl¿ « ' o 

2 Γ(ν/2) 

1 — y/2 

e dy 

But in our case we are not so much interested in the separate knowledge of the 

distributions of the sample means and variances. Our problem is the following : the pro­

bability p ( T ) for a given T is calculated as ρ ( Τ ) = Φ ( 8 ) where a (T —£)/<r. If instead 

of a we use a + = (Τ —£*)/σ* as argument of the error integral Φ, the value of the probability 

p (T) thus calculated will fluctuate from sample to sample, depending on the fluctuations 

of a+. 

16 



We study therefore the deviation a —a+ between the exact and the sample value of 

the argument of Φ. a —a+ is, like a+, a random variable containing Τ as additional para­

meter. From its explicit form : 

[27] a ­ a + = a (l-S.) + £ z L = a ( ! _ _ i ) + _ ± ­

with t defined as above, we can see that the expectation E(a —a+) of a —a+ equals 

[28] E (a ­a+)=a f l ­E (o ­ /o ­* ) ) 

since 

- e - ^ ) -[29] E ( t ) = E ( 1—■­J = 0 

Using the definition'of χ2 as given in (ii), we have : 

σ V χ-

where we have put θ = v/2 = ( n —1)/2. We assume from now on always η > 4. From 

eq. [26] f with the abbreviation « = 1/2 r(fl)J we find : 

, f ­Lj = a V 20J u 2 e­»/!du 

u 
Introducing y = — as a new variable we have 

¿ι 

■} 

E ( —¡—y = c V β 2 J y. 2 e­y dy 
( Γ * * ^ 0 

Comparing this with the definition of the gamma function : 

Γ ( ζ ) = f V ' y ' ­ ' d y 

we find immediately : 

Γ ( · 4 ) 
( ' ) = . ^ 2 Γ (ø-l) ­ • . _ _ = «(·) 

[3°] E V T * / ­ V — 2 / Γ(ί) 

Thus the estimation of a by a+ has the bias 

[31] E (a -a+) = -af(0) 

where 

r(»4) 
[32] f ( « ) = g ( « ) - l = ^ f l f ( i ) 

17 



However, the bias E (a — a+) vanishes asymptotically for large Θ, i.e. for large n : a 
general theorem (Ref. 4) on the asymptotic behaviour of the gamma function reads (for 
general a) : 

r ( z + a) 
I im e ­ a lnz _. J 
| * | ­ > ­ Γ (Ζ) 

Let a = — 1 / 2 , ζ = Β. we obtain : 

[33] 
■(•4) 

lim V θ = 1 
0-»- Γ(β) 

and therefore lim E(a —a+) = 0. In the following table g(0) and f(0) are given for a few 
n­>°° 

values of θ : 

TABLE 7 

η 

4 

8 

12 

oo 

θ 

3/2 

7/2 

11/2 

oo 

g(«) 

1.383 

1.1265 

1.0747 

1.0000 

f(«) 

0.383 

0.1265 

0.0747 

0.0000 

An estimation for a, having no bias, is 

[34] 

Then 

[35] 

a + _ T ­ £ * 

g g0"* 

i _ a e = a ( 1 ) H — 
\ go­* ' g V n 

From now on, we use only ae as estimator for a. We calculate the variance of 

a — ac. Since E(a — a e ) = 0, the variance is simply 

[36] E ( ( a ­ a e ) 2 } = E { ( a ­ a * / g ) 2 ) = a 2 E { f 1 ^ _ ) 2 j + £ ^ 
1. \ gw" / ) ng2 

because of the statistical independence of <τ/σ* and t and relation [29]. 

Now 

E(<r/o­*) E{(<r/o­*)2} E{(o­/<r*)2} {( * \ 2 1 E(o­/o­*) 

Since (σ/ο­* )2 = 20/χ2 we obtain from eq. [26] 

18 
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­ u / 2 

e du 
Λ ~ 0 

E{(cr/o­*)2} = 20 J U 

Again replacing u by y = u /2 and using the definition of the gamma function we 

obtain 

[37] 

therefore 

[38] 

E{(o­/o­*)2} = 9 ^ 2 Γ ( β _ 1 ) = 0 

h2(
^

E
{0­Î­)

2
} 

r ( g ­ i ) 

Γ(0) 

Γ»(β) 

? ­ 1 

Γ ( 0 ) Γ ( 0 _ ΐ ) 

(β_ΐ)Γ»(β_1.) τ{θ-γ) 

Concerning the second term in [36] we use the known relation for the Student dis­
tribution 

0 
[39] 

Therefore 

E(t2) 
Γ40Ί Δ2(λ)— -

ng2 

Finally 

[41] 

E ( t 2 ) - -
v - 2 0 - 1 

Γ2(0) Γ(0)Γ(0_1) 

(20 + 1) (0_1)Γ2 ( 4 ) (20 + 1)Γ2 ( β - γ ) 

E { ( a - a e ) 2 } = 3 2 η 2 (λ )+Δ 2 (λ ) 

h 2 (0)+l 
20 + 1 

Thus the variance consists of two terms both of which vanish asymptotically;the first 
one is proport ional to a2 and thus important for values of Τ far away from £, while the 
second one is independent of a and thus of T. h2(0) and Δ2(0) are shown in table 8 for a 
few values of 0. 

TABLE 8 

η 

4 
8 

12 
oo 

0 

3/2 
7/2 

11/2 
oo 

h2(0) 

0.5707 
0.1044 

0.0569 
0.0000 

Δ2(0) 

0.3927 
0.1381 
0.0881 
0.0000 

It can be demonstrated that the distribution of a —a0 is asymptotically Gaussian so 
that the value of E( (a —a0)2} already characterizes the distribution of a — ac. Knowing this 
distribution, we can then define a 8 such that Prob. [a0 + ° 0 < a ] < e. Since Φ is a 
monotonously increasing function, a oe so defined has the following property : if instead 
of the true value of a we use the estimator a0 plus the δ as argument of the Φ — 
function, we obtain a value of p ( T ) which —■ with a probability 1—e — will be higher 

than the true value, thus being a fiducial upper limit of p ( T ) corresponding to an error 

probability of less than e. 
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Example : 

We consider again the observed lifetimes of table 5, corresponding to a Gaussian 
distribution. We obtain in this case the following values for £* and o-* in the four 
experiments. 

ξ* 
σ * 2 

σ* 

Experiment 

1 

215.9 
954.6 

30.9 

2 

177.7 
1920.4 

43.8 

3 

210.6 
1460.2 

38.4 

4 

225.3 
3775.1 

61.4 

Since the "experiments" have been carried out with 8 elements, 
g(0)= 1.1265 and h2(0) = 0.1044, Δ2(0) = 0.1381. 

we have 

In table 9 we give the values for ae and o-(a — ae) = \ /E{ (a — ae)2} for different 
values of T. As a is in practice unknown, it has to be replaced in the calculation of <r by 
its estimate ac. This is sometimes rather crude but since o-(a —ae) will give us only an 
idea of the spread of the values of a0 around a this procedure is sufficient. 

TABLE 9 

Τ 
(days) 

100 
150 
180 
200 
220 
240 
300 

Exp. 

a. 

— 3.33 
— 1.89 
— 1.03 
— 0.46 
+ 0.12 
+ 0.69 
+ 2.43 

1 

a(a-a„) 

1.14 
0.72 
0.50 
0.40 
0.37 
0.43 
0.87 

Exp. 

ae 

— 1.58 
— 0.56 

+ 0.05 
+ 0.45 
+ 0.86 
+ 1.26 
+ 2.48 

2 

a(a-ae) 

0.63 
0.41 
0.37 
0.40 
0.46 

0.55 
0.88 

Exp. 

a. 

—25.5 
— 1.40 
— 0.71 
— 0.25 
+ 0.22 
+ 0.68 
+ 2.05 

3 

σ{*-*υ 

0.90 

0.59 
0.44 
0.38 
0.38 

0.43 
0.76 

Exp. 

ae 

— 1.81 
— 1.09 
— 0.66 

— 0.37 
+ 0.09 
+ 0.21 
+ 1.08 

4 

a(a-ae) 

0.69 
0.51 
0.43 
0.39 
0.37 
0.38 
0.51 

a 

a 

— 2.50 
— 1.25 
— 0.50 
± 0.00 
+ 0.50 
+ 1.00 
+ 2.50 

If we simply take a6 + o-(a — a0) as argument of the Φ —function, we risk with a 
probability of a little more than 16 % that a0 + tr(a —ac)<a. But for purposes of illustra­
tion it suffices to use ae + <r(a — ae) as argument of the function in order to derive an 
"upper boundary" of the probability p(T) which will not be frequently exceeded. These 
values Φ[8Θ + °-(a — ae)] are compared with Φ (a) in table 10. 
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TABLE 10 

Τ (days) 

100 
150 
180 
200 
220 
240 
300 

Experiment 
1 

0.01426 
0.1210 
0.2981 
0.4761 
0.6879 
0.8686 
0.9995 

2 

0.1711 
0.4404 
0.6628 
0.8023 
0.9066 
0.9649 
0.9996 

3 

0.04947 
0.2090 
0.3936 
0.5517 
0.7257 
0.8665 
0.9975 

4 

0.1314 
0.2810 
0.4090 
0.5080 
0.6772 
0.7224 
0.9441 

Φ (a) 

0.00621 
0.1075 
0.3085 
0.5000 
0.6915 
0.8413 
0.9938 

21 



APPENDIX 

Derivation of the solution 'of eq. [14] : 

It is more convenient to calculate the probabil i ty generating function (p.g.f) F (z ) 
of PN instead of the probabilit ies PN themselves. As is well known, a p.g.f. of a distribu­
tion PN is defined as the expectation of zN corresponding to this distribution, that is 

F ( z ) = E ( z N ) = S PNZN 

N=0 

Also, let f(z) be the corresponding p.g.f. of pic : 

f ( z ) = i p k z k 

k=0 

If we multiply eq. [14] by zN and sum over N we obtain 

F ( z ) = z - 1 S S PN+i -kZ K +i - k p k z k +Pof ( z )=z - 1 2 Ρμζ f ( z ) + P o f ( z ) 
N=o k=o W —1 

= z - 1 F ( z ) f ( z ) - z - i P o f ( z ) + Pof(z) 

Thus 

1 - z 
F ( z ) = P 0 1 - z / f (z) 

As it is obvious from its definition, a p.g.f. F(z) satisfies the condition F ( l ) = l . 
Using this condition we easily determine P0 : 

, ^ ,· ! - z τ. r ι η Po 
1 = Po h m = P0 Γ-Γ—^— ι 

I f'(z) 
L f (ζ) f2(z) J 

ι —z/f (a) z „,,·> 1 - k 

taking into account the fact that f ' ( l ) = S k p k - k . Thus P0 = 1 - k . From eq. [17] 
k=o 

k = As so that Po = 1 —As which is the relation [18]. 

The function f(z) corresponding to eq. [17] is 

—As (1—z) 
f ( z ) = e 

Thus the function F(z) becomes 

( l - A s ) d - z ) 
F(z) = 

As (1—z) 
1 —z e 
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Expanding this expression in a power series in ζ about the point ζ = 0 yields the PN as 

coefficients of zN. But we are more interested in the So = 2 PN . The p.g.f. Q(z) of 
N=G+1 

oo 

SG. defined as 2 So zG, can be expressed in terms of F(z) as follows : 
G=0 

It is PG = SG­I— SG and therefore 

F ( z ) = 2 S G ­ I Z ° ­ Q ( Z ) = 1 + z 2 S G ­ I Z Q ­ 1 ­ Q ( Z ) 
G=0 G=l 

Thus F ( z ) = 1 + z Q ( z ) ­ Q ( z ) or 

l ­ F ( z ) 1 1­As 
Q(z) = ­

1­Z 1 ­Z As (1­z) 
1 —ζ e 

We obtain the SG from the expansion of Q(z) . Let ao be the coefficient of zG in the expan­
/ As (1—z) \ ­ i 

sion of I 1—ze I ; then we have 

SG = l ­ ( l ­ A s ) aQ 

We thus only have to calculate the a«. We find by direct expansion 

( As — Asz \ ­ι ~ nAs —nAs 
1 — z e e 1 = 2 e z"e 

oo oo ­nAs ( — n A s z ) 1 

2 2 e ζ" 
ιι=0 m=0 j j j ¡ 

2 z
G
 2 

(G—m)As 

o e ( G ­ m ) m ( ­ A s ) m 

G=0 m=0 rø ! 

Thus 

(G—m)As 

G e ( G ­ m ) m ( ­ A s ) ' 
ae = 2 

m=0 m | 

The first few coefficients aG, G = 0, ..., 5 are given explicitly as follows : 

ao = 1 

As 
ai = e 

2As As 
a2 = e —Ase 

3AS 2AS As 

a3 = e ­ 2 A s e + 0,5 (As)2e 

4AS 3AS 2AS AS 

a4 = e ­ 3 A s e + 2 (As)2e ­ 0 , 1 7 (As)3e 

5AS 4As 3As 2As As 

a5 = e ­4Ase + 4,5 (As)2e ­ 1 , 3 3 (As)3e + 0,04 (As)4e 
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