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DETERMINATION OF FUEL FAILURE PROBABILITIES
BY STATISTICAL EXPERIMENTS IN A TEST REACTOR
WITH REGARD TO THE UNLOADING PROCESS EMPLOYED

by G. Blaesser (*), W. Matthes (*) and V. Raievski (**)

SUMMARY.

For many types of reactors the failure of fuel elements is still the quantity limiting the maximum
obtainable burn-up. Since the number of failed fuel elements that are allowed to be present in the reactor
and the capacity of the fuel handling machine are limited in all practical cases, one has to study the
stochastic process of failure and renewal of the fuel elements. This is done in the present report. Also
are discussed methods of statistical evaluation of experiments for the determination of the fuel failure
probability.

I. — GENERAL CONSIDERATIONS.

Up to the present, the failure of fuel elements — and not the reactivity limit — is
still the quantity limiting the maximum obtainable burn-up for many types of reactors.
The number of failed fuel elements allowed to be present simultaneously in the reactor is
usually rather limited; if this number gets too high, this may result in operational difficul-
ties due to contamination by fission products. In such a case the reactor operation has to
be interrupted to replace all the failed fuel elements by new ones.

This leads to the following problem where continuous loading and unloading of the
reactor is envisaged : to avoid a shutdown of the reactor caused by the accumnulation of
too many failed fuel rods, it inay be stipulated that the fuel handling machine must replace
a fuel rod as soon as it fails. But we have to admit that a machine with a limited capa-
city which replaces only failed rods gives us no guarantee that no forced reactor shut-
down will occur. This is because the fuel elements in the reactor get older and the
failure probability increases with the age of a fuel element. As a consequence, the

(*) Applied Physics and Mathematics — Ispra.
(**) Head of the Rcactor Physics Department -- Ispra.
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failure rate would increase in such a way that the machine could no longer cope with
the changing of these failed fuel elements. The machine has therefore to replace not
only failed fuel rods but also those fuel elements whose age exceeds a certain limit T.

In view of this, we can state that each fuel element spends on an average the time T
in the reactor before it is taken out either as failed or an overaged fuel element. Now
we have two conflicting facts :

On the one hand, we want the time T to be as high as possible, in order to get a
good burn.out of the fuel elements. On the other hand, a very high T leads to a high
failure rate which cannot be handled by the discharging machine.

The problem therefore consists in finding such a value of T as will fulfil both con-
ditions satisfactorily, i.e., T must be large enough to result in a high burn-up but not so large
as to give a failure rate which cannot be handled by the machine.

II. — THEORETICAL EXPRESSION OF THE FAILURE RATE AS A FUNCTION
OF THE FAILURE PROBABILITY.

Let p(t) denote the failure probability to time t, that is, the probability that a fuel
element fails before it reaches the age t. The probability that a fuel element reaches the
age t without failure is then simply 1—p(t).

Let us now assume that a reactor containing fuel elements of the same kind, i.e. all
characterized by the same failure probability distribution p(t), is operated in such a way
that only failed fuel elements are replaced by new ones, but each element is replaced as
soon as it fails. After a certain transition period, a stationary age distribution within
the reactor will be attained. Let us call H(u) the age distribution function, i.e. the proba-
bility that a fue] element chosen at random within the reactor has an age <u. The proba-
bility that the randomly chosen fuel element has an age which falls within the interval
(u, u 4 du) is thus

dH (u)

dH(u) = du

This latter probability must be proportional to the probability that a fuel element
reaches the age u without failure. Thus :

(1] dH(u)=rm(1—p(u)\du

where r is a constant factor of proportionality. Integration of (1) leads to :

(2] H(u) =r_ f( l—p(t))dt

r can be determined by the normalisation condition :

(3] lim H(u)=1
u—o0

which yields :

[4] r:::f:, (l—p(t))dt

So far we have dealt with the unloading of failed fuel elements only. If in addi-
tion fuel elements that exceed a certain age limit T are replaced by fresh fuel elements,
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this case can be described within the framework of the above formulae by introducing a
fictitious “overaging failure”, i.e. by also considering the passing of the age limit T as
a certain type of “failure”. Thus the probability pr(t) of both types of “failures” before
time t is expressed as : '

pt) t<T
5 t ={
[5] pr(t) 1 {>T
We then obtain, instead of eq. [2].
(6] Hr(u)= I'Tf (1——p1‘(t) )dt

with

(7] rm_lzj:r(l-—p(t))dt

since Hr(T)=1

It is immediately seen that equations [2] and [4] are contained in equations [6]
and [7] as the limiting case T-co.

Equation [7] can be given another form by partial integration, from which is
obtained :

(8] r£‘=T(1_p(T))+£Ttdp(t)=T(1_p(T))+E

T -

sincef tdp (t) is the mean value of t in the interval (O, T) which we denote by tr.
[+] -—_— -

Obviously ’llim tr = t = mean life time of the fuel. Since p(t) is a probability distribu-

tion function, tll)m p(t)= 1. But in order to have a finite r-! we also require the supple-

mentary condition :

lim T(l-—p(T)) =a<<{oo
Toee

In all practical cases, it is even found that a = 0. This we shall assume from now on,

unless otherwise stated. Consequently, r simply becomes :

(9] r =

3

|

For very small values of T, in such a way that p(T) < 1, the integration in equation [7]
simply yields :

1
[10] It =T—for T so small that p(T) <« 1

i 1
Thus rr is a monotonously decreasing function of T, falling off at first like T

— 1
and approaching for T > t the asymptotic value —.
t

In order to calculate the mean rate of (real) failures in the reactor we must know
the probability p(t)dt that a given fuel element of age t fails within the time interval dt
at t. This probability is not simply p’(t)dt, since p’(t)dt is the probability for a fresh
fuel element to die afterwards in (t,t+dt). But since we consider a fuel element already
of age t, we have thus to divide p’(t)dt by the probability of reaching the point t, that is,
by 1 —p(t). Thus the failure rate for a given fuel element at an age t is
p’(t)

11 __F
[11] p(t) 1—p

The fraction of fucl elements within the reactor that have an age between t and
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. ' dHr (t)
t + dt is dHz(t) = a

all ages from 0 to T, we obtain the mean rate of failures per fuel element

dt. If we thus integrate the product of these two factors over

T
[12] CT:rTfp’(t)dt:I'Tp(T)

In the case of T > o, we obtain

limcr=r =
T>eo oo

Thus, if unloading is confined mainly to the failed fuel elements, the mean failure
rate per fuel element will be given by r and is therefore simply the inverse mean life-

tinte. On the other hand. if it is mostly unfailed fuel, i.e., for p(T) « 1, that is unloaded
we obtain

PUT) e p(T) « 1

Cr =

The mean failure rate in the reactor, i.e. the mean number of fuel elements that fail per
unit time, is )

[13] A= A(T)= Mcr

where M is the total number of fuel elements in the reactor.

III. — RELATION BETWEEN MEAN FAILURE RATE, CAPACITY OF THE
UNLOADING DEVICE AND MAXIMUM ADMISSIBLE NUMBER OF
FAILED FUEL ELEMENTS IN THE REACTOR.

The capacity of the fuel handling mechanism, briefly denoted as unloading device,
is determined by the maximum number h of “services” per unit time that the device can
execute. By a “service” we mean the coniplete exchange of a failed fuel element for a fresh
one. If s, the “service time”, is the duration of a service, then h = 1/s. We shall take
s as a constant for the reactor with given fuel handling machine, although one can also
easily gencralize the theory to include statistical fluctuations in the duration of a service
time. .

If there are fucl failures during the time that the machine is engaged in exchanging
already failed fuel clements, the fuel clements waiting to be unloaded form a “waitingline”
or “queue”, Let Px(t) be the nrobabi’itv of having exactly N failed elements in the queue
at time t. Let px be the probability that during the time interval s, i.e. during a service time,
tlicre will be k new failures. I N = O, ilre machine replaces one failed fuel element hy a
new one during the time s, Thus the balance equation for the probability Px(t) becomes

N
[14] Px(t +S)=k§ P Px+1-x (1) + py Po(t)

Under steady state conditions equation [14] is invariant against translations of the
time and we may as well drop this variable. In order to be able to solve equation [14]
we have to know the px. For its determination we assume that the failures of the fuel
elements appear statistically independent of one another. The failure probability during
the service time for any fuel element chosen at random within the reactor is
[15] Yy =CtS
where Cr as defined in equation [12] is the mean rate of failure per fuel element. Thus

the probability that of the M elements in the reactor k fail during the time interval s is
given by the binomial law



M
Px = (;) (1) Mk ok

[16]
which, for large M and small v, but finite yM = \s, can be approximated by Poisson's law
—\S k
e (As)
Pr ="

(17]
[14] for arbitrary values of (is) is given in the

The general solution of equation
appendix. Here we are especially interested in its solution for small values of (\s), so

small that terms of the order of (As)¥*! can be neglected in comparison with terms (As)k.

Then we can write approximately
(As)x

k!

Dx ~

Thus prk = 0 ((/\s)"). As is shown by the general solution in the appendix
Po = (1—4\S)~ 1

(18]
Therefore Po = 0(1). We prove by complete induction (i) that Px =0 ( (/\s)N)

and even (ii) that

[19] Px = pxPo + 0( (/\S)N"'])
We

Equation [19] holds good for N = 0. Let us assunie that it is valid up to Px.

then read directly from [14] that

N

pxPo 4+ 0 (()\S)N“) = po Pryt1 + 15 Px Pxt1-x + px Ps
k=1

The first and the last terms cancel. The sum is 0 ((/\s)*\'ﬂ) even for arbitrarily

large N since
()
(As)E Pxyi1-x

- k!

P — =
Px Pyt1-x o

1
o converges. Thus

and the sum E
k=1
Po Pxy1 =0 ( (As) ¥+ ) , whence Pxyi = 0 ( (/\S)N+1)

and the first assertion (i) is proved. The second assertion (ii), then, is trivial, since in
N+41 ) .
Pxt1 = = pr Px+ex + py+1 Po

k=0

the sum is 0 (As)-\'“) by the already proved assertion (i), while pyx+1Po = 0( (‘\S)N"'l)

so that the sum can be neglected in comparison with this term and we have

Px+1 = pxt1 % + 0 ( (/\S)N‘“)

Since [19] can also be written

This completes the proof of [19].

Px = p~y + 0( (I\S)"\"“)

9
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we see that the distribution Px is also a Poisson distribution for very small As. For larger
values of As the departures of Px from the Poisson distribution become appreciable. Also,

in the same approximation, the probability Sc¢ that the number of failed elements in the
queue is larger than G turns out to be :

N=G+1 N=G

[20] S¢= S Py= §+ px + 0 ((As)GH) — pat + 0( (As)G+2)
1

Thus

_ (As)eh ( G+2)
Se= Gy FOL O

We now assume that at most G failed fuel elements can be tolerated in the reactor
at the same time, but if there are more than G failed fuel elements, the reactor has to be shut
down in order to limit contamination by fission products. Since such a shut-down is a
costly process in the case of a power reactor operating on a continuous load-unload cycle,
it is desirable to limit the probability of such an event to a low value 8 Since our
description of the queuing process in equation [14] is essentially a sampling of the
reactor state at discrete points of time corresponding to multiples of the service time s, a
probability & means that the event occurs with a mean rate of §/s=h8 times during the unit
time interval. Thus if we want, for example, to have a shut-down only once in r days and
we take the day to be our unit of time, we have to choose h8 = 1/r or 8§ = 1/hr. Thus for
a given r — which will be determined by economic considerations — a given h — which
will be fixed by the engineering lay-out of the unloading device — and a given G —
which is to be found by safety and operational arguments — we can determine A by inver-
ting the relation

1 5 (As)6+ _(A/h)oﬂ

BT GrD! . GED!

obtaining

A—h (G+1) !]1/(G+1)= hG/(G+1)[(G+1)!]l/(G+1)
hr T

Using equation [13] we finally have

[21] ' hé/@+) = A cr

with
. 1/(G+1)
e
(G+1)!

One can interpret equation [21] either as an equation for T if h is given or as an
equation for h if T is given. The first procedure would correspond to an operational limi-
tation for a given unloading device, whereas the second would correspond to a condition
on the unloading device for a chosen operational procedure.

But in addition to the capacity of the device necessary to deal with the fluctuations,
the capacity of the device also has to be sufficient to unload the fuel (failed on overaged)
at a constant mean rate rrM. Thus for a given irradiation time T the capacity he necessary
to have a continuous operation at least for a time r is given by

(22] he=(h(T),MrT)

Since, from equations [21], [12] and [7], it is clear that h(T) is a monotonously
increasing function of T, while, as we have seen above, rr decreases monotonously with T,

and since, for small T, h(T)-> 0 as T-> 0 while rvrz—,f—m. there exists one unique point To

where
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and ®(—£/0) can be neglected, we obtain

(F—§)2

— it 2 o

T —-¢
tr=——>= ¢ +§‘I’( )
v 2= o

One sees immediately that for T > ot >t = £ as it should.

Thus :
(T—¢)2

T —¢ , T s 202
o (1o (F20)) wen (15 i
T o o N 2

h(T), Mrr and he(T) for different wvalues of T

The values of rr, cr,
are given in Table 1 :

TABLE 1
T(d) 40 120 160 200 400
rr (d7Y) 2.5% 102 8.36x 103 638103 5.44% 103 5.00x 103
Cr (4 1) 08X 107" 2.4% 10— 1.01x10-3 2.7%X10-3 5.00 103
h(T) (d7) 7.4 104 3.8 33 145 365
Mrr (d71) 100 33.4 25.6 21.8 20.0
h (T) (d7) 100 33.4 33 145 365

IV. — EXPERIMENTAL DETERMINATION OF THE PROBABILITY p(T).

Up to now, the failure probability p(T) has been assumed to be accurately known.
For practical purposes, it will have to be determined for a particular type of fuel under
There an
attempt is made to find an estimate of the function p(T) by making an experiment with

operating conditions, possibly simulated in a test reactor or in a prototype.

a sample of some fuel elements all under the same conditions as they are in the reactor.
To establish these same conditions, we have to locate these elements in a realistic lattice
arrangement in a test reactor within a flux of the same magnitude as in the real power

12



reactor, and to replace an element which has failed during the time of this experiment
by a new element. This way we observe the lifetimes of fuel elements (original or repla-
ced) Li, Le,... Lu, where we assume n to be the number of failed elements at the end of
the experiment. Also, at the end of the experiment there are m unfailed clements with
irradiations 1n41, 1o4m as a result of the replacement procedure.

There are two different ways of extracting an estimation of p(T) from suclh an
“ensemble’ of observed lifetimes :

«) For different discrete values of times Ti we count the number r; of elements, for whicl
the lifetime is larger than T; : let ri be the number of elements k for which Lx > Ti:
1 < k € n; let ra be the number of elements k for which k>Ti; n4+1<k<n 4+ m;
then ri = ri + ra
Let n; be determined by ni = n—ryu. Define hi by

ni ni
hi = = . Then hi can be taken as an estimation of p(Ti).
ri 4 Ni n + ra

b) Often from theoretical considerations the functional form of p(T) is known except
for some undetermined parameters. In such a case it is better to use the experimental
results for an estimation of those parameters.

We shall discuss both methods below. Method «) has the advantage that it can be
used without any a priori knowledge of the form of the distribution p(T), and also that it
includes even the unfailed rods in the estimation procedure. The drawback consists in
the high possibility of error due to statistical fluctuations which has to be offset by a
large safety margin. Therefore, if possible, method b) is preferable. But here, usually,
only the failed rods can be used for estimation purposes.

Case a : The problem of estimating probabilities on the basis of frequencies is a
classical problem of statistics. It is a well-known theorem of probability theory that for a
large number of observations the observed frequency tends towards the probability
(“law of large numbers”). Also. there exist already tabulations of fiducial limits (Ref. 1,
2) which give values px as a function of the frequency hx observed in N independent
trials, such that the true probability p is not likely to exceed px (i.e. the probability that
p > px is smaller than a given small value «; in the following table « = 0.025). A few
values for such fiducial upper limits are given in the following table. In the application
of our method «, hx is h;, N is n 4 rz and px is the fiducial upper limit of p(Ty).

TABLE 2

Fiducial upper limits of p.

hy
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

8 0.369 |0.499 |0.605 |0.695 |0.775 |0.843 | 0.900 [0.950 [0.980 |0.998 | 1.00
12 0.265 |0.405 [0.520 |0.622 |0.710 {0.785 |0.860 [0.923 |0.965 [0.995 | 1.00
20 0.168 |0.320 | 0.443 |0.545 |0.640 |0.730 |0.835 |0.880 1 0.945 | 0.985 | 1.00
50 0.079 10.225 [0.340 |0.450 {0.550 |0.645 [0.745 |0.825 |0.900 !0.970 | 1.00

100 0.036 |0.179 |0.285 |0.400 |0.505 [0.600 |0.697 |0.785 |0.875 |0.950 | 1.00
500 0.007 |0.130 |0.230 |0.340 |0.445 {0.540 {0.648 [0.740 |0.838 |0.925 | 1.00
oo 0.000 |0.100 |0.200 |0.300 |0.400 |0.500 |0.600 |0.700 |[0.800 |0.900 | 1.00
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We shall not, however, apply this table in its most general form for the interpreta-
tion of low frequencies, but we shall make the hypothesis that u(t), the failure rate, is a
monotonously increasing function of the age t. Then u(t) = x(0) for all t and thus, for
small values of p, from eq. (11), p(t)=~ p’(t) = x(0), so that p(t) > x(0)t for small values
of t (such that p(t) is small). If, in this region, a value p(t.) is known, then for all
t<to, p(t)<(t/to), p(ts). We apply this by choosing T, to be the highest of the T: for
which hi = 0. If then p, is the fiducial upper limit of p(T,) we take the fiducial upper
limits for all p(T) with T< t, to be (T/Ts)po.

We illustrate method a) by two examples :

Example 1 :

The true distribution p(T) which is to be determined by the experiment is assumed
to be

(T) = {T/300 for 0 £ T < 300 days
P RSS! for T > 300 days

In order to obtain an idea of the divergences in the experimental results, four
independent experiments, using 8 elements each, have been simulated by drawing lifetimes
from the distribution p(T) using a table of uniformly distributed random numbers. The

“experimental” results are given in table 3.

TABLE 3
Observed lifetimes (days).

Experiment

1 2 3 4
45 255 141 39
231 120 207 78
3 153 105 261
192 120 270 120
207 30 285 60
207 45 48 120
174 99 51 243
120 282 135 138

14



This yields the following table for the fiducial probabilities as compared with the
true probability p(T) :

TABLE 4
Experimental fiducial probabilities.

Experiment

T (days) ) , ; 4 p(T)
10 0,527 0,185 0,123 0,123 0,033

20 0,527 0,369 0,246 0,246 0,066

30 0,527 0,527 0,369 0,369 0,100

50 0,651 0,651 0,527 0,527 0,167

80 0,651 0,651 0,651 0,651 0,267
100 0,651 0,755 0,651 0,755 0,333
120 0.755 0,915 0,755 0,915 0,400
150 0.755 0,915 0,915 0,968 0,500
200 0.915 0,968 0,915 0,968 0,666
250 1,000 0,968 0,968 0,997 0,833
300 1,000 1,000 1,000 1,000 1,000

Example 2 :

The true distribution p(T) is assumed to be Gaussian with a mean of 200 days and
a standard deviation o of 40 days. Again. we have simulated four experiments, using
8 elements each, by sampling from a table of Gaussian distributed random numbers. The
resulting lifetimes are given in table 5.

TABLE 5
Observed lifetimes (days).

Experiment
1 2 3 4
179.5 197.3 137.7 2314
179.0 211.8 207.5 240.9
223.8 188.4 259.4 181.1
235.2 202.4 185.8 251.2
218.6 99.0 174.6 340.8
205.5 178.8 227.9 222.8
298.2 122.4 237.0 126.0
187.1 221.7 255.0 207.6

We obtain the following table for the fiducial probabilities as compared with
the true probability p(T).

15



TABLE 6
Experimental fiducial probabilities,

Experiment
T (days
(days) , 3 ; . p(T)
100 0.246 0.527 0.369 0.369 0.00621
150 0.369 0.651 0.527 0.527 0.1075
180 0.651 0.755 0.651 0.527 0.3085
200 0.755 0.915 0.755 0.651 0.5000
220 0.915 0.997 0.843 0.755 0.6915
240 0.997 1.000 0.968 0.915 0.8413
300 1.000 1.000 1.000 0.997 0.9938

Method b :

As a concrete example of method b, let us assume it to be known that p(T) is given

—£

. e el T
by a Gaussian distribution @ ( )l)ut that the parameters § o are unknown. On the

[

basis of the n observed lifetimes Li..., L, one can obtain the usual estimations for ¢ and

o (we denote the estimators by an asterisk) :

1 a 1
[24] =S L o= S (Li—t*)?
n i=1 n___l 1=1

YL

Classical statistical theory (Ref. 3) gives us the following distributions which cha-
racterize these sampling values :

__ & =¢
(i) the Student distribution H(a,v) which is the distribution of t =+ n
is defined by :
T (_"'H )
2 .

a i — (t1)/2
23] H(a=Prob[t<a] = ——— | (1 +_) dt |
T (v/2) Y -

*
a

where v=n—1 is called “number of degrees of freedom”.

(ii) the x*— distribution G(u, v) is the distribution of v¥=(n—1)(c*/o): and is
given by :
v
1 U —1 —y/2

— y 2 e dy

0

[26] -G(u,v)=Prob [¥*<u] = -
N

2 [y
2 I'(v/2)

But in our case we are not so much interested in the separate knowledge of the
distributions of the sample means and variances. Our problem is the following : the pro-
bability p(T) for a given T is calculated as p(T)=%o(a) where a (T—¢)/o. If instead
of a we use a+t= (T —¢£*) /o as argument of the error integral ®, the value of the probability
p(T) thus calculated will fluctuate from sample to sample, depending on the fluctuations

of at.
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We study therefore the deviation a—at between the exact and the sample value of
the argument of & a—at is, like at, a random variable containing T as additional para-
meter. From its explicit form :

t

~—a

[27] a—at= a(l——)

with t defined as above, we can see that the expectation E(a—a*) of a—a+ equals

[28] E(a—a+)=a(1—-E(tT/tT'))
since
[29] E(t)=E (5';'5) =0

Using the definition of x* as given in (ii), we have

v /26

- X

where we have put 6 =v/2 =(n—1)/2. We assume from now on always n > 4. From

[}
eq. [26] ( with the abbreviation = = 1/2 I‘(ﬂ)) we find :

3
o oo §— —
E\ — =a;\/20f u 2 eu/2du
a (]
. u .
Introducing y = 'R as a new variable we have

o 9_—

2 e—." dy

Comparing this with the definition of the gamma function :

D(z)= fme—y y*1dy

we find immediately :
w(-7)
(£) = eviz’s (i) -
— ) = N R = [4
[30] E =)= a/62 I \6 Vo T g(0)
Thus the estimation of a by at has the bias
[31] ' . E(a—at) = —af(6)

where

e(s-1)

[32] f(8)=g(8)—1 = ~/0-—$@7———
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However, the bias E(a—a*) vanishes asymptotically for large 4, i.e. for large n : a
general theorem (Ref. 4) on the asymptotic behaviour of the gamma function reads (for
general a) :

T .
lim (Z + d) e—3 Inz 1

fz]| == TI(z)
Let a =—1/2, z = 6. we obtain :

(1)

[(33] lim v§—oo
> (o)

and therefore lim E(a—at*)= 0. In the following table g(8) and f(8) are given for a few
n->e
values of 6 :

TABLE 7
n 6 g(9) £(8)
3/2 1.383 0.383
8 7/2 1.1265 0.1265
12 11/2 1.0747 0.0747
oo oo 1.0000 0.0000

An estimation for a, having no bias, is

at  T-—¢£
[34] 8o = — = n
8 go
Then
t
[35] a—aeza(l— 7 ) g
go” gv n

From now on, we use only a. as estimator for a. We calculate the variance of
a—ae. Since E(a—a.)= 0, the variance is simply

E(t?)

ng?

o 2
(36] E((a—ae)*t = E{(a—a*/g)*} = a2E{(1—- PP )

because of the statistical independence of o/c* and t and relation [29].

Now

o \? E(c/c*) E{(s/e)?} E{(c/c")?
E 1— =1-2 = —1
{( go” ) } 8 + g g

Since (o/c*)® = 26/x> we obtain from eq. [26]

18



o §—2 _
E{(c/o")2} = 20Lf 0 e Vdu

Again replacing u by y = u/2 and using the definition of the gamma function we
obtain

0 T'(9—1) 0
g/c*)} = fa T —
(37] E{(a/a")% 2 T(6—1)= 6 0 -
therefore
o I T _
[38] hz(o)z—E{(l_?)z} (6) _1 (6)T(6—1)

Cwoor(e-g) (o)

Concerning the second term in [36] we use the known relation for the Student dis-
tribution

(39] E(t?) = T = e—zT

Therefore

[40] A2()\)EE(tZ): I2(8) = TGT(0—-1) _ h?(8) 41
(20+1)(0_1)r2( —5 ) (204+1)T® (9_71) 26+1

Finally

[41] E{(a—ae)?}= a?h?(A) 4 A%(})

Thus the variance consists of two terms both of which vanish asymptotically;the first
one is proportional to a? and thus important for values of T far away from & while the
second one is independent of a and thus of T. h?(8) and A2(#) are shown in table 8 for a
few values of 4.

TABLE 8
n 6 h?(6) 4%(0)
3/2 0.5707 0.3927
8 7/2 0.1044 0.1381
12 11/2 0.0569 0.0881
oo o0 0.0000 0.0000

It can be demonstrated that the distribution of a—a, is asymptotically Gaussian so
that the value of E{(a—a.)?} already characterizes the distribution of a—a.. Knowing this
distribution, we can then define a 8 _ such that Prob. [a. + 3 <a] <e Since ¥ is a
monotonously increasing function, a §_so defined has the following property : if instead
of the true value of a we use the estimator a. plus the §_as argument of the & —
function, we obtain a value of p(T) which — with a probability 1—e — will be higher
than the true value, thus being a fiducial upper limit of p(T) corresponding to an error
probability of less than e.
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Example :

We consider again the observed lifetimes of table 5, corresponding to a Gaussian
distribution. We obtain in this case the following values for ¢* and ¢* in the four
experiments.

Experiment
1 2 3 4
£* 215.9 177.7 210.6 225.3
g*? 954.6 19204 1460.2 3775.1
a* 30.9 43.8 38.4 614

Since the “experiments” have been carried out with 8 elements, we have
g(0) = 1.1265 and h?(8) = 0.1044, A*(8)= 0.1381.

In table 9 we give the values for a. and c(a—a.) = V'E {(a—a.)? for different
values of T. As a is in practice unknown, it has to be replaced in the calculation of ¢ by
its estimate a.. This is sometimes rather crude hut since oc(a—ae) will give us only an
idea of the spread of the values of a. around a this procedure is sufficient.

TABLE 9

T Exp. 1 Exp. 2 Exp. 3 Exp. 4 a
(days) a,  o(aa,) a,  o(a-a,) a,  o(aa) a,  o(a-a.) a
100 — 333 114 — 158 0.63 —25.5 0.90 — 1.81 0.69 |— 250
150 — 1.89 0.72 — 056 041 — 140 0.59 — 1.09 051 |— 1.25
180 — 1.03 0.50 + 0.05 0.37 — 0.71 044 — 0.66 043 |— 0.50
200 — 046 040 -+ 045 040 — 0.25 0.38 — 0.37 039 |4 0.00
220 | 4+ 012 037 | + 086 046 | - 022 038 | -4 009 037 |+ 0.50
240 | + 069 043 | 4+ 126 055 | + 068 043 | + 021 038 |4+ 1.00
300 + 243 0.87 -+ 248 0.88 —+ 2.05 0.76 + 1.08 0.51 |+ 2.50

If we simply take a. -+ ¢(a—a.) as argument of the ®—function, we risk with a
probability of a little more than 16 9% that a, 4 c(a—ac.)<<a. But for purposes of illustra-
tion it suffices to use ae - c(a—a.) as argument of the function in order to derive an
“upper boundary” of the probability p(T) which will not be frequently exceeded. These
values ®[as -+ c(a—a.)] are compared with ®(a) in table 10.
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TABLE 10

Experiment

T (days) 1 2 3 4 @ (a)
100 0.01426 0.1711 0.04947 0.1314 0.00621
150 0.1210 0.4404 0.2090 0.2810 0.1075
180 0.2981 0.6628 0.3936 0.4090 0.3085
200 0.4761 0.8023 0.5517 0.5080 0.5000
220 0.6879 0.9066 0.7257 0.6772 0.6915
240 0.8686 0.9649 0.8665 0.7224 0.8413
300 0.9995 0.9996 0.9975 0.9441 0.9938
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APPENDIX

Derivation of the solution ‘of eq. [14] :

It is more convenient to calculate the probability generating function (p.g.f) F(z)
of Py instead of the probabilities Px themselves. As is well known, a p.g.f. of a distribu-
tion Py is defined as the expectation of z¥ corresponding to this distribution, that is

F(z)=E(z¥)= 3 Pyz®
N=0
Also, let f(z) be the corresponding p.g.f. of px :
f(z)= 3 puz
k=0

If we multiply eq. [14] by z¥ and sum over N we obtain

oo '3

o P
F(Z)=Z‘1NE kE Pxti-x 25K px z¥ 4P, £ (z) =z! E]Pyz f(z) +Po f(z)
=0 k=o

=z1F(z) f(z) —z7*Po f(z) + Pof(z)
Thus

1—z

F =Po—m—n—
@ =PI @
As it is obvious from its definition, a p.g.f. F(z) satisfies the condition F(1)=1.
Using this condition we easily determine P, :

B 1 Po
1 =P, lim _L_Z_. =P, - - X
z-51 1 —z/f(z) _.1__ z f'(z) 1=k

f(z) f2(z) z=1

taking into account the fact that (1) = § kpk——T(. Thus Po = 1—k. From eq. [17]
k=0

k = As so that Po = 1—As which is the relation [18].
The function f(z) corresponding to eq. [17] is

—As (1—z)
f(z)= e

Thus the function F(z) becomes

(1—=2s)(1—1z)

As (1—z)
1—ze

F(z) =
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Expanding this expression in a power series in z about the point z =

o
coefficients of zN¥. But we are more interested in the S¢ = = Px.
N=G+1

Sc. defined as gi Sa 28, can be expressed in terms of F(z) as follows :

It is Po = S¢-1—Se¢ and therefore
F(z):ego Sa_178—Q(z) = 1+ zG°z° Se-129-1—Q(z)
= =1

Thus F(z)=1 4+ z2Q(z) —Q(z) or

1—F(z) . 1 1—2s

1—2 1=z Xs (1—z)
l1—ze

Q(z) =

0 yields the Px as
The p.gf. Q(z) of

We obtain the Sg from the expansion of Q(z). Let ag be the coefficient of z6 in the expan-

As (1—z)\ -1
sion of ( 1—ze ) ; then we have

S¢ = 1—-(1—2s) ae

We thus only have to calculate the ac. We find by direct expansion

AS — Asz\ -1 o«  N)\S —Nn\Ssz oo o«  —N\S (——n/\sz)‘"
1—ze e = S e 1z =3 Ze 0o —— "~ -

= =
n=0 u=0 m=0

{(G—m))\s

m !

w g € (G—m)?(—2rs)m
= I 2@ I
G=0 m=0 m!
Thus
(G—m) s
c e (G—m)=(—As)™
ag = 3
m=0 m |
The first few coefficients ag, G = 0, ..., b are given explicitly as follows
aa=1
AS
ay=e
2)\s AS
a = ée —Ase .
3As 2)\s S
ad=e —2\se + 0,5 (As)2e
4)s 3\s 2)s AS
ag = e — 3Ase 4 2 (As)2e —0,17 (As)%
5)\S 4)\s 3xs 2)\s As
a = e —4\se + 4,5 (xs)2e —1,33 (As)3e + 0,04 (As)te
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