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A B S T R A C T 

The exposure of the population of the European Community from the 

predicted discharges of krypton-85, tritium, carbon-14 and iodine-129 from 

the Community and world nuclear power programmes up to the year 2000 is 

assessed. These nuclides, owing to their relatively long half-lives and 

their widespread dispersion, accumulate in the environment and represent 

long term sources of irradiation to essentially the whole of the world 

population. Consideration is given to the exposure of individuals and the 

Community population as a whole from each of the four nuclides; the 

relative significance of each nuclide in this context is evaluated. The 

levels of exposure are compared with ICRP recommended dose limits and with 

exposure from other sources such as natural background radiation. A 

comparison is also made between the natural inventories of these nuclides 

in the environment and those arising from discharges from the nuclear power 

programmes. The assessment is based on the continued application, to the 

end of this century, of current waste management practices; the implica

tions and likelihood of the implementation of improved practices prior to 

the year 2000 are also discussed. 
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1. Introduction 

The generation of nuclear energy will, like all industrial processes, 

be accompanied by the production of waste material. Wastes will be 

generated at each stage of the nuclear fuel cycle and will be of varying 

form depending on the process from which they emanate. The waste 

arisings can be conveniently classified into airborne, liquid and solid 

categories, with further sub-division according to their chemical and 

physical characteristics; they will be contaminated with radioactivity 

at levels ranging from the trivial to a few megacuries per cubic metre 

of waste volume. The majority of the activity is isolated from the 

environment by engineered storage pending evaluation of ultimate disposal 

schemes or until radioactive decay has reduced the activity to a very low 

level. Only a very small fraction of the activity is discharged to the 

environment. 

The basic principle underlying waste management procedures in the 

European Community derives from the ICRP system of dose limitation (1) 

which includes the recommendation that the radiation exposure of 

individuals and populations, and consequently the quantity of radioactive 

waste discharged to the environment, should be kept as low as reasonably 

achievable (2). These recommendations are incorporated into the Euratom 

Basic Standards on radiological protection. Although based on the same 

principles, the actual practice with regard to control of radioactive 

waste discharges differs considerably from country to country within the 

European Community. Typical procedures applied or being envisaged for 

application include evaluation of limits on a case by case basis, 

allocation of a stipulated fraction of ICRP dose limits to exposure from 

radioactive effluents (3), and limitation of population dose due to 

discharge of activity from a given installation (4). Each approach has 

its respective merits and disadvantages. 

The present study is concerned primarily with the discharge to the 

environment of those nuclides which owing to the magnitude of their 

half-lives, their fairly rapid and widespread dispersion in the environ

ment and the magnitude of their discharges, based on current waste 

management practices, will accumulate in the environment and may consti

tute ~significant long-term sources of irradiation to both regional and 
world populatione. In general the limiting of doses to critical groups in 
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the vicinities of nuclear establishments will suffice to ensure the 

minimal exposure of the more distant population owing to such factors as 

increased dispersion at greater distance and attenuation of the short 

half-life component of the discharged activity by radioactive decay. 

While it may be unnecessary to limit the discharge of some long-lived 

nuclides because of local considerations, controls may need to be 

implemented to limit the accumulation of such nuclides in the general 

environment over extended time periods, particularly in the context of a 

rapidly expanding nuclear power programme. 

An assessment of current waste management practices at various 

stages of the nuclear fuel cycle indicates that the discharges of 

krypton-85, tritium, carbon-14 and iodine-129 are those most likely to 

constitute significant long-term sources of irradiation in the context 

previously outlined. While the discharges of caesi~137 and plutonium 

may also be considered to fall into this category, only limited consider

ation is given to these nuclides in this report for the following reasons. 

Current interest in caesi~137 in the European context is primarily 

related to its discharge to the marine environment from the fuel 

reprocessing plant at Windscale, and its subsequent dispersion in the 

Irish and North Seas. Preston (5) has recently reviewed this situation; 

the exposure of man from these discharges arises principally from con

sumption of contaminated fish and estimates indicate that the present 

level of annual collective dose* to the population of the United Kingdom 

is about 1500 man-rads, with a similar magnitude of collective dose 

accruing to the population of the remainder of Western Europe. Individual 

annual doses however, arising from consumption of locally-caught fish, 

represent the limiting factor with respect to these discharges. At 
~ 

present the median exposure of the critical group is a few percent of the 

appropriate ICRP recommended annual dose limit. As a consequence of the 

local situation being the more restrictive and of the intention to reduce 

the discharge rates of caesium-137 (5), the annual collective dose from 

these discharges is unlikely to increase significantly, at least beyond 

the near term, above the present levels, despite a rapidly expanding 

nuclear power industry. For this reason, no further consideration is 

*Collective dose, together with other technical terms, is defined in the 

glossary. 
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given to caesium-137 discharges in this report. 

The behaviour and significance of plutonium discharges to the Irish 

Sea from the United Kingdom nuclear power programme have recently been 

discussed by Preston (5) and by Hetherington et al (6). These discharges, 

from the fuel reprocessing and refabrication plants at Windscale, have 

made by far the greatest contribution to the total plutonium discharges to 

the environment from the nuclear fuel cycle in the United Kingdom. To 

date approximately 104 Ci (~ activity) of plutonium have been discharged 

to the sea, of which about 95% has been rapidly lost from the water phase 

and incorporated into bed sediments, with the residual few percent 

remaining in the sea water and exhibiting a sea water distribution 

analogous to that of discharged caesium. No evidence has been found for 

a continuing increase in the level of plutonium in sediments in the 

vicinity of the outfall, nor has evidence been found of any long-term 

build-up in biological materials. These observations indicate that the 

majority of plutonium is dispersed in association with the general 

sediment transport processes in the area and that the small fraction of 

plutonium remaining in the water phase probably represents the major 

reservoir from which uptake into biological systems occur. While the 

radiological significance of the plutonium so far discharged to the 

Irish Sea has been shown to be negligible (5, 6) there remains a need 

for further work on the bio-geochemistry of both plutonium and the other 

actinides in order to demonstrate the long-term adequacy of the radiologi

cal safety associated with these and future discharges. Of particular 

importance in this context is the possibility of remobilisation of 

plutonium from sediments into biological materials; no evidence has been 

found to date however of such processes taking place in the sediment in 

the Irish Sea. Taking account of the low radiological significance of 

current discharges, together with the fact that local considerations are 

probably the more restrictive with regard to limiting discharges, no 

attempt has been made in this report to predict regional or global doses 

from plutonium likely to be discharged from nuclear power programmes to 

the end of this century. 

Consideration has been restricted to krypton-SS, tritium, carbon-14 

and iodine-129, the discharges of which are essentially confined to two 

stages of the fuel cycle, reactor operation and fuel reprocessing. The 
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doses to the population of the European Community from the discharges of 

these nuclides up to the end of this century have been evaluated, account 

being taken of the discharges from both the European Community and world 

nuclear power programmes. The assessment is based essentially on the 

continued application of current waste management practices to the end of 

the century, although some consideration is given to alternate waste 

management strategies. This approach is likely to result in upper limit 

estimates of dose. 
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2. The nuclear power programme 

Predictions of the rate of installation of nuclear capacity are prone 

to large uncertainties in the short term, and even more so over periods 

extending to the year 2000. In the past two years the marked dependence 

of nuclear programmes on external events has been amply demonstrated. An 

acceleration of the programme followed the rapid escalation of oil prices 

in 1973/74 but this has since been followed by a significant slowdown, 

brought about by the effects of energy conservation, a worldwide economic 

recession and difficulties associated with the financing of such a capital 

intensive programme in times of high interest rates. The results of this 

current study will obviously be fairly sensitive to the magnitude of 

installed nuclear capacity. However, the importance of uncertainties 

in this area is likely to be small in relation to other factors. Moreover 

the implications of changes in the nuclear programme can be assessed by 

appropriate scaling. 

Many predictions of the growth of nuclear power have been made both 

at national and international levels. The most recent authoritative 

prediction has been compiled by the OECD (7) and this forms the basis of 

the power programme adopted in this study. Predictions of the world 

nuclear power programme, apart from the USSR and Eastern Europe, up to the 

year 2000 are given in reference 7 together with the distribution of 

installed capacity up to 1990 among various geographical and political 

regions. The regional distribution for the period 1990-2000 has been 

derived from the total capacities assuming a pro-rata increase in each 

region. Data for the nuclear power programme in the USSR and Eastern 

Europe have been taken from a recent review by Parker and West (8). The 

predicted installed capacities of nuclear power for the whole world and 

the European Community are shown iri Figure 1. Programmes for other 

important regions are shown for comparison. 

Consideration must also be given to the distribution of installed 

capacity among the various reactor types because the reactor type has a 

major influence on the yield and discharge of some nuclides. In reference 

9, the breakdown of future power programmes into reactor types has been 

considered in detail, and a variety of reactor strategies evolved. The 

distribution derived in reference 9, on the basis of reasonably conserv

ative extrapolations of present trends and announced plans has been 
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adopted for the purpose of this study. Data are given only up to 1990 

and extrapolations of the indicated trends have been made to the year 2000. 

The reactor distributions for the whole world and for the European 

Community are shown in Figures 2 and 3 respectively, the latter being 

derived from the world distribution with appropriate modifications. A 

few points of clarification regarding Figures 2 and 3 are worthy of note: 

the light water reactor (LWR) programme is assumed to comprise pressurised 

water reactors (PWR) and boiling water reactors (BWR) in a ratio 3 : 2; 

the high temperature reactor (HTR) programme is assumed to comprise equal 

contrj.butions from the low (U - Pu) and high (u - Th) enriched types; in 

the absence of data the USSR and Eastern Europe programme is assumed to 

comprise solely LWRs; no account has been taken in Figures 2 and 3 of the 

recent decision in the United Kingdom to adopt the Steam Generating Heavy 

Water Reactor (SGHWR) as the basis of the future thermal reactor programme. 

It will subsequently be seen that the results of this study are in 

general not particularly sensitive to the reactor type distribution. Where 

such sensitivity occurs, the implications of the more extreme reactor type 

distributions considered in reference 9 are discussed. Some consideration 

is also given to the implications of introducing SGHWRs into the United 

Kingdom nuclear power programme. 

The rates of generation of nuclear energy (as heat) in the world and 

in the European Community are shown in Figure 4 and have been derived 

from the predicted installed capacities given in Figures 2 and 3 respect

ively, the reactor thermal efficiencies in Table 1 (9), and an assumed 

load factor of 0.1. A distinction is made between the energy generated 

by fast and by thermal reactors, and it is to be noted that the rates of 

energy generation are applicable to the end of the year in question. The 

rates are probably overestimates, particularly for the later decades, due 

to the likelihood of a decreasing load factor when the installed nuclear 

capacity exceeds the base load. 

Consideration is restricted in this study to the application of 

nuclear power to the generation of electricity, no account having been 

taken of other applications such as marine propulsion and process heat. 

The magnitude of nuclear capacity installed for such applications prior 

to the year 2000 is however unlikely to be sufficient to affect signifi

cantly the results of this study. 
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3. Nuclide generation and discharge to the environment 

The generation and discharge of krypton-85, tritium, carbon-14 and 

iodine-129 are considered in turn. In deriving discharge rates to the 

environment it is assumed that current waste management practices are to 

persist to the end of the century, this essentially representing an upper 

limit to the magnitude of the activity likely to be discharged. The impli

cations of introducing new practices and new technology are subsequently 

considered. 

3.1 ~ton-~ 

Krypton-85 is produced as a fission product during the irradiation of 

nuclear fuel. The generation of fission products during typical fuel 

irradiation cycles has been evaluated in references 10 and 11 for each of 

the reactor types. These data indicate that the yield of krypton-85 from 

all thermal reactors can adequately be represented by a single value of 

1.1 105 Ci/GW(th)y. A somewhat lower value of 8.4 104 Ci/GW(th)y is 

applicable to fast reactors. 

The discharge to the atmosphere of krypton-85 from reactors during 

normal operation will be very small and will arise as a result of trace 

amounts of uranium contaminating the primaxy circuit and the fuel cladding, 

or from operation of the reactor with leaking fuel elements. This mode of 

discharge is negligible in comparison to the discharge at fuel reprocessing 

plants where essentially the total krypton-85 content of the fuel will be 

discharged as an airborne effluent. The discharge rate of krypton-85 at 

reprocessing plants can therefore be assumed to be equal to its production 

rate in reactor fuel. It is to be noted that this assumption will be 

pessimistic, at least in the near term, due to the long delays occurring 

between fuel irradiation and subsequent reprocessing; this is a consequence 

of the very limited fuel reprocessing capacity currently available. 

3. 2 .'!'.r.i.~j._~ 

Tritium is generated in nuclear reactors both as a fission product, 

via ternary fission, and as an activation product via neutron inter

actions with a variety of elements, in particular boron, lithium and 

deuterium. These elements are present in a variety of reactor materials, 

both intentionally and as impurities. 
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The production rates of both fission and activation product tritium 

per unit thermal energy generated in each of the reactor types are 

summarised in Table 2 (10-14). The major sources of activation product 

tritium are indicated in each case. No account has been taken of 

activation product tritium produced in the control rods as these in 

general represent a negligible source of tritium discharge to the environ

ment. The variation of the generation rate of fission product tritium with 

thermal reactor type for typical fuel irradiation cycles is small and a 

single value of 7 103 Ci/GW(th)y can be adopted for all thermal reactors 

(~0,11). A slightly higher value of 1 104 Ci/GW(th)y is applicable to 

fast reactors (10,11). The generation rate of activation product tritium 

is much more dependent on the reactor type. While production via this 

mode is in general much less than that via fission, the case of the BWR 

is a notable exception. In the BWR, activation of the deuterium in the 

heavy water moderator results in a production rate of tritium more than 

an order of magnitude greater than that via fission. 

Tritium discharge to the environment can occur at reactors and 

reprocessing plants, and in Table 3 discharge rates per unit thermal energy 

generated from each are summarised. Both fission and activation product 

tritium contribute to the discharges from reactors. During reactor 

operation, fission product tritium is released from the fuel to the 

primary coolant by permeation through intact fuel cladding and by leakage 

from failed fuel elements. The magnitude of the release is dependent 

on the nature of the cladding and quality of the fuel. Tritium permeation 

through magnox and zircalloy clad fuels (BWR, PWR and HWR) is very small, 

whereas that through stainless steel clad fuel (AGR, FBR) is much larger, 

values ranging from up to 25% in the case of AGR up to essentially 100% 

for the FBR (13). A value of 1% (12,13) is commonly adopted for the 

percentage release from zircalloy clad fuels, this value encompassing 

both the release by permeation and by leakage from failed fuel. Release 

from HTR fuel, where the fuel particles are coated with pyrolytic carbon 

and in some cases a further coating of silicon carbide, is not well 

established although preliminary data have indicated a value of about 

30% (15). 

As well as a fraction of the fission product tritium, much of the 

activation product tritium also reaches the primary coolant, both by 
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virtue of production within the coolant itself and by diffusion from 

other production sites. In general the major route for tritium discharge 

from reactors is via the primary coolant, either directly by coolant 

leakage or indirectly by processes such as coolant clean-up and permeation 

of tritium across the primary or primary/secondary coolant boundaries 

where these exist. The major exception concerns the HWR where the 

moderator leakage is likely to determine the overall tritium discharge. 

The presence of tritium in the primary coolants of reactors does not in 

all cases however necessitate discharge to the environment. While tritium 

appearing in MAGNOX, AGR, LWR and HWR coolants is likely to be discharged 

in effluents, the majority of that in HTR and FBR coolants may well 

accumulate in the coolant purification systems and, depending on waste 

management practices, be isolated from the environment. In Table 3 only 

upper limits are quoted for the tritium discharge from both HTRs and FBRs, 

a consequence of uncertainties as to the type and performance of the 

coolant purification systems to be implemented on these reactor types. 

In reality the discharge rates are likely to be considerably smaller. 

Tritium will be discharged from reactors in both liquid and airborne 

effluents, the relative magnitude in each depending on the reactor type. 

Limited data on the distribution between the two effluent streams indicate 

that the airborne effluent comprises the following percentages of the total 

tritium discharged from each reactor: 10% for AGR (12); 1% for PWR (12); 

10-50% for BWR (12,16); and 90% for the CANDU version of HWR (17). The 

remainder in each case appears in the liquid effluent. The form of the 

tritium discharged in both effluent streams will be predominantly 

tritiated water. 

Tritium retained within the fuel elements during reactor operation 

will subsequently be released to the process streams during fuel 

reprocessing. Various data exist regarding the distribution of liberated 

tritium among the various waste streams at reprocessing plants (12,18,19). 

While the data show considerable variation they can be adequately 

represented by a distribution in which 25% and 75% of the tritium through

put respectively arise in the airborne and liquid effluent (ignoring the 

few percent incorporated into the highly active waste stream and cladding 

wastes). The tritium in the liquid effluent will be discharged in the 

form of tritiated water; the form of tritium in the airborne effluent is 
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not well defined although the ma.jori ty would be expected to be in the fo:rm 

of tritiated water vapour. For the purposes of this study it has been 

pessimistically assumed that all the tritium discharged in the airborne 

effluent is in the fo:rm of tritiated water vapour. 

Inspection of Tables 2 and 3 indicates that the activation product 

tritium makes only a small contribution to the overall tritium discharges; 

taking account of the distribution of the nuclear power programmes among 

the various reactor types (Figures 2 and 3) its contribution amounts to 

somewhat less than 10% of that derived via fission. While the activation 

product tritium is negligible in the overall context, it is of major sig

nificance in dete:rmining the discharge rate at HWRs and PWRs themselves; 

it comprises essentially 100% and about 80% of the total tritium discharged 

from the BWR and PWR respectively. 

The production rates of the fission product tritium in the fuel and 

the tritium discharge rates from reprocessing plants (Table 3) are 

sufficiently close as to adopt a simplifYing assumption that the two are 

equal; this is equivalent to assuming discharge rates from the reprocess

ing plants of 7 103 Ci/GW( th)y and 1 104 Ci/GW( th)y for reprocessing of 

thermal and fast reactor tuel respectively. The assumption is pessimistic 

in significantly overestimating the discharge from reprocessing FBR fuel, 

although only marginally so in the overall context due to the relatively 

small contribution made by the FBR to the total nuclear programme by the 

year 2000. 

3. 3 Ca~122!.!-:-Jl! 
The production of carbon-14 by fission is negligible and its presence 

in reactor systems is a consequence of activation processes. The dominant 

modes of production are neut~~n activation of carbon-13, nitrogen-14 and 

oxygen-17 via the following reactions. 

13c(n,y)14c 

1~(n,p) 14c 

17o(n,o:)14c 

~ = 9 10-4 barns 

(J = 1 • 8 barns 

(J = 0. 24 barns 

The quoted cross sections are for thermal neutrons of velocity 2200 m/s 

(equivalent to a neutron energy of 0.0253 eV). 
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The common occurrence of these nuclides in many reactor materials 

results in several sources of carbon-14 in each reactor type. Only very 

limited data exist on carbon-14 production in, and discharge from, nuclear 

reactors. Calculations have therefore been made of the major sources of 

carbon-14 production in the various reactor types. The calculated 

production rates are summarised in Table 4 where the production in the 

moderator, coolant and fUel is each considered separately. 

In gas-cooled, graphite-moderated reactors (MAGNOX, AGR and BTR) the 

major source of production is the graphite moderator; comparable contri

butions arise from activation of the carbon-13 content of the graphite 

itself and from activation of the incorporated nitrogen-14 impurity. An 

impurity level of 10 ppm by weight ( 22,23) has been assumed. Production 

in the carbon dioxide coolant of MAGNOX and AGR reactors arises via 

activation of the carbon-13 and oxygen-17 content of the coolant together 

with activation of the nitrogen impurity in the coolant. At the level of 

impurity assumed ( 200 ppm by volume - the upper limit of commercial grade 

C02) nitrogen activation makes the greatest contribution to the production 

of carbon-14, being a factor of about four times greater than that arising 

via ~xygen-17 activation; the contribution from carbon-13 activation in 

the coolant is negligible by comparison. Carbon-14 production in the 

helium coolant of the BTR is likely to be very small, a consequence of the 

nitrogen impurity level in the coolant being maintained at a very low level 

by the coolant purification systems. 

The production of carbon-14 in the coolants of light water reactors 

(coolant and moderator being synonymous in these reactors) will arise 

predominantly through activation of the oxygen-17 content of the water. 

The production rates quoted in Table 4 have been derived from the measured 

discharge rates at PWRs and BWRs (20,21) assuming the discharges to have 

arisen solely from coolant activation and fUrther that the measured 

discharges represented the total carbon-14 produced. 

The final major source of production is the reactor fUel. In the 

case of metal MAGNOX fUel the sole production mode is the activation of 

the ni trogen-14 impurity; the typical impurity level is 50 ppm by weight 

(24). For the other reactor types, which utilise oxide fUel, production 

arises via oxygen-17 and nitrogen-14 activation. The nitrogen impurity 
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level in oxide fuels is typically 20 ppm by weight (25). 

Predictions, based on the production rates in Table 4 have been made 

of carbon-14 discharge rates from both reactors and reprocessing plantso 

The discharge rates are summarised in Table 5 and are the values adopted 

for the purposes of this study. In the limited cases where measured 

discharge rates exist, in particular for discharges from PWRs and BWRs 

{20,21), the measured, as opposed to calculated, values have been adopted. 

The discharges from MAGNOX and AGR reactors result from coolant 

leakage and comprise the carbon-14 produced in the coolant itself together 

with that released to the coolant due to the corrosion of the moderator. 

In the case of the HT.R the discharge is assumed to arise as a result of 

the regeneration of the primary coolant purification system, moderator 

corrosion being the source of carbon-14 arising in the coolant; the 

discharge via leakage from the primary circuit would be expected to be 

small, The discharge from light water reactors will result from the 

leakage and removal of gases produced in the circulating coolant water. 

Carbon-14 produced in reactor fuel may be discharged during fuel 

reprocessing. Numerous t~ctors will determine the magnitude of the 

discharge, in particular the fraction of carbon-14 existing in the gaseous 

phase in the fuel element, the fraction incorporated into the cladding, 

the initial carbon impurity level in the fuel, the efficiency of off-gas 

treatment systems in removing CO and C02, and the fraction of carbon 

oxidised to CO or C02 during fuel dissolution. In the absence of data 

on carbon-14 discharges from reprocessing plants as well as on several 

of the factors listed above, it has been assumed that 10% of the carbon-14 

contained in the fuel elements will be discharged during fuel reprocessing. 

It will subsequently be shown that the results of this study are not 

particularly sensitive to this assumption. 

The previous considerations apply to the reprocessing of metal clad 

fuels; somewhat different assumptions are necessary with regard to the 

reprocessing of HT.R fuel. The most likely process to be adopted for HT.R 

fuel reprocessing is the grind-leach-bum process in which essentially 

100% of the carbon content of the fuel element is burned and discharged to 

the atmosphere as CO or co2 (26). While the discharge rate quoted in 

Table 5 has been derived on the basis of the total discharge of the 
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carbon-14 content of the fuel element, it should be noted that schemes 

for the separation of the fuel particles from the graphite fuel element 

prior to the grind-leach-bum process have been proposed (27); their 

application could reduce the carbon-14 discharges via this route by more 

than an order of magnitude. 

The assumptions adopted with regard to the carbon-14 ,discharges from 

HIR.s and HWR.s require further qualification. The production in FBRs of 

carbon-14, which may subsequently be discharged to the environment, is 

expected to be small compared to that in thermal reactors, a consequence 

of the much reduced neutron cross sections at fast neutron energies. No 

account has therefore been taken in this study of carbon-14 arising via 

this source. The discharge rate of carbon-14 from HWR.s has been assumed 

for the purposes of this study to be intermediate between that for PWRs 

and BWRs, although preliminary estimates have indicated that the 

production rate in and the discharge rate from HWRs may be considerably in 

excess of those associated with LWRs. This results from the much larger 

mass of water (and hence oxygen-17) exposed to the neutron flux in the 

case of HWRs. Preliminary estimates indicate that the carbon-14 discharges 

from SGHWR and CANDU reactors respectively may be factors of about 10 and 

40 times greater than the value given as appropriate to HWRs in Table 5; 
the larger value in the case of the CANDU, compared to that for the SGHWR, 

is a consequence of its larger moderator mass per unit reactor power and 

the use of nitrogen, compared to co2, as the vault gas (which fills the 

interspace between the pressure tubes and the calandria). The above 

factors have been derived on the assumption of equality between the 

discharge and production rate of carbon-14 in HWRs. The implications of 

much higher discharge rates from HWRs than adopted for the purposes of 

this study are subsequently discussed. 

No account has been taken of the carbon-14 that may be discharged as 

a result of reactor decommissioning due to uncertainties as to the 

procedures likely to be adopted. Of particular significance in this 

context are the graphite moderators of MAGNOX and AGR reactors which at 

the end of an assumed 30 year reactor life may contain about 103 Ci per 

GW(th) of reactor power. 
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Owing to the few data available regarding the discharge rates of 

carbon-14, only limited comparison can be made between the values adopted 

in this study and those suggested by other authors. In contrast to the 

measurements by Kunz et al (20,21) of discharge rates from PWRs and BWRs 

of 2 and 5.3 Ci/GW(th)y respectively (the values adopted in this study), 

Rublevskii et al (28) have measured discharge rates of about 90 Ci/GW(th)y 

from LWRs in the USSR. The reason for the much higher value in the latter 

case is not apparent; possible causes may be different nitrogen impurity 

levels in the coolant or differing masses of coolant exposed to the neutron 

flux per unit reactor power. As the majority of the LWR programme in the 

European Community is based on the USA reactor design, the data of Kunz et 

al (20,21) are considered to be more appropriate. Magno et al (29) have 

estimated carbon-14 production rates of about 17 and 100 Ci/GW(th)y for 

LWRs and HT.Rs respectively. Their estimates are a factor of approximately 

2 and 5 greater than the respective values adopted in this study. As no 

information is given by Magno et al as to their assumptions, particularly 

with regard to the nitrogen impurity levels assumed, no comment can be 

made as to the sources of the differences. Brooks et al (22) have 

evaluated the carbon-14 production rate in HTR fuel elements of the 

prismatic type which are incorporated in the General Atomic HTR design. 

Their current predictions revise earlier estimates which had suggested 

significantly higher production rates. Their results are presented in 

terms of carbon-14 production per fuel element; using design data for 

Fulton HTR (26) their predictions are equivalent to a production rate of 

approximately 40 Ci/GW(th)y. This value is based on a nitrogen impurity 

level in the graphite of 26 ppm, a value chosen solely for illustrative 

purposes. While the data on nitrogen impurity levels in graphite are 

limite~ those which are available (23) are indicative of a level of 

10 ppm by weight. Normalising the Brooks et al carbon-14 production rate 

to a 10 ppm nitrogen impurity level, the level assumed in this study, 

results in very close agreement with the value predicted in this current 

work. Bonka et al (30,31) have predicted a production rate of about 

24 Ci/GW(th)y in HTRs of the pebble bed design which are under development 

in the FRG. The estimate is based solely on the activation of carbon-13 

in the graphite, no account having been taken of the activation of any 

nitrogen impurity incorporated in the graphite; assuming a nitrogen 

impurity level of 10 ppm would result in an increase in the production 
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rate to about 60 Ci/GW(th)y. This value is approximately a factor of 3 

greater than both that adopted in this study and that predicted by 

Brooks et al after normalisation of the latter to a 10 ppm nitrogen 

impurity level. The larger value is almost certainly a consequence of 

the neutron flux in the pebble bed design of the HTR, the basis of the 

prediction of Bonka et al, being a factor of approximately three times 

greater than that in the prismatic style HTR; the latter was used as the 

basis of the production rates calculated in the present work as well as 

by Brooks et al. The prismatic style HTR is more likely to be widely 

adopted, at least for electricity production, and is the style being 

developed in the USA by General Atomic and in several European countries; 

the pebble bed design is being developed in the FRG. As a consequence it 

has been assumed in this study that the production rate evaluated for the 

prismatic style is applicable to all HTRs. 

Perhaps the greatest uncertainty associated with the prediction of 

carbon-14 production rates is the magnitude of the nitrogen impurity 

levels in a variety of reactor materials; by comparison the production 

via the activation of oxygen-17 and carbon-13 can be quite accurately 

assessed. While the nitrogen impurity levels adopted in this study are 

felt in the case of the reactor fuels to be realistic, and in the case of 

the C02 coolant to be at least conservative, much greater uncertainty 

exists with regard to the impurity levels in the graphite moderators. 

The production rates of carbon-14 in moderator graphite arising from 

nitrogen activation should therefore be viewed with somewhat more caution 

than the other production rates listed in Table 4. 

Inspection of the discharge rates in Table 5 shows that the magnitude 

of the total carbon-14 discharged from the nuclear programme will only be 

moderately dependent on the distribution of installed reactor type. The 

range of variation in the discharge rates associated with the various 

reactor types is less than an order of magnitude. An even smaller 

variation would result if the total carbon-14 produced in the reactor 

fuel were assumed to be discharged at reprocessing plants, as opposed to 

the value of 10% adopted. Note however should be taken of the considerably 

higher discharge rates of carbon-14 that have been predicted, on the basis 

of preliminary estimates, to be appropriate to HWRs. 
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The chemical form of the discharged carbon-14 will in general 

comprise carbon dioxide and carbon monoxide, the former being the more 

probable. The only exception involves the discharge from PWRs where the 

majority of the carbon (>8()1)6) has been measured to be in the form of 

hydrocarbons, principally methane and ethane ( 20). Discharge in this form 

is due to the reducing nature of the primary coolant circuit. For the 

purpose of this study however it is assumed that all carbon-14 is dis

charged as carbon dioxide. While the implications of the assumption will 

be minor in the context of doses from the global circulation of activity 

it will lead to an overestimate of doses in the vicinity of LWRs. 

3.4 ~E!:"11.2 
Iodine-129 is produced as a fission product during the irradiation of 

nuclear fuel. The variation of its production rate with reactor type, 

both thermal and fast, is small and a yield of 0.4 Ci/GW(th)y can be 

adopted for all reactor types (10,11). The discharge of iodine-129 from 

reactors will be negligible in comparison to that from reprocessing plants. 

A review of practice at Windscale (32) has indicated that 75% and 0.1% of 

the iodine-131 present in the fuel at the time of reprocessing are dis

charged to the sea and atmosphere respectively; similar discharge 

fractions would be likely to pertain for iodine-129. For the purposes of 

this present study discharge fractions of 75% and 1% of the iodine-129 have 

been assumed as representative. The more cautious choice of 1% discharge 

to the atmosphere is a reflection of the uncertainty with regard to present 

and future practice at reprocessing plants. The discharge percentages 

adopted as representative are essentially typical of a coastal sited 

reprocessing plant; different considerations would be likely to apply to 

an inland sited plant, in particular with regard to discharges to inland 

waters. In the latter case both the magnitude of the total iodine-129 

discharg~ as well as its distribution among the two effluent stream~ may 

be very different from those adopted as representative for the purposes of 

this study. 

A reduction in the fractional discharges might arise if shorter cooled 

fuel were to be processed, owing to the need to reduce the fractional dis

charge of the then much greater iodine-131 inventory. Significant 

economic benefits have been predicted to arise from minimising the cooling 

period, and hence the quantity of plutonium in the fuel cycle, for fast 
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reactor fuels. However the expected benefits will need to be carefully 

weighed against the increased waste management difficulties associated 

with such an action in order to ascertain the optimum approach. While a 

reduction in the fractional discharge of iodine-129 may not necessarily 

arise from the above consideration, a reduction resulting from the 

introduction of different waste management practices prior to the year 

2000 cannot be dismissed. Consideration is therefore also given to the 

effect of a lower fractional discharge than cautiously assumed above. 

3. 5 ~ .. Q.f. .d.~l!l.<?..l¥!r~. -~tee 
The discharge, per unit energy generation, of the four nuclides con-

sidered are summarised in Table 6 for each of the reactor types. The 

location of the discharge and the medium into which it is made are also 

indicated. Discharges to the atmosphere are assumed to occur from 

elevated positions, at a height of 30 m and 100 m in the case of reactors 

and reprocessing plants respectively. These values are representative of 

the stack heights in the respective establishments. The discharge data in 

Table 6 and the power programmes contained in Figures 2 and 3 have been 

used to calculate the discharge rate of each nuclide to the year 2000. 

These discharge rates are show.n in Figures 5 and 6 for both the world and 

European Community nuclear power programmes, and form the basic data from 

which the dose rates to the year 2000 are subsequently assessed. 
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4. The evaluation of doses arising from the discharges of krypton-85, 

.tritium, carbon-14 and iodine-129 

In assessing the doses from the discharges of these four nuclides 

consideration must be given to three distinct aspects. These comprise 

the doses to people within a few kilometres of the discharge point, the 

doses to people within several hundred kilometres who may constitute a 

regional group, and doses to the world population from the subsequent 

global circulation of discharged activity. A relatively small number of 

individuals in the first category will in general comprise the critical 

group and it is the dose to these individuals and the potential risk of 

somatic effects which are of interest. In the intermediate group both 

the dose to individuals and the exposure of the regional population group 

as a whole (collective dose) are likely to be of interest. In the case of 

the doses arising from the global circulation of the activity the individ

ual exposures are in general trivial, and attention can be confined to the 

exposure of the population as a whole. With regard to the exposure of 

large population~ consideration needs to be given to both the genetically 

significant dose and collective somatic dose in the respective contexts 

of the possible genetic injury and the possible somatic effects that 

might occur in the population. While the ICRP have made recommendations 

on dose limits for individual exposure and on a genetic dose limit to a 

large population (1) no numerical recommendation has been made with regard 

to a maximum "somatically significant" dose for a population. The ICRP 

have pointed out that an improved knowledge of risk estimates would 

eventually allow national authorities to assess the acceptability of a 

somatic dose to a population; in the interim however it was felt that the 

dose limits for individuals would ensure that the number of somatic 

injuries that could occur in a population would remain at a low level (1). 

Doses arising from global circulation will be determined essentially 

by the absolute magnitude of the total activity discharged and will only 

be wederately dependent on the distribution of discharged activity among 

the various locations. Conversely doses to populations within several 

hundred kilometres of discharge points will be very sensitive to the 

magnitude of the discharge at individual locations. This arises from al

most all the activity, apart from carbon-14, being discharged at reprocess

ing plants, and from these plants being few in number. Assumptions must 
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therefore be made regarding the discharge at individual locations to 

enable the evaluation of doses to local and regional population groups. 

Commercial fuel reprocessing capacity in the European Community is 

currently limited to plants at Windscale in the UK and at Cap de la Hague 

in France. The next major plant will probably be constructed in the FRG 

but is unlikely to be in operation before the early 1980s. For the 

purposes of this study it is assumed that one half of the European Com

munity fuel reprocessing load to 1985 will be processed at one plant. 

During the period 1985-1990 this fraction is assumed to reduce to one

third, at which fraction it remains constant through to the year 2000. 

This assumption is equivalent to the reprocessing at one plant of the fuel 

from an installed reactor capacity of 65 GW(e) in 1985 increasing to 

240 GW(e) in the year 2000, and this reprocessing load has been adopted as 

representative in the context of evaluating doses to people within several 

hundred kilometres of a reprocessing plant. It ~ however overestimate 

the reprocessing load at any one plant by up to a factor of two. This 

approach has been adopted with regard to the discharges of krypton-85, 

tritium and iodine-129 and the magnitude of their discharges from this 

single source can be derived by appropriate scaling of Figures 5 and 6. 

The situation with regard to carbon-14 is more complex and is discussed 

in greater detail later. 

In the following sections consideration is given in turn to the 

evaluation of doses resulting from the global circulation of the discharges 

of each of the four nuclides from both the world and European Community 

nuclear power programmes. Doses to people within several hundred kilo

metres of the discharge point, resulting from the 'first pass' of acti

vity discharged from the representative reprocessing plant outlined above 

are also evaluated. In the case of the airborne effluents the first pass 

dose arises from the downwind passage of discharged activity prior to the 

more widespread dispersal of the activity throughout the whole or part 

of the atmosphere. Similarly for liquid effluents the first pass dose 

arises prior to the more widespread dispersal of activity throughout the 

larger water masses of the world; in this case the transport processes 

and uses made of the aquatic medium into which the discharge is made will 

be instrumental in determining the magnitude of the first pass doses via 

this route. 
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4.1 Doses resulting from the discharge of k;ypton-85 

Krypton-85 decays with a half-life of 10.8 years by the emission of a 

~ particle of maximum energy 0.67 MeV, and a y ray, with a branching ratio 

of 0.41~of energy 0.515 MeV (33). Exposure to an extensive cloud of 

krypton-85 at a uniform concentration of 1 pCi/g of air has been calculated, 

in reference 34, to result in a dose of 2.5 10-3 rad/y to the surface of 

the skin and 2.1 10-5 rad/y to shallow tissue and gonads. These dose rates 

have been modified for the purposes of this study; the dose rate to the 

surface of the skin has been modified by a factor of 0.6 to convert the 

surface dose to a depth of 7 mg/cm2 (35) and dose to shallow tissue and 

gonads has been modified by a factor of 0.4 to make allowance for the 

increased shielding during time spent indoors (36). The dose to the skin 

arises mainly from the ~ component, while that to the gonads is attribu

table mainly to the y component. No account is taken of the additional 

dose arising from the transport in the body of inhaled krypton-85, as 

this has been shown to be small in comparison with the external radiation 

dose to skin and whole body (37). 

Gonad and skin dose rates per unit discharge rate of krypton-85 from 

a stack of height 100 m are shown in Figure 7 as a function of the dis

tance from the discharge point (first pass doses). The dose rates have 

been derived from reference 38 and in their derivation account has been 

taken of the non-uniform distribution of krypton-85 in the overhead cloud. 

While the dose rates were derived specifically for dispersion conditions 

typical of the UK they are likely to be broadly applicable in the temperate 

latitudes, providing the topography is not exceptional. Gonad dose rates 

to the year 2000, from the downwind passage of krypton-85 discharged from 

the representative reprocessing plant, are given in Figure 8 for a rangeof 

distances from the discharge point. The dose rates have been derived from 

Figure 7 and the discharge rates associated with the representative plant. 

The discontinuities in the curves in Figure 8 are a consequence of the 

assumptions regarding the rate of fuel reprocessing in the representative 

plant. While only the gonad doses are given, the doses to skin can be 

derived by scaling by the appropriate factors given. Dose rates to 1985 

are shown as solid lines and from 1985-2000 as dashed lines. This conven

tion is adopted throughout where the dose rates are plotted as a function 

of time and is a reflection of the greater uncertainty in the dose 
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predictions beyond 1985, as a consequence both of uncertainties in the 

magnitude of the power programme and of uncertainties as to the future 

waste management practice. It should be noted that the dose rates given 

in Figure 8, as well as in subsequent Figures, as appropriate to the year 
' 

1975 are likely to be significant overestimates due to del~s in the 

installation and commissioning of reactors and to the limited amount of 

fuel reprocessing currently being undertaken throughout the world. 

Dose rates to the year 2000 resulting from the global circulation of 

kr,ypton-85 are shown in Figure 9, where the contribution from the 

European Community discharges is shown in relation to the total. The dose 

rates were evaluated using the kr,ypton-85 discharge rates given in Figure 

5 for both the European Community and world nuclear power programmes and 

the model for global circulation given in reference 39. Account was also 

taken of the discharge of kr,ypton-85 prior to 1975. This model considers 

all kr,ypton-85 to be discharged into the latitude band 35-60°N, and assumes 

uniform dispersion of the activity up to a height of 10 km. Transfer from 

this band to the troposphere of the Northern Hemisphere is assumed to occur 

with a mean life of 100 ~s (equivalent to a transfer coefficient of 

3.65 y-1), and mixing between the Northern and Southern Hemispheres is 

assumed to proceed with a transfer coefficient of 0.5 y-1• The dose rates 

in Figure 9 are relatively insensitive to realistic variation of the 

numerical parameters adopted in the model. T,ypically the variation of the 

1 to 1 Y
-1 interhemispheric transfer coefficient from 0. would result in a 

variation in the dose rate of less than 50%. 

Two points are of particular interest in relation to the dose rates 

from kr,ypton-85. The first relates to the contribution which the European 

Community discharges make to the total dose rate arising from the global 

circulation of kr,ypton-85. This contribution amounts to about 20% and 

indicates that little benefit would ensue from unilateral action in reduc

ing the discharges ofkr,ypton-85. The second relates to the increasing 

significance with time of the dose rates from global circulation compared 

to those resulting from the first pass of the activity. From 1975 to the 

year 2000 the distance beyond which the dose rate from global circulation 

exceeds the first pass dose rate decreases from 180 km to 95 km. These 

data are obviously specific to the representative reprocessing plant 

consideredo However as the fuel throughput assumed for this plant is 
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likely to represent an upper limit at any one plant; the relative sig

nificance of the dose rate from global circulation mB¥ be even greater 

than indicated above. 

4. 2 ~~-~J.~ing .from the ~barge of tri t~ 

Tritiated water is as readily assimilated into biological systems as 

ordinary water and it is this characteristic that is of particular signi

ficance radiologically, not its inherent radiotoxicity which is low owing 

to the very low energy (5.7 keV average) of the beta particle emitted 

during radioactive decay. Tritiated water in body fluids at an equilibrium 

concentration of 1 pCi/g delivers a dose rate of 10-4 rad/y to the whole 

body, including the gonads ( 38). The radioactive half-life of tritium is 

12.2 years. 

Tritium discharge to the environment from the nuclear power industry 

arises predominantly at reprocessing plants. Discharges from reprocessing 

plants have therefore been used as a basis for evaluating doses to the end 

of this century; some qonsideration is however given to the discharges 

from reactors where these are likely to be of significance. Tritium is 

discharged from reprocessing plants in two waste streams, liquid and 

airborne, and the implications of each are considered in turn. 

The discharge of tritium in airborne effluent leads to the irradiation 

of man via two routes. These comprise the inhalation and skin absorption 

of tritiated water vapour in air and the ingestion of foodstuffs and water 

contaminated during the downwind passage of the radioactive cloud. 

Contamination of foodstuffs and water arises principally from the washout 

of the tritium in the cloud by rain. The dose rates for unit discharge 

rate of tritiated water from a stack of height 100 m are shown in Figure 

10 as a function of the distance from the discharge point. The doses via 

inhalation and skin absorption have been averaged over dispersion con~ 

ditions typical of the temperate latitudes, and are based on a water intake 

via these routes of 320 g/day (equivalent to an average water vapour 

content in air of 8 g/m3 which is typical of the UK) •. These doses are 

relatively insensitive to the assumed water vapour content in air; this 

results from any change in the \om.ter vapour level, and thus the magnitude 

of water intake via these routes, being compensated by a corresponding but 

inverse change in the concentration of tritium in the vapour. Ingestion 
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doses are much less certain than inhalation doses and are based on food

stuffs and drinking water being contaminated at the same level as rain. 

Approximately equal contributions to the daily water intake into the body 

arise from foodstuffs and drinking water. The level of contamination in 

rain, and hence the assumed levels in foodstuffs and in drinking water, 

have been derived on the basis of rain occurring solely in the Pasquill 

C and D weather categories, with rain being assumed to fall for 17% of the 

time during the downwind passage of the cloud. Removal of tritium from 

the cloud during rainfall has been evaluated using a washout coefficient 

of 10-4 s-1 (40) and the tritium concentrations in rain are based on an 

average rainfall of 75 cm/y. Account has also been taken of evaporation 

and subsequent re-deposition of tritium removed from the cloud by rainfall. 

Ingestion doses will be particularly sensitive to the fraction of food and 

water derived locally, parameters which are likely to vary widely from 

region to region. In this assessment it is assumed that 5o% of the food 

and water intake are contaminated at the mean level in an area contained 

within a radius of 50 km from the point of intake, with the remaining 5o% 
being essentially uncontaminated. On this basis the inhalation dose is 

the major contributor to the total dose out to about 10 km, the ingestion 

route dominating beyond this distance. An extreme upper limit to the dose 

from airborne discharge of tritiated water vapour can be obtained by 

assuming all food and water to be contaminated at the same level as the 

water vapour in the air at the point of intake. Doses derived on this 

basis are shown in Figure 10 for comparison. 

Doses to the year 2000 from the discharge of tritium to the atmos

phere from the representative reprocessing plant are given in Figure 11 for 

a range of distances from the discharge point. They have been derived from 

Figure 10 and the discharge rates of tritium to the atmosphere associated 

with the representative reprocessing plant. The tritium is assumed to be 

discharged solely in the form of tritiated water vapour. 

Doses to local or regional groups from the discharge of tritium in 

liquid effluents are very sensitive to particular local or regional condi

tions. Factors which determine this sensitivity include the nature of the 

water body into which the discharge is made, the subsequent use made of the 

water, and the rate of exchange with, and circulating behaviour of, atmos

pheric water vapour. Owing to the marked dependence on local factors only 
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limited consideration is given in this study to the evaluation of represen

tative local or regional doses associated with liquid discharges. Dis

charge to sea of tritium in liquid effluent, at lea.st in the magnitude 

consistent with the predicted power programme to the year 2000, will be of 

very low radiological significance. This results from the very large 

volume of water available for dilution and the limited contribution made 

directly by the sea to man's total water intake. The major exposure path

Walf in this case is likely to arise from the exchange of water between the 

sea and atmospheric water vapour, followed by the subsequent deposition 

over land. Discharges to inland waters or rivers are however of much 

greater significance in the local and regional contexts, particularly 

where the water is subsequently used as a source of drinking water or for 

irrigation purposes. Although no assessment has been made in this study 

of the doses from discharges to rivers, assessments of other authors 

relating to discharges to specific areas are summarised. 

Discharges of tritium to the Rhine are of particular importance in the 

European context because of the use made of the Rhine as a source of 

drinking water, particularly in the Netherlands. The International Com

mission for the Protection of the Rhine against Pollution has recently 

assessed the implications of the discharge of radioactive materials to the 

Rhine up to the year 2000 (41). The assessment is based on the discharges, 

from reactors only, associated with an installed reactor capacity in the 

Rhine catchment area by 1990-2000 of 100 GW(e). The installed capacity is 

assumed to comprise equal contributions from BWRs and PWRs. Tritium 

concentrations in the Rhine are derived from discharge rates of 2000 and 

20 Ci/GW(e)y (equivalent to approximately 700 and 7 Ci/GW(th)y) from PWRs 

and BWRs respectively, values not inconsistent with those adopted in this 

study (Table 3), and an average Rhine flow at Lobith of 2200 m3/s. Based 

on the pessimistic assumption that the tritium concentration in all routes 

of water intake to the body is equal to that predicted for the Rhine in the 

period 1990-2000, a whole body dose rate of 0.14 mrad/y would result. This 

value is based on a reactor programme comprising solely LWRs; somewhat 

different dose levels might arise if radically different reactor type 

distributions were assumed. This results from the tritium discharge rate 

from a reactor varying markedly with the reactor type (see Table 3); of 

particular importance in this respect are the HWR and the HT.R, the signi

ficance of the latter depending critically on the waste management 
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procedures adopted for tritium contaminated water vapour removed in the 

primary coolant purification system. The prediction of dose rates in 

reference 41 is based solely on tritium discharged from reactors. If the 

fuel from an installed reactor capacity of 100 GW(e) were also reprocessed 

in the Rhine catchment area, and the tritium content of the fuel discharged 

to the Rhine, the dose rate would be enhanced by a factor of 10 to 20. 

Such discharge~however, would be unlikely to be made to a river which was 

subsequently to be used as a major drinking water supply and other waste 

management procedures would probably be adopted for the discharge or 

disposal of such arisings. Grathwohl ( 12) has made an assessment of the 

hypothetical contamination of German rivers based on the assumption that 

all tritium discharged in liquid effluent from the FRG nuclear power 

programme, from both reactors and reprocessing plants, will reach the 

rivers and be diluted by the average volume flow. B,y the year 2000 the 

average tritium concentration in river water predicted by Grathwohl (12) 

is equivalent to a whole body dose rate of 0. 7 mrad/y if all routes of 

water intake into the body are assumed, pessimistically, to contain 

tritium at this average concentration. In deriving this dose rate from 

the tritium concentration given by Grathwohl, account was taken of the 

reduction to unity of the quality factor for soft betas (42). The assess

ment by Grathwohl is probably pessimistic in assuming a significant 

fraction of tritium liberated from the fuel during reprocessing to be 

discharged to river water. 

The implications of tritium discharge in a global context have been 

assessed on the assumption that the tritium is immediately dispersed 

throughout the circulating waters of the hemisphere into which the dis

charge is made. This assumption is adopted in the absence of much of the 

data necessary for a detailed assessment and~ result in underestimates 

of dose in specific areas from which the rate of dispersion is slow. The 

model adopted to evaluate the global circulation of tritium, subsequent to 

the assumed immediate dispersion in the circulating waters, is shown in 

Figure 12. Dose rates are evaluated assuming body fluids to be contamina

ted at the same level as the circulating waters of the Northern Hemisphere 

which comprise essentially the surface waters of the sea to a depth of 75 m 

(volume of approximately 1022 cm3). In evaluating the tritium concentra

tion in the circulating waters account is taken of radioactive decay, the 

interchange between the circulating waters of the Southern and Northern 
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Hemispheres,the interchange between these surface waters and the deeper 

waters beneath the thermocline, as well as the interchange between the 

deeper waters of the two hemispheres. The transfer coefficients adopted 

to represent the transfer between the various compartments are indicated 

in Figure 12. Variation in the transfer coefficient with the direction 

of transfer is a consequence of the differing volumes of the respective 

compartments. In Figure 13 the dose rates up to the year 2000 derived 

using the above model are given for global circulation of the total 

tritium discharged from the world and European Community nuclear power 

programmes. 

The dose rates arising from the first pass of tritiated water dis

charged in airborne effluent are significantly greater out to large dis

tances than the dose rate from global circulation, and only at distances 

greater than 1000 km do the dose rates become comparable. By the year 

2000 the first pass dose rates are predicted to be 0.2 mrad/y and 8 ~rad/y 
at downwind distances of 100 and 1000 km respectively (compared with the 

dose rate from global circulation of 1.5 ~rad/y). These first pass dose 

rates are of course appropriate only to the representative reprocessing 

plant considered and an assumed continuation of present waste management 

practice. Their magnitude however is such that realistic assessments of 

the local and regional doses from non-marine liquid discharges will be 

required to ascertain the mode of discharge having the minimum impact in 

specific cases. 

4. 3 11_o_~~s . .!:~~1 ti.!!K..f~~--~h~ ~!!!<?...~r,g~ ,Q.f._c.?-_!:l?.O~I].:-_11:1 
The importance of carbon-14 discharge to the environment arises from 

its incorporation into the carbon content of the biosphere. Carbon forms 

the structural base of all organic matter and participates in almost all 

biological and biochemical processes. It comprises about 1~ of the total 

body weight and is a major constituent of proteins and genetically signi

ficant structures such as DNA and RNA. Carbon-14 dec~s, with a half-life 

of 5730 years, by emission of a ~ particle with a mean energy of 50 keV. 

The incorporation of carbon-14 into the body at a given specific activity 

(pCi C-14/g C) will result in different doses to various organs by virtue 

of their differing carbon content. A specific activity of 1 pCi/g of 

carbon will result in doses of 0.76 mrad/y to fat, 0.1 mrad/y to the gonads, 

and an average dose to the whole body of 0.17 mrad/y, fat being the 
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critical organ. The radiological significance of carbon-14 may be further 

enhanced by the transmutation of the carbon atom to a nitrogen atom during 

radioactive decay, particularly from a genetic viewpoint when the carbon-14 

is incorporated into genetic structures. The limited data available how

ever suggest that, compared with the absorbed energy from ionisation 

processes, the transmutation effects represent only a minor contribution 

to the radiological significance of carbon-14 (43). 

The discharge of carbon-14, in the form of carbon dioxide, in airborne 

effluents will lead to the irradiation of man via two routes; these 

comprise the inhalation of the cloud as it passes downwind, and the 

ingestion of contaminated foodstuffs. The exchange rate between atmos

pheric carbon dioxide and living vegetation, as opposed to the humus, is 

assumed to be sufficiently rapid to consider the vegetation to be contami

nated at the same specific activity as that of the carbon in the cloud. 

Gonad dose rates per unit discharge rate of carbon-14 from a 100 m stack 

are given in Figure 14, as a function of the distance from the discharge 

point, and the respective contributions from inhalation and ingestion are 

indicated. Doses to other body organs can be obtained by scaling by the 

appropriate factors given in Figure 14. The dispersion of the discharged 

activity has been evaluated in the same manner as for krypton-85, and the 

doses have been derived on the basis of the carbon-14 specific activity 

(pCi C-14/g C) in the body. This is derived as the weighted mean specific 

activity of the two routes of intake, weighting being applied according to 

the mass of carbon reaching the blood from each route. Values of 

2.25 g/day and 300 g/day have been adopted for inhalation and ingestion 

respectively. The former value is probably a considerable overestimate of 

the intake via that route. The ingestion dose is obviously particularly 

sensitive to the area over which food is derived and for the purposes of 

this assessment it is assumed that 50% of food is derived from an area 

within 50 km of the point of intake, with the remainder being essentially 

uncontaminated. Ingestion doses based on all food being derived at the 

point of intake are also shown in Figure 14, these representing the upper 

limit to the possible doses. 

The prediction of representative doses to the year 2000 from the 

first pass of discharged carbon-14 is complicated by the variety of 

sources contributing to the total discharge (Table 5). The largest 
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discharges of carbon-14 from a single location are likely to arise at BTR 

fuel reprocessing plants and such discharges have been adopted here to 

demonstrate the possible level of first pass doses to the year 2000. It 

is assumed that all BTR fuel from the predicted European Community 

programme is reprocessed at one plant; the carbon-14 discharges associ

ated with such an assumption can be derived from the installed BTR ca

pacity given in Figure 3 and the discharge rate associated with HTR fuel 

reprocessing in Table 5. The assumption of a single plant, while result

ing in an upper limit dose estimate, is not unrealistic in the context of 

the predicted magnitude of installed BT.Rs in the European Community of 

51 GW(e) by the year 2000. Furthermore a single plant would probably be 

advantageous on economic grounds particularly if a Th-U fuel cycle were 

adopted. On the basis of these assumptions gonad doses to the year 2000 

from the first pass of discharged carbon-14 have been derived and are 

shown in Figure 15 for a range of distances from the discharge point. The 

predicted dose rates can however be scaled to accommodate different 

assumptions regarding the magnitude of the BTR programme or the fraction 

of the fuel reprocessed at a single plant. 

The global circulation of carbon-14 discharged from the world and 

European Community nuclearprogrammes (Figure 6) has been evaluated using 

the circulation model outlined in Figure 16. It is assumed that all 

carbon-14 is discharged as carbon dioxide into the troposphere in the 

latitude band 35-60°N and that uniform dispersion occurs instantaneously 

up to a height of 10 km. Transfer from this band to the whole troposphere 

of the Northern Hemisphere is assumed to occur with a mean life of 100 

dayso Subsequent transfer from the troposphere and between other compart

ments is indicated in Figure 16 together with the appropriate transfer 

coefficients. The coefficients have been derived from numerous references 

(44-55) and are representative of the range of values quoted. Dose rates 

to the gonads have been evaluated on the assumption that the specific 

activity of carbon-14 in the carbon content of body tissues is identical 

to that in the troposphere. The assumption is justified by virtue of the 

rapid exchange of atmospheric carbon dioxide with vegetation. Gonad dose 

rates from the global circulation of carbon-14 to the year 2000 are given 

in Figure 17 and the contribution to the total made by the European Com

munity nuclear power programme is indicated. It should be noted that the 

dose rates in Figure 17 refer to the latitude band 35-60°N and are 
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applicable to the European Community. Dose rates in the year 2000 at 

other latitude bands in the Northern Hemisphere would be approximately 

30% lower on the basis of the model adopted. 

The sensitivity of the predicted dose rates in Figure 17, in relation 

to the adopted carbon-14 discharge rates and the transfer coefficients 

used in evaluating the global circulation of carbon-14, has been assessed. 

Two aspects require consideration with regard to the assumed discharge 

rates. The first concerns the assumption of 10,% of carbon-14 produced in 

metal-clad fuel being discharged at reprocessing plants; the assumption 

of 100,% discharge would only increase the predicted dose rates in Figure 

17 by a factor of about 2. The second concerns the carbon-14 discharge 

rate adopted for HWRs. As discussed in Section 3.3 preliminary estimates 

have indicated that the carbon-14 discharge rates from HWRs may be more 

than an order of magnitude greater than the value assumed in this study. 

While such increased discharge rates may be of particular local signifi

cance, especially in the context of nuclear parks, their impact on dose 

rates from global circulation will be limited, a consequence of the 

relatively small contribution made by BWRs to the total nuclear programme 

(see Figure 2). Taking account of these preliminary estimates of carbon-14 

discharge rates from BWRs would result in an increase in the predicted 

dose rates from global circulation by up to a factor of 2. The dose 

rates in Figure 17 are not particularly sensitive to variations in the 

transfer coefficients given in Figure 16. Variation of these coefficients 

within the bounds indicated in the literature (44-55) results in changes 

in t~e dose rate from global circulation in the year 2000 by up to 30%. 
This limited sensitivity is to some extent a consequence of the rapidly 

expanding nuclear power programme assumed, since the dose rate is being 

determined essentially by the current and previous few years' discharges. 

A greater sensitivity would be experienced in the calculation of the dose 

commitments from the global circulation of carbon-14 and further considera

tion is given to this aspect later. 

A factor not considered in the evaluation of carbon-14 dose rates is 

the increasing atmospheric inventory of carbon-12 from the combustion of 

fossil fuel depleted in carbon-14 (Suess effect). This will result in 

lower isotopic concentrations of nuclear power generated carbon-14 in the 

atmosphere and consequently lower doses. The impact of a fossil fuel 
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programme increasing at a rate of 4%/y on the calculated dose rates has 

been evaluated using the global circulation model in Figure 16. By the 

year 2000 the effect would be to reduce the calculated dose rates in 

Figures 15 and 17 by only a few per cent, which is negligible in relation 

to other uncertainties involved in the dose evaluation. Similar predic

tions as to the impact of an increased rate of use of fossil fuel have 

been made by other authors; for example Baxter and Walton (56) have pre

dicted a reduction of about 10% in the carbon specific activity in the 

atmosphere during the period 1970-2000 based on the rate of use of fossil 

fuel increasing by about 4%/y. 

4.4 Dqses re~~ from the ~i.~~rse of iodin~~J3 

Iodine-129 is of interest due to its extremely long half-life of 17 

million years and to the significant fraction of its inventory in irradia

ted fuel that is currently discharged to the environment during fuel 

reprocessing. Exposure from iodine-129 incorporated into the body is 

solely of somatic interest; the critical organ for inhaled or ingested 

iodine in the transportable form is the thyroid gland which preferentially 
l 

absorbs the element. Iodine-129 decays by emission of a ~ particle with 

an average energy per disintegration of 48 keV (33). The average dose 

rate to the thyroid has been estimated in reference 38 as 2 10-7 rad/y 

for a specific activity of 1 pCi I-129/g I-127 in thyroid tissues, and is 

considered applicable for all age groups. 

Iodine-129 is discharged from reprocessing plants in two waste streams, 

airborne and liquid, with 1% and 75% respectively of the throughput assumed 

to reach each stream. The implications of the discharge into each stream 

are considered in turn. The first pass doses from the airborne discharge 

of iodine-129 have been evaluated on the basis of a specific activity 

approach. Atmospheric dispersion of the discharged iodine-129 has been 

evaluated using a similar approach to that previously adopted for the other 

nuclides, and the iodine-129 specific activity has been derived assuming 

the averag; stable iodine-127 concentration in air to be 0.1 ~g/m3. This 

value is representative of the air in an inland region of the UK (57) and 

is assumed to be applicable to the European Community as a whole. Con

siderable local variation in the concentration would be expected however, 

with significantly higher values in some coastal areas. Thyroid doses 

have been conservatively evaluated on the assumption that the specific 
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activity of iodine-129 in the thyroid is the same as that in the atmos

phere; implicit in this approach is the assumption that all iodine taken 

into the body is at the same specific activity as that in the atmosphere. 

The lack of consideration of the iodine contribution to the diet from food 

and water from relatively uncontaminated sources will result in these doses 

being overestimated. The dose rate per unit discharge rate of iodine-129 

from a 100 m stack is given in Figure 18 as a function of the distance 

from the discharge point, and dose rates to the year 2000 resulting from 

the discharges associated with the representative reprocessing plant are 

given in Figure 19 for a range of downwind distances. 

Doses to local or regional groups from the discharge of iodine-129 in 

liquid effluents will be very sensitive to particular local or regional 

conditions, and, as in the case of tritium in liquid discharges, no attempt 

has therefore been made to assess representative doses associated with such 

discharges. A few general points are however worthy of note. Doses resul

ting from discharges to rivers are likely to be significantly greater than 

those resulting from discharges to sea. This arises for several reasons 

including the smaller volumes of water available in rivers for dilution, 

the order of magnitude lower stable iodine concentration in river water 

(58) and the use made of river water for drinking and irrigation purposes. 

The implications of the global circulation of iodine-129 have been 

assessed on the assumption that all of the discharged iodine-129 is immedi

ately dispersed throughout the circulating waters of the hemisphere into 

which it is discharged. Dose rates have been derived assuming that the 

iodine-129 specific activity in the thyroid is the same as that in the 

circulating waters, the latter being derived on the basis of a stable 

iodine content of sea-water of 60 ~g/kg (38). The model outlined in 

Figure 12 for tritium was also adopted to evaluate the global circulation 

of iodine-129. Account has been taken of the interchange between the 

circulating waters of the Southern and Northern Hemisphere, the interchange 

between the surface waters and the deep oceans, and the interchange between 

the deep oceans of each hemisphere. The transfer coefficients for transfer 

between the various compartments are indicated in Figure 12. 

Dose rates from the global circulation of iodine-129 to the year 2000 

are given in Figure 20 for both the European Community and world programmes. 
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The dose rates are, however, likely to be overestimated because of the 

assumed equality between the iodine-129 specific activity in the thyroid 

and the circulating waters. 

Limited data on iodine transport (59) indicate mean lives of about 2 

years and 20 years (transfer coefficients of 0.5 and 0.05 y-1) respectively 

for the exchange of the atmospheric iodine content and the terrestrial 

biospheric iodine content with that of the hydrosphere. A significant 

time lag will therefore occur before the specific activity of iodine in 

the atmosphere and terrestrial biosphere equals that in the hydrosphere 

and the dose rates in Figure 20 are probably more appropriate to times of 

a few tens of years later. This probable overestimate ir. the predicted 

dose rates may be counteracted to some extent in specific areas by virtue 

of the assumption of instantaneous uniform dispersion in the circulating 

waters. Consideration of finite mixing times between the surface water 

of the various seas and oceans may result in significantly higher dose 

rates in some localised areas. 

On the basis of the models adopted, the dose rates from global 

circulation in the year 2000 only become comparable with the first pass 

dose rates from airborne discharge at distances of a few hundred kilo

metres. The latter dose rates are, however, probably very pessimistic 

and the relative significance of the dose rate from global circulation may 

be somewhat greater. FUrthermore a reduction in the fraction of the 

iodine-129 discharged may arise from the introduction of different waste 

management practices prior to the year 2000, with a consequent reduction 

in the predicted doses • 
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5. Summary of the dose rates and their relative radiological significance 

to the Year 2000 from the discharges of krypton-85, tritium, carbon-14 and 

iodine-129 

5.1 Dose rates to the population of the European Community to the year 

2000 from the discharges of krypton-82, tritium, carbon-14 and iodine-129 

Doses to members of the population of the European Community will 

arise predominantly via two sources; these comprise the first pass of 

activity discharged from nuclear installations within the Community and 

the global circulation of activity discharged from not only the Community 

but the world nuclear programme as a whole. The dose rates from the first 

pass of krypton-85, tritium, carbon-14 and iodine-129, discharged in air

borne effluents from the representative reprocessing plant, are shown in 

Figures 21 - 23 together with the dose rates resulting from the global 

circulation of both the airborne and liquid discharges of these four 

nuclides from the world nuclear power programme. Separate consideration 

is given to the first pass dose rates arising from liquid discharges. 

The significance of the annual doses to local critical groups in the 

vicinity of the representative fuel reprocessing plant is considered in 

Figure 21. Annual doses are given for distances up to 10 km from the 

discharge point and expressed as percentages of the absorbed dose 

corresponding to the ICRP dose (equivalent) limit for the critical organ 

appropriate to the nuclide considered. For the purpose of this assessment 

the critical group is assumed to comprise individuals within 10 km of the 

discharge point, with the average dose to the group being assumed 

equivalent to that at a distance of 3 km. The annual doses to local 

groups are solely of somatic interest and the dose limits are those 

appropriate to individual members of the public. The dose limit and 

critical organ for each of the nuclides considered are tabulated below. 

Nuclide Critical Organ Dose limit 
rad/y 

Kr-85 Skin 3 

H-3 Whole body 0.5 

C-14 Fat 1.5 

I-129 Thyroid 1.5 

Krypton-85 can be seen in Figure 21 to be the most significant nuclide in 
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respect of local somatic doses, ·the average annual dose to the assumed 

critical group reaching about 0.6% and ~ of the ICRP dose limit to the 

skin by the year 1985 and 2000 respectively. The significance of the other 

nuclides can be derived from Figure 21 and in each case is considerably 

lower than that of krypton-85. 

The annual doses to local groups by the year 2000 are such that on 

radiological protection grounds there would be little justification, on 

account of these doses alone, for reducing the discharges of the nuclides 

considered by other than the simplest of procedures. Moreover the pre

dicted dose rates in Figure 21 probably represent upper limits of doses 

to local groups due to the somewhat pessimistic assumption adopted 

regarding fuel throughput at the representative reprocessing plant 

(corresponding to a reprocessing load equivalent to an installed nuclear 

capacity of about 240 GW(e) by the year 2000). This assumption is likely 

to result in a pessimism of up to a factor of 2 in the predicted dose 

rates. It should be further stressed that doses of the predicted 

magnitude will only accrue to a small number of people in the vicinities 

of reprocessing plants, which in the European Community will be few in 

number by the year 2000 (equivalent to 3 of the magnitude assumed for the 

representative plant). 

At greater distances from the discharge point both the dose and the 

associated potential risk of somatic effects to an individual are very 

much smaller and in general it is the exposure of the population group as 

a whole that is of greater interest. Attention in the following is 

directed primarily towards the genetic component of the exposure of the 

population group although some consideration is also given to the somatic 

doses. Gonad dose rates from the first pass of airborne activity dis

charged from the representative reprocessing plant are given in Figure 22 

as a function of the distance from the discharge point in the range 100-

1000 km. The gonad dose rates from the global circulation of the total 

activity discharged from the world nuclear power programme are also shown 

for comparison. The latter doses, being independent of the discharge 

location, are shown as horizontal lines in Figure 22. Consideration has 

been restricted to krypton-85, tritium and carbon-14, the gonad dose from 

iodine-129 being negligible in comparison. The dose rates are expressed 

as percentages of the ICRP provisional limit of 5 rad/generation 

(0.17 rad/y) for genetic dose to the population as a whole from all 
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sources other than natural background and medical exposure { 1). It is 

worthy of note that in the UK the whole population must not receive an 

average gonad dose in excess of 1 rad/generation from radioactive waste 

disposal {60), and in the FRG the German Atomic Energy Commission in 1969 

formulated a recommendation to allocate only one third of the ICRP limit 

to the nuclear energy sector {41), that is a rounded value of 2 rad/ 

generation. 

The dose rates from global circulation relate to the total activity 

discharged from the world nuclear power programme and are appropriate to 

the Northern Hemisphere, and in the cases of krypton-85 and carbon-14 

specifically to the latitude band 35-60°N. Slightly smaller values are 

applicable to the Southern Hemisphere, as well as in the remainder of the 

Northern Hemisphere, in the cases of krypton-85 and carbon-14. The con

tribution to these dose rates from the global circulation of activity 

discharged from the European Community nuclear power programme amounts to 

about 20%, this value to a good approximation reflecting the relative 

magnitudes of the European Community and world nuclear power programmes. 

The dose rates from the first pass of airborne activity are appropriate 

to the discharges from the representative reprocessing plant; note should 

be taken of the different assumption regarding the representative repro

cessing plant in the case of carbon-14 discharges (Section 4.3). To 

enable a comparison to be made between the dose rates from the first pass 

of activity and those from the global circulation of the world discharges, 

the distance of 1000 km has been assumed in this study to represent the 

outer bound of a regional population group distributed around the repre

sentative reprocessing plant. The average dose to such a group from the 

first pass of activity will depend on the dose-distance relationship for 

the nuclide considered and the surrounding population distribution; the 

dose at a distance of 250 km has been taken as representative of the 

average for the purposes of this assessment. Contributions to this 

average first pass dose rate from discharges from other nuclear installa

tions are considered insignificant in the context of the few reprocessing 

plants likely to be operating within the European Community by the year 

2000 and the pessimistic assumption adopted with regard to the fuel 

throughput at the representative reprocessing plant. 

Gonad dose rates resulting from the global circulation of world dis

charges of krypton-85 and carbon-14 can be seen in Figure 22 to be 
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comparable within a factor of about 1 • 5 and to be an order of magnitude 

greater than the dose rate associated with the global circulation of the 

discharged tritium. The dose rate from the global circulation of both 

krypton-85 and carbon-14 increases from about 2 10-16 to about 10-~ of 

the ICRP genetic dose limit during the period 1985-2000. In the cases of 

krypton-85 and carbon-14 the dose rates from the global circulation of the 

world discharges of these nuclides are larger, and therefore of greater 

significance, than the average dose rates to the assumed regional popula

tion group from the first pass of activity discharged from the representa

tive reprocessing plant; the doses from global circulation are greater by 

factors of about 2 and 4 for krypton-85 and about 10 and 3 for carbon-14 

for the years 1985 and 2000 respectively. The situation is somewhat 

different in the case of tritium, the dose rate from the first pass of 

activity being greater than that from global circulation by factors of 

about 80 and 40 in 1985 and 2000 respectively; in this period the average 

dose rate to the regional population group,from the first pass of tritium 

discharged in airborne effluent from the representative reprocessing plant, 

increases from about 10-2 to about 4 10-~ of the ICRP genetic dose limit. 

For completeness the somatic dose rates from the global circulation 

of the world discharges, and from the first pass of activity discharged in 

airborne effluent from the representative reprocessing plant, for each of 

the four nuclides are given in Figure 23 as percentages of the appropriate 

ICRP somatic dose limits (see page 33). The relative somatic and genetic 

significance of the nuclides considered can be assessed by reference to 

Figures 22 and 23. 

The dose rates from the first pass of activity shown in Figures 21 -

23 apply solely to the discharge of airborne effluents from the representa

tive reprocessing plant. Only limited consideration has been given to the 

evaluation of representative first pass doses from the discharges of liquid 

effluents, a consequence of their marked dependence on local and regional 

conditions. While the discharges to sea of tritium and iodine-129, the 

two nuclides discharged in both liquid and airborne effluents, are unlikely 

to make more than a minimal contribution to the first pass doses, the 

discharges of these nuclides to freshwater, if this is subsequently used 

for drinking or irrigation purposes, may be of greater significance. Dose 

rates resulting from the discharges of the latter type will be very 

dependent on the characteristics and usage made of the water body to which 
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the discharge is made; an indication of the magnitude of the dose rates 

involved, however, has been derived from an assessment of liquid discharges 

to the Rhine from nuclear reactors in its catchment area (41). Based on an 

installed capacity of 100 GW(e) in the Rhine catchment area in the period 

1990-2000, whole body dose rates of 0.14 mrad/y would result if all routes 

of water intake to the body were assumed to be contaminated at the same 

level as that in the river water. These dose rates apply to the discharges 

of tritium from reactors only; the further discharge to the Rhine of 

tritium liberated during the reprocessing of fuel from the above reactor 

capacity would enhance the dose rates by about an order of magnitude. 

Such discharges, however, to a water body used as a major source of 

drinking water would be unlikely, as other means of discharge, of lower 

radiological significance, would probably be available. 

It is clear that the total gonad dose rates from the discharges of 

the nuclides considered are small. In the case of the assumed regional 

population group the average dose rate in the year 2000 from the first 

pass of activity amounts to about 0.1 mrad/y; that to the world population 

from the global circulation of the total activity discharged from the 

world nuclear programme amounts to a few tens of ~rad/y. These dose rates 

represent very small fractions of the ICRP genetic dose limit of 5 rad/ 

generation (equivalent to 170 mrad/y). While it is a basic principle of 

radiological protection that doses should be reduced to as low as reason

ably achievable (2), the magnitude of the above doses are such that the 

application of very costly measures prior to the year 2000 to reduce the 

discharges of krypton-85, tritium and carbon-14 would appear to have 

little justification on radiological protection grounds. 

5.2 Dose commitments, collective dose commitments and the relative 

significance of the discharges of krypton-85, tritium and carbon-14 

The dose rates to members of the population of the European Community 

from the discharges of krypton-85, tritium, carbon-14 and iodine-129 have 

been summarised in Figures 21 - 23. While some measure of the relative 

significance of each nuclide discharged and of the doses from the first 

pass and global circulation of activity can be obtained from Figures 21 -

23, the relative significance can be more appropriately assessed by con

sideration of the dose commitments associated with the activity discharged 

per unit nuclear energy generated. This latter approach circumvents the 

inherent difficulty associated with the comparisons in Figure 21 - 23 
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where the doses from global circulation are composites of both current 

discharges and previous discharge history. Comparison of the respective 

dose commitmentsallowsa direct appraisal to be made of the relative signi

ficance of the nuclides discharged. 

Gonad dose commitments from the first pass and global circulation of 

activity discharged per GW(th)y of nuclear energy generated are given in 

Figure 24. Consideration has been restricted to krypton-85, tritium and 

carbon-14, the gonad dose from iodine-129 being negligible in comparison. 

The dose commitments associated with the global circulation are shown as 

horizontal lines, being essentially independent of the discharge location. 

These values can be regarded, to a good approximation, as applicable to 

the whole of the world population, although they were derived specifically 

for the latitude band 35-60°N. The dose commitments from the first pass 

of activity are given as a function of distance from the discharge point 

and the values at a distance of 250 km can be considered as representative 

of the average dose commitments to the assumed regional population group. 

In some instances, particularly for carbon-14, the total discharge is 

divided between two sources, the reactor and the reprocessing plant; for 

simplicity in evaluating the dose commitments from the first pass of the 

activity it has been assumed that the total discharge arises from one 

location. 

In terms of dose commitments to members of the population of the 

European Community the values given in Figure 24 are appropriate to unit 

nuclear energy generation within the European Community itself. If 

consideration were to be given to unit nuclear energy generation in the 

world as a whole, while the dose commitments to members of the population 

of the European Community would be essentially the same from the global 

circulation of activity, those associated with the first pass of activity 

would be reduced by a factor of about 5, the ratio of the magnitude of the 

world and European Community nuclear power programmes. This reduction is 

a consequence of the negligible exposure of the population of the European 

Community resulting from the first pass of activity discharged elsewhere 

in the world. 

The dose commitments given in Figure 24 are based on the discharges 

per unit nuclear energy generation listed in Table 7 for each of the 

nuclides considered. For krypton-85 the discharge associated with thermal 
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reactors has been adopted, thermal reactors comprising by far the major 

fraction of the nuclear programme. The tritium discharge adopted is 

equivalent to the production rate of fission product tritium in thermal 

reactors (see Table 6), no allowance being made for the small contribution 

from activation product tritium. The variation of carbon-14 discharge 

with reactor type (Table 6) is much greater than is the case for krypton-85 

or tritium, and a mean value, appropriate to the distribution among 

reactor types of the installed world nuclear capacity in the year 2000 

(Figure 2), has been adopted as representative. While the dose commitments 

associated with global circulation are based on the total activity dis

charged, the first pass dose commitments are based solely on activity 

discharged in airborne effluent, no allowance being made for any contribu

tion arising from liquid effluents. This neglect of liquid effluents 

appliAs only to tritium, and furthermore is only likely to be of signifi

cance in those cases where discharge is made to a water body which is 

subsequently used as a major source of drinking water. While the first 

pass dose commitments associated with such discharges will be strongly 

dependent on the nature and usage of the water body to which the discharge 

is made, a value of 4 10-7 rad/GW{th)y can be regarded as indicative of 

the order of magnitude involved. This value has been derived from an 

assessment of the tritium discharges from LWRs to the Rhine {41). It is 

to be noted that this value applies only to the discharge of tritium from 

reactors, the assumption being made that the much larger tritium arisings 

at reprocessing plants would not be discharged to a water body used 

directly for drinking water when other means of discharge, having a lower 

radiological significance, are likely to be available. The above value is 

comparable with the first pass dose commitments per unit energy generation 

associated with airborne discharges of tritium from a reprocessing plant 

(see Figure 24). 

The lack of consideration of activation product tritium in deriving 

dose commitments is not significant if interest is confined to the average 

dose commitments associated with unit energy generation from an installed 

nuclear capacity distributed among the reactor types as shown in Figures 2 

and ). If interest is directed specifically towards the dose commitment 

associated with a given reactor type, activation product tritium can be of 

much greater significance. This is particularly so in the case of the HWR 

where consideration of the discharge of activation product tritium would 
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enhance the dose commitments given in Figure 24 for tritium by a factor of 

2 or more, the exact magnitude depending on the fraction of the discharge 

appearing in airborne effluent. In a similar fashion consideration of the 

dose commitments from carbon-14 discharges associated with unit energy 

generation in specific reactor types would result in a wide variation about 

those values given in Figure 24, which are based on a mean carbon-14 dis

charge rate from an installed reactor programme. The variation of dose 

commitment with reactor type is summarised below; the dose commitment in 

each case is expressed as a ratio of the average value which has been 

derived from the mean carbon-14 discharge rate from the installed reactor 

programme in the year 2000. 

Weighted MAGNOX AGR ~ ~ mm mR ~R mean 

1.0 1.29 1.6 0.63 1.47 1.04 5.6 -

It should be noted that the factor quoted above for the mm is based on the 

assumption adopted in this study, that the carbon-14 discharge rate from 

HWRs is intermediate between those associated with PWRs and BWRs; preli

minary estimates however indicate that values some 10 and 40 times greater 

than that given above for the HWR are more appropriate to the SGHWR and 

CANDU versions of the HWR respectively (see Section 3.3). 

The dose commitments associated with the first pass of activity are 

assumed to be received within the period of the discharge. The dose 

commitments from the global circulation of activity have, in the cases of 

krypton-85 and tritium, been integrated essentially to infinity, although 

by far the major contributions arise within 30 years; in the case of 

carbon-14, due to its very long half-life of 5730 years, consideration has 

been given to the 30 year, 500 year and infinite dose commitments. The 

variation with time of the dose rate and dose commitment arising from the 

global circulation of carbon-14,discharged as a result of unit energy 

generatio~is shown in Figure 25. The dose commitment in the first 30 

years can be seen to be significantly greater than that in subsequent 30 

year periods; an extension, to 500 years, of the time over which the dose 

commitments is integrated only results in a doubling of the initial 30 year 

value. While it is open to question as to whether it is sufficient to 

assess the significance of carbon-14 discharges on the basis of a 30 year 
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as opposed to the infinite dose commitment, in the remainder of this study 

attention is directed solely toward the 30 year value unless otherwise 

specified. The 30 year dose commitment is only moderately sensitive to 

the transfer coefficients adopted for the evaluation of the global 

circulation; a factor of about 2 encompasses its variation as a result 

of variation of the transfer coefficients within the bounds indicated in 

the literature. 

The relative significance of the nuclides discharged can be assessed 

from Figure 24. In terms of global circulation comparable dose commit

ments result from krypton-85 and carbon-14 discharges, that associated 

with tritium being an order of magnitude lower. The situation is reversed 

in the case of the first pass of activity where the dose commitment from 

tritium discharge is an order of magnitude greater than those associated 

with either krypton-85 or carbon-14, the dose commitment from these last 

two nuclides again being comparable. It should be stressed that these 

comparisons are appropriate to mean discharge rates of the nuclides con

cerned from an installed nuclear programme comprising a variety of reactor 

types; the relative significance of the various nuclides may vary con

siderably if consideration is restricted to discharges from a specific 

reactor type. 

While the relative significance of the various nuclides discharged 

can be adequately assessed from Figure 24, further consideration needs to 

be given to the respective magnitudes of the exposed populations to enable 

the relative significance of the dose commitments from the first pass and 

global circulation of discharged activity to be determined. In Table 8 

the collective gonad dose commitments to the population of the European 

Community are given for each nuclide with the first pass and global 

circulation contributions indicated separately. The collective dose 

commitments are appropriate to the discharges of activity associated with 

unit energy generation; two distinct cases have been evaluated and they 

correspond to the collective dose commitment to the population of the 

European Community associated with unit energy generation in the European 

Community itself and with unit energy generation in the world as a whole, 

the distribution of energy generation in the latter case between the 

European Community and the rest of the world being on a pro-rata basis of 

installed nuclear capacity. The collective dose commitment from the first 

pass of activity, unlike that from global circulation, will obviously be 
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very dependent on the population distribution surrounding the discharge 

point. The population distribution of the Community in relation to the 

fuel repr~cessing plant at Windscale (UK) has been adopted as the basis 

for evaluating the collective dose commitments from the first pass of dis

charged activity. While this population distribution is probably not 

untypical of that associated with the only other commerical fuel reproces

sing plant in existence in Europe at this time (Cap de la Hague in France), 

consideration of the discharges from a site characterised by a radically 

different population distribution would necessitate a revision of the first 

pass collective dose commitments given in Table 8. The first pass collec

tive dose commitments have been integrated out to a distance of 1000 km; 

the disregard of doses at greater distances is not significant in the 

context of collective dose commitment to the population of the European 

Community. The qualifications expounded earlier regarding the dose commit

ments given in Figure 24, such as the first pass dose commitments being 

based solely on airborne discharges, etc, apply equally to the collective 

dose commitments given in Table 8 and reference should be made to these 

qualifications. 

If consideration is given to the collective dose commitment to the 

population of the European Community from activity discharged as a result 

of unit nuclear energy generation in the Community itself, the first pass 

of tritium, discharged as tritiated water in airborne effluent, can be 

seen in Table 8 to make the greatest contribution to the total collective 

dose commitment; its contribution amountstDabout 70% of the total. In 

the context of the collective dose commitment to the population of the 

European Community as a result of unit nuclear energy generation in the 

world as a whole, the relative significance of the first pass of tritium 

is somewhat reduced. In this case the contribution from tritium amounts 

to about 4~fo of the total collective dose commitment and is essentially 

comparable with those contributions resulting from the global circulation 

of krypton-85 and carbon-14. The collective dose commitments from 

krypton-85 can be seen in Table 8 to be comparable with those from 

carbon-14, irrespective of whether consideration is given to unit energy 

generation in the Community itself or in the world as a whole. Considera

tion of tritium discharge in liquid effluents would, in those specific 

cases where the discharge was made to a water body used as a major drink

ing water supply, result in an increase in the relative significance of 
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tritium above that indicated in Table 8. A value of 5 man-rad/GW(th)y 

can be regarded as illustrative of the increase in the first pass collect

ive dose commitment associated with such discharges; the value has been 

derived from predictions of the tritium concentration in the Rhine 

resulting from reactor discharges (41) and an assumed population of 10 

million people deriving their total water intake via the Rhine. The 

tritium concentrations in reference 41 are based solely on discharges from 

reactors (LWRs in particular); if tritium liberated during fuel reproces

sing were also discharged to the Rhine the collective dose commitment 

given above would be increased by about an order of magnitude. It should 

be noted that the collective dose commitments given above from tritium in 

liquid effluent are specific to unit energy generation in which a discharge 

is actually made to a water body used as a major supply of drinking water, 

such as the Rhine or the Meuse etc; the contributions to the collective 

dose commitment in terms of an average unit of energy generation in the 

Community would be smaller, the exact magnitude depending on the fraction 

of the installed nuclear capacity discharging tritium to such water 

courses. 

The total collec~ive dose commitments to the population of the 

European Community from the discharges of the three nuclides considered 

amount to about 15 and 5 man-rad/GW(th)y in the respective cases of unit 

energy generated in the Community itself and in the world as a whole. 

Taking account of the respective magnitudes of the world and Community 

nuclear power programmes (a ratio of 5:1) approximately equal contributions 

to the collective dose commitment to the population of the Community arise 

from discharges from within the Community itself and from discharges from 

elsewhere in the world. The important conclusion to be drawn from this 

near equality of the respective contributions is the very limited impact 

that would result from unilateral action within the Community to reduce 

the discharges of krypton-85, carbon-14 and tritium; a factor of 2 

represents the maximum reduction achievable from such an action, and is a 

consequence of the global circulation of activity discharged from else

where in the world. If attention were, however, to be directed towards 

the reduction of the collective dose commitment to the population of the 

Community from Community discharges, the most profitable target for dis

charge reduction would appear to be tritium. A reduction in the tritium 

discharges by an order of magnitude would however, only result in a reduc-
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tion in the collective dose commitment to the population of the Community 

from the Community discharges by a factor of about 2.5. A somewhat greater 

reduction factor may be appropriate to particular regional areas of the 

Community where, by virtue of the reactor type installed (particularly in 

the case of HWRs- see Table 3), greater than average tritium discharge 

rates are associated with unit energy generation. The small reduction 

factor indicated above demonstrates that the simultaneous reduction of the 

discharges of all three nuclides would be required to achieve a significant 

overall reduction. As previously noted, however, even this latter course 

of action would have little virtue as an unilateral act. 

It is pertinent to consider finally the relative significance of the 

various nuclides in the world as opposed to the more restrictive European 

Community context. Population dose commitments are given in Table 9 
appropriate to unit generation of nuclear energy in the world. The values 

are somewhat approximate, the first pass population dose commitment being 

evaluated on the assumption that the population distribution surrounding 

all discharge locations in the world is equivalent to that of the European 

Community in relation to the fuel reprocessing plant at Windscale, and 

further the population dose commitments from global circulation being 

based on the whole world population receiving doses appropriate to the 

35-60°N latitude band. The contributions made by the global circulation 

of activity are of greater significance in the world context due to the 

much greater population exposed. The values in Table 9 indicate that 

comparable contributions to the total population dose commitment are made 

by each of krypton-85, carbon-14 and tritium, and fUrther demonstrate that 

the overall impact of these nuclides can only be reduced by concurrent 

reduction of the discharges of all three. 

It should be noted that the collective dose commitments given in 

Tables 8 and 9 are appropriate to the average discharge rate of each of 

the nuclides from a reactor programme comprising a variety of reactor 

types. If consideration were given to unit nuclear energy generation in 

specific reactor types similar changes to those predicted in the case of 

dose commitment would occur in the collective dose commitments given in 

Tables 8 and 9. Reference should be made to the earlier discussion of the 

sensitivity of dose commitment to reactor type in which the reactor types 

of significance in this respect are identified. 



-fl-

6. Comparison of the doses from the discharge of krypton-85, tritium, 

carbon-14 and iodine-129 with those from other routes of exposure 

Of the four nuclides considered, two of them exist naturally in the 

environment in relatively significant quantities, being produced in the 

interactions of the cosmic ray flux with the earth's atmosphere, and all 

four are present artificially due to the atmospheric testing of nuclear 

weapons. Prior to comparison with other routes of exposure it is relevant 

to compare the magnitude of the discharges from the nuclear power industry 

with the levels of these nuclides already existing in the environment. 

6.1 Comparison of the magritudes of krypton-85, tritium, carbon-14 and 

iodine-129 in the environment from nuclear power discharges with those 

from natural processes and atmospheric testing of nuclear weapons 

Neither krypton-85 nor iodine-129 are produced in significant quanti

ties by natural processes and their presence in the environment is a con

sequence of weapons testing and discharges associated with the generation 

of nuclear energy ('nuclear power' discharges). The total generation of 

these nuclides from nuclear weapons ('bomb') testing has been estimated to 

be about 3 MCi and 12 Ci respectively (36, 58), values which are only of 

the same order of magnitude as the annual discharges of these nuclides from 

the predicted European Community nuclear power programm~ from 1975. Their 

levels in the environment will therefore be determined by the magnitude of 

nuclear power discharges. 

Carbon-14 exists in the environment both naturally and artificially. 

The inventories in the troposphere and terre&tr±al biosphere of the North

ern nemisphere of natural ann bomb carbon-14 are c0mpared in Figure 26 with 

the predicted invento£Y of carbon-14 from the nuclear power industry up to 

the year 2000, The natural inventory is based on a specific activity of 

carbon-14 in the biosphere, based on 19th Century wood, of 6.13 pCi/gC 

(36). The variation with time of the bomb inventory has been derived 

using the global circulation model outlined in Figure 16 assuming the 

total bomb production of carbon-14, of 6.2 MCi (61), to have been dis

charged to atmosphere in the year 1961. The gonad dose rates associated 

with the various inventories are also compared in Figure 26; it should be 

noted that the dose rate from nuclear power discharges refers to the 

latitude band 35-60°N, whereas the other dose rates apply to the whole 

of the Northern Hemisphere. 
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While the gonad dose rate from natural carbon-14 remains at its 

equilibrium level, that from bomb carbon-14, despite the ver,y long radio

active half-life of carbon-14, falls fairly rapidly due to transfer among 

the various compartments shown in Figure 16. By the year 2000 the dose 

rate from nuclear power carbon-14 is comparable with that from bomb 

carbon-14 and amounts to approximately 3% of the gonad dose rate of about 

0.6 mrad/y associated with natural carbon-14. The significance of the 

nuclear power discharges to the year 2000 is, therefore, small in relation 

to the natural level of carbon-14 in the environment. Furthermore it 

should be noted that the expanding rate of burning fossil fuels, which 

are essentially free of carbon-14, is resulting in an increased inventory 

of stable carbon in the atmosphere. This will result in a reduction in 

the isotopic concentration (g carbon-14/g carbon) of natural carbon-14 in 

the atmosphere and biosphere and consequently a pro-rata reduction in the 

dose rate from natural carbon-14. Estimates of the decrease in the 

isotopic concentration of carbon-14 as a result of this process are of the 

order of up to 10% (56) by the year 2000. This predicted decrease in the 

dose rate from natural carbon-14 is likely to more than compensate for any 

contribution to the dose rate from nuclear power carbon-14 prior to the 

year 2000. Adopting the most pessimistic assumptions with regard to 

carbon-14 discharge rates and transfer coefficients in the environment, it 

is difficult to envisage dose rates in the year 2000 from nuclear power 

carbon-14 being more than a factor of 4 greater than those given in 

Figure 26; even on this basis the dose rate still represents only about 

12% of that resulting from natural carbon-14, and moreover is still com

parable with the predicted decrease in the dose rate from natural carbon-14 

by the year 2000. 

Tritium exists in the environment both naturally and artificially and 

the inventory of, and gonad dose rates from, natural, bomb and nuclear 

power tritium in the circulating waters of the Northern Hemisphere up to 

the year 2000 are given in Figure 27. The natural ( 18, 36, 6 3) and bomb 

(18, 36, 62) inventories, and associated dose rates, are denoted by a 

range of values in Figure 27. This is a reflection of the uncertainty in 

the values and of the various values quoted in the literature. The varia

tion of the inventory of bomb tritium with time was evaluated using the 

model outlined in Figure 12 for global circulation of tritium; loss of 

tritium from the circulating waters occurs by radioactive decay and 
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transfer to the deep oceans. Conversion of the natural and the bomb tri

tium inventory to dose rate is complicated by the apparent exponential 

variation of tritium concentration with latitude (63). The dose rates 

given for bomb and natural tritium in Figure 27 are based on an assumed 

uniform concentration in the circulating waters of the Northern Hemisphere 

and are probably typical of the dose rates in the mid-latitude bands, the 

region of current interest. The degree of uncertainty associated with the 

tritium inventory deriving from the nuclear power discharges is likely to 

be significantly lower than that associated with the natural and bomb 

inventories; on the assumption of the continued application of current 

waste management practices the uncertainty is solely a consequence of the 

generation rate of nuclear energy. A somewhat greater range of uncertainty 

will be associated with the corresponding dose rates owing to their 

derivation being based on a relatively simple model which assumes uniform 

dispersion of the tritium in the circulating waters, no account being 

taken of local variations. 

The dose rate from the global circulation of tritium discharged from 

the nuclear power industry is predicted to become comparable with that from 

natural tritium at some time in the 1980s. The dose rate is nevertheless 

extremely small, amounting to only about 1 llrad/y by the year 2000. 

Regional dose rates from the first pass of the discharged tritium are, 

however of greater significance, typical dose rates being in the range of 

one to two orders of magnitude greater than that arising via global circu

lation. 

6.2 Comparison of the doses with other routes of exposure 

The average gonad dose rates to an assumed regional group in the 

European Community from the first pass, and to the whole European Community 

population from the global circulation, of the four nuclides considered are 

compared in Table 10 with average gonad dose rates from other routes of 

exposure. Separate consideration is given to irradiation by internal and 

external routes, carbon-14 and tritium contributing to the former and 

krypton-85 to the latter. The average gonad dose rates from the other 

routes of exposure have been taken from reference 64 and while they apply 

to the UK they have been assumed to be representative of the situation in 

the whole of the European Community. Two points regarding the comparison 

require further comment. The first concerns the temporal disparity in the 

comparison, the dose rates from the other routes being essentially current 
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values, while those appropriate to the discharged nuclides are for future 

times. However as the total dose rate from other routes of exposure is 

dominated by the contribution from the natural background, which is 

essentially constant with time, the overall comparison remains valid. The 

second point· refers to the somewhat arbitrary nature of the quoted average 

gonad dose rate to the regional group. The regional group was chosen for 

illustrative purposes and is assumed to comprise individuals within 1000 km 

of the representative reprocessing plant, the average dose rate to the 

group being taken as appropriate to a distance of 250 km. 

Inspection of Table 10 indicates that the average gonad dose rates to 

the population of the European Community by the year 2000 from the dis

charges of krypton-85, tritium, carbon-14 and iodine-129, from the world 

nuclear power programme will represent small fractions of the total dose 

rates from other routes of exposure, particularly natural background. 

Moreover they will even represent small fractions of the variation in the 

natural background dose rate with geographical location in the European 

Community. This comparison further demonstrates the marginal significance 

of the discharge of these nuclides prior to the year 2000. 

The significance of the doses in the year 2000 can be further assessed 

by comparison with possible occupational doses resulting from the envisaged 

nuclear power programme. Only limited data exist on the occupational doses 

associated with the overall nuclear fuel cycle, particularly with regard to 

the contribution from fuel reprocessing. UNSCEAR {36) have reviewed the 

available information which indicated occupational doses of 2.3 man-rad/ 

MW(e)y {equivalent to about 800 man-rad/GW(th)y), with some 7~~ and 30% 

arising from fuel reprocessing and reactor operation respectively. Assuming 

current practice to continue to the end of the century the average gonad 

dose rate to the population of the European Community from occupational 

exposure would reach approximately 5 mrad/y in the year 2000 (commensurate 

with an installed capacity of about 720 GW(e) in the European Community). 

While this value is probably much larger than will arise in practice, due 

to the introduction of improved technology and practice prior to the year 

2000, it indicates that effort would be more profitably spent in reducing 

occupational doses than in reducing the discharges of the nuclides con

sidered in this report. 
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7. Possible impact of future waste management practices 

Although the dose rates predicted up to the year 2000 from the dis

charges of the four nuclides considered have been shown to be small, both 

in relation to the ICRP recommended dose limits (1) and the exposure via 

other routes, considerable effort is being devoted throughout the world 

to the development of procedures to reduce these discharges. The develop

ment and evaluation of the performance and costs of such procedures are, 

to a certain extent, a reflection of the ICRP recommendation to keep doses 

as low as reasonably achievable, economic and social factors being taken 

into account {2). 

The discharges of krypton-85, tritium and iodine-129 occur primarily 

at reprocessing plants. Typical overall reduction factors that might be 

achieved by the reduction of the discharges from these plants alone are 

about 10 for krypton-85 and 102 - 103 for iodine-129. In the case of 

tritium about 10% {averaged over the reactor type distribution adopted in 

this study) of the total discharge arises at reactors and the overall 

reduction factor might therefore be about ten. Consideration will need 

to be given to the simultaneous reduction of tritium discharges from both 

reactors and reprocessing plants to achieve a significant reduction of 

tritium discharges in some regional areas; this is particularly the case 

for a regional nuclear programme comprising predominantly HWRs where the 

discharge from the reactors may be comparable with or even greater than 

that from fuel reprocessing. Carbon-14 is discharged in comparable quanti

ties from both reactors and reprocessing plants. A significant reduction 

in the overall level of carbon-14 discharges will therefore only be achie

ved by the implementation of procedures at both types of installation. 

Several methods have been suggested for the reduction of krypton-85 

discharges, although at present only cryogenic distillation, selective 

aJsorption processes and cryogenic adsorption appear suitable for appli

cation at reprocessing plants; the first two processes are the most pro

mising {65, 66). Krypton-85 removed from the off-gas streams at reproces

sing plants by such processes can be recovered and allowed to decay in 

engineered storage. At present there is insufficient information to 

assess the economic or technical feasibility of retaining tritium at repro

cessing plants, although several processes have been considered {66). A 

process appearing to have potential however is "voloxidation" (67, 68); 

this involves the driving off of volatile fission products from the fuel 
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into a stream of air or oxygen, prior to fuel dissolution, so that these 

fission products can be collected in a relatively small volume and in a 

form suitable for isolation from the environment. Reduction of iodine-129 

discharges can be achieved by a variety of processes either in isolation 

or in conjunction with each other, depending on the form of the iodine and 

decontamination factor required. Typical processes include wet collection/ 

aqueous scrubbing, adsorption on charcoal and silver zeolite metallic 

filters and filtration. Little attention has yet been given to the 

measurement of carbon-14 discharges or to procedures for their reduction. 

Such a reduction may require the application of different procedures at 

reactors and reprocessing plants; procedures may also vary with reactor 

type. The chemical forms of carbon-14 discharged from LWRs are important 

in the latter context. In BWRs the chemical form is mainly carbon dioxide 

and monoxide while in PWRs it is primarily (>80%) hydrocarbons (20, 21 ). 

The long term isolation of carbon-14, which may be removed from the 

effluent streams at reactors and reprocessing plants, has also received 

little attention, although its incorporation into stable carbonates follow

ed by ultimate disposal appears to be a feasible approach. 

The timescale of the implementation of such procedures to the control 

of the discharges of the four nuclides on a world-wide basis cannot be 

predicted with any degree of confidence. In the United States the 

Environmental Protection Agency (EPA) has recently issued proposed 

standards for the uranium fuel cycle (69, 70) which included, among others, 

limits for the discharge to the "general environment" of krypton-85 and 

iodine-129 of 50,000 Ci and 5 mCi respectively for each gigawatt-year of 

electrical energy generated. These values are equivalent to discharge 

limits of about 17,000 Ci/GW(th)y and 1.7 mCi/GW(th)y respectively on the 

basis of a 3J~ conversion efficiency from thermal to electrical energy. 

These limits are based on cost-effectiveness arguments and thus correspond 

to the ICRP recommendation to keep doses as low as reasonably achievable 

(2). No standards are proposed for carbon-14 or tritium, inadequate 

information being available to assess the practicability of limiting such 

discharges; it was indicated however that as further information becomes 

available consideration would be given to the development of standards for 

these nuclides. The proposed standards for krypton-85 and iodine-129 are 

intended for application by 1983. The discharge limits are factors of 

about 6 and 200 lower for krypton-85 and iodine-129 respectively than 
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discharges typical of current practice. 

The dose rates predicted in this report for the year 2000 from the 

global circulation of krypton-85 and iodine-129 would be reduced by about 

30 - 40% (the magnitude of the USA nuclear programme in relation to the 

world programme) if these standards are implemented in the USA. 

The probability that similar standards will be applied elsewhere in 

the world cannot be readily assessed although their application in the USA 

is likely to have some influence on practices adopted elsewhere. In this 

context it would seem reasonable to conclude that the doses predicted in 

this report, at least for the latter part of this century are likely to 

represent upper limits and in some cases represent considerable over

estimates. 
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8. Summary and conclusions 

The discharges of k:rypton-85, tritium, carbon-14 and iodine-129 are 

considered to comprise the most likely long-term sources of irradiation of 

both regional and world populations. This is because of their relatively 

long half-lives, their fairly rapid and widespread dispersion in the 

environment and the magnitude of their discharges based on the continued 

application of current waste management practices. The discharges of 

caesium-1)7 and plutonium may also be considered to fall into this cate

gory; these nuclides have however only received limited consideration in 

this report due to the intention to reduce the discharges from Windscale 

of the former (5) and because in both cases the discharge rates will be 

determined by local circumstances. 

The predicted discharges up to the year 2000 of krypton-85, tritium, 

carbon-14 and iodine-129 to the environment have been shown to be of low 

radiological significance. Both the dose rates to individuals in the 

European Community and the exposure of the Community population as a whole 

by the year 2000 represent small fractions of the appropriate ICRP 

recommended dose limits; the dose rate to the most exposed individuals, 

who will be few in number, amounts to a few percent of the individual dose 

limit and in the case of exposure of the population as a whole the average 

gonad dose rate is somewhat less than 0.05% of the ICRP genetic dose limit. 

Dose rates in the years 1985 and 1975 are typically factors of about 5 and 

30 respectively lower than those appropriate to the year 2000; values 

predicted for 1975 however are likely to be significant overestimates. 

This is because the installed reactor capacity is lower than expected and 

the discharge rates of the four nuclides are considerably lower than 

predicted owing to the long time delays between fuel irradiation and 

subsequent reprocessing. The long time delays are a result of the limited 

fuel reprocessing capacity currently available in the world. 

The exposure of the population of the Community from these discharges 

~p to the year 2000 also represents a small fraction of both the exposure 

from na-tural background radiation and the exposure via other routes such 

as medical irradiation. Of the four nuclides considered tritium and 

carbon-14 already exist in the environment in significant quantities, both 

naturally due to the interaction of the cosmic ray flux with the atmosphere 

and artificially due to the atmospheric testing of nuclear weapons. The 
inventory in the environment of tritium discharged from the nuclear power 



-56-

industry is likely to become comparable with the natural inventory around 

the year 1990; that of carbon-14 from the same source, even by the year 

2000, is unlikely to exceed more than a few percent of the natural 

carbon-14 inventory. Furthermore this small increase in the carbon-14 

inventory is likely to be more than compensated for by the increasing 

inventory of stable carbon-12 in the environment arising from the 

increasing rate of burning fossil fuels which are essentially free of 

carbon-14; as a result the exposure of the population of the Community 

from carbon-14 ma¥, despite the nuclear power discharges, be lower in the 

year 2000 than at present. 

The discharges of krypton-85, tritium and carbon-14 are, within the 

range of uncertainty inherent in the evaluation of the dose rates from each 

nuclide, of comparable significance with regard to the gonad exposure of 

both the European Community and world populations. If attention is 

restricted to the exposure of the population of the Community solely from 

the Community discharges then tritium is marginally of greatest signifi

cance. The exposure via tritium arises predominantly during the first 

pass of discharged activity, whereas that from krypton-85 and carbon-14 

results mainly from their global circulation in the atmosphere. The 

collective gonad dose commitments (integrated over a 30 year period) to 

the Community population from the discharges of these nuclides associated 

with unit nuclear energy generation in the CGmmunity alone and in the 

world as a whole are about 15 and 5 man-rad/GW(th)y respectively. In the 

broader context the collective gonad dose commitment to the world popula

tion from these discharges amounts to about 45 man-rad/GW(th)y. 

The assessment of the implications of carbon-14 discharges is in some 

respects one of the most uncertain features of this current study, being 

based largely on theoretical predictions of generation and discharge rates 

from a variety of nuclear installations. While the predicted generation 

rates of carbon-14 are considered realistic, an increased programme of 

measuring carbon-14 discharges from both reactors and reprocessing plants 

would be of benefit in enabling a more definitive assessment to be made of 

the significance of this nuclide. Of particular importance in this respect 

are the discharges from HWRs which, on the basis of preliminary estimates, 

may be considerably in excess of those from other reactor types. 

The evaluation of representative doses to the population of the 
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Community from the first pass of activity discharged into the aqueous 

environment has received only limited consideration in this report due to 

its marked dependence on the nature and use made of the water body to which 

the discharge is made. The discharges to sea of tritium and iodine-129 

will be of very low radiological significance in this respect; those to 

inland waters IDa¥ be of mu.ch greater significance particularly where 

the water is subsequently used for drinking or irrigation purposes. 

Typical of water bodies of the latter type in the Community are the Rhine 

and the Meuse. An assessment of tritium discharges to the Rhine from 

reactors installed in the Rhine basin has indicated that the use, in the 

Netherlands, of the Rhine as a sole source of water intake would result 

in individual gonad dose rates in the year 2000 of about 0.14 mrad/y (41). 

The assessment is based solely on the discharges from reactors; dose 

rates of more than an order of magnitude greater would result if tritium 

released during the reprocessing of fuel from the same reactor capacity 

were also discharged to the Rhine. Such discharges however would seem 

unlikely since other disposal routes having a lower radiological signifi

cance are probably available. 

Considerable effort is being directed throughout the world to the 

development of procedures to reduce the discharges of the nuclides 

presently considered, thus reflecting, to a certain extent, the ICRP 

recommendation to keep doses as low as reasonably achievable. The time

scale of the implementation of such procedures on a worldwide basis cannot 

be predicted with any degree of confidence. It is pertinent to note, 

however, that the United States Environmental Protection Agency (EPA) has 

recently issued proposed limits, intended for application in the USA by 

1983, for the discharges of krypton-85 and iodine-129 associated with unit 

nuclear energy generation ( 69); . tnese limits are lower than current dis

charge rates by factors of about 6 and 200 respectively. Consideration is 

also being given to the development of standards for carbon-14 and tritium. 

The application of the proposed standards in the USA, and the influence 

this Ilia¥ have on practice elsewhere in the world, will result in the dose 

rates predicted in this report, at least for the latter part of this 

century, being overestimates. 

Two points are worthy of particular note in the context of reducing 

the discharges of these nuclides in the European Community. Unilateral 

action by the Community to reduce these discharges would have only very 
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limited impact in terms of gonad exposure of the Community population; a 

factor of 2 represents the upper limit to the exposure reduction achievable, 

a consequence of the exposure from the global circulation of activity dis

charged elsewhere in the world. The second point arises from the compar

able significance of the discharges of krypton-85, tritium and carbon-14 

which indicates that only limited benefit would ensue from reducing the 

discharges of any one nuclide, simultaneous reduction in all three being 

necessary to achieve a significant overall reduction in the exposure. The 

above considerations apply to the reduction of the exposure of the Commun

ity population as a whole. Somewhat greater reduction factors may be 

achieved in some regional areas within the Community where, by nature of 

the reactor type installed, greater than average discharge rates mB¥ be 

associated with unit energy generation; of importance in this respect would 

be a regional nuclear programme comprising mainly HWRs where both tritium 

and possibly carbon-14 discharge rates mB¥ be significantly in excess of 

the average values. 

It is finally worth noting that the reduction of occupational 

exposure, as opposed to the reduction of the discharges of the four 

nuclides considered, mB¥ prove to be a more profitable approach to reducing 

the genetically significant dose to the Community population resulting from 

the application of nuclear power. 
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Glossary 

The curie (Ci} is the special unit of activity; one curie is numerically 

equal to 3.7 1010 nuclear transformation per second. 

The rad is the special unit of absorbed dose, equal to an absorbed energy 

of 10-2 joule per kilogram of tissue. Throughout this study doses are 

quoted in rads. Fbr the nuclides considered here absorbed dose in rads 

and dose equivalent in rems are numerically equal. 

Dose commitment:- In its most general form the dose commitment resulting 

from a specified procedure or operation is the integral over all time of 

the average dose rate to the exposed population resulting from the 

procedure. The concept is often used in a more restrictive sense by 

limiting the period of integration (e.g. a 30 year dose commitment). 

Collective dose is the product of mean dose and the number of exposed 

people. The collective dose to the world population, as opposed to a 

regional or national population, is known as the population dose. 

Collective dose commitment is the integration over time of the product of 

mean dose rate and number of exposed people. As in the case of dose 

commitment it can be used in the more restrictive sense by limiting the 

period of integration. If applied to the world population, as opposed to 

a regional or national population, it is known as the population dose 

commitment. 

The critical group is that group representative of the more highly exposed 

individuals in the population and is as homogeneous as practicable with 

respect to radiation dose. 

Somatic effects are those which become manifest in the exposed individual. 

Genetic or hereditary effects are those which become manifest in future 

generations. 

Genetically significant dose is the dose which, if received by every member 

of the population, would be expected to produce the same total genetic 

injury to the population as do the actual doses received by the various 

individuals. 

Discharge of activity is used in the report to include· activity that is 

conveyed intentionally to the environment as a result of a deliberate 

procedure, together with that which is unavoidably released via leakage etc. 
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~ of discharge is used in the report in two distinct senses; these 

comprise the discharge rate per unit time and per unit energy generated. 
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TABLE 1 

Thermal efficiencies of various reactor tYpes (9) 

Reactor 

Thermal 
Efficiency, 

PWR 

BWR 

SGHWR 

HWR 

AGR 

HTR 

FBR 

1'WR 

% 33 

BWR SGHWR HWR MAGNOX AGR 

34 32 29 30 

Pressurised water reactor 

Boiling water reactor 

42 

HTR FBR 

40 40 

Steam generating heavy water reactor 

Heavy water reactor 

Advanced gas-cooled reactor 

High temperature reactor 

Fast breeder reactor 
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TABLE 2 

Production rates of tritium in various reactor tyPes 

Tritium production rate, Ci/GW(th)y Major sources 
Reactor a) . t' t' b) 

of activation 
via fission v~a ac ~va ~on product tritium 

MAGNOX 7 103 1.9 102 c) 
Li - impurity in 

AGR 7 103 1.9 102 (Ref 12) d) graphite moderator 

PWR 7 103 3-3 102 (Ref 13) B - dissolved in 
primary coolant 

BWR 7 103 5 (Ref 13) ~ - impurity in 
light water coolant 

HWR 7 103 2 105 (Ref 12,14) ~ - heavy water 
moderator 

7 103 1.4 103 (Ref 12,13) 
He-3 - helium coolant 

HTR Li - impurity in 
graphite moderator 

FBR 1 104 < 7 102 (Ref 13) B, Li - impurities in 
core and blanket fuel 

Notes 

a) Variation of the fission product tritium production rate with 
thermal reactor type for typical fuel irradiation cycles is small 
and a single value of 7 103 Ci/GW(th)y can be adopted for all 
thermal reactors (10,11). A slightly higher value is applicable 
to fast reactors (10,11). 

b) No account has been taken of the tritium produced by the acti va
t ion of control rods as these do not contribute significantly to 
tritium discharges to the environment. 

c) Activation product tritium generation rate in MAGNOX has been 
assumed to be equal to that in AGR. 

d) Activation product tritium generation rate in AGR is a mean value 
averaged over the reactor life. In reality the generation rate 
is much larger initially and falls off with time due to the 
progressive burn-out of the lithium impurity. 
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TABLE 3 

Discharge rates of tritium from reactors and reprocessing plants 

Tritium discharge rate, Ci/GW(th)y 
Reactor 

At reactor a) At reprocessing plant b) Total 

MAGNOX 2.6 102 6.9 103 7.2 103 

AGR 

PWR 

BWR 

HWR 

HTR 

FBR 

a) 

b) 

c) 

d) 

e) 

1.9 103 5.3 103 7.2 103 

4 102 6.9 103 7. 3 103 

7 101 6.9 103 7.0 103 

7 103 c) 6.9 103 1.4 104 

< 3.4 103 d) 5 103 < 8.4 103 

< 1 104 d) small e) < 1 104 

Comprises contributions from activation and fission product 
tritium, the latter by virtue of permeation through intact 
fuel cladding and leakage from failed fuel. The losses of 
fission product tritium from the fuel during reactor operation 
have been taken as 1% for MAGNOX, PWR, BWR and HWR ( 12, 13); 
25% for AGR; 30% for HTR (15) and 100% for FBR (13). The 
following percentages of the total tritium discharged from 
reactors have been assumed to arise in airborne effluents: 10% 
for AGR (12); 1% for PWR (12); 10-50% for BWR (12,16); and 90% 
for the CANDU version of the HWR ( 17) • The remainder in each 
case is assumed to appear in liquid effluent. 

Discharge at reprocessing plant comprises that not lost from 
fuel during reactor operation. 25% and 75% of tritium through
put are assumed to be discharged in airborne and liquid 
effluent respectively. 

Average value over reactor life and based on a heavy water 
moderator loss of 0.5% per year (12). Activation product 
tritium is major contributor to tritium discharges from HWRs. 

Upper limits only are quoted owing to uncertainties as to 
efficiencies of coolant purification systems in removing 
tritium from the primary coolant. 

A ·cqnsequence of the assumption of essentially 1 OO% of 
fission product tritium being released from the fuel during 
reactor operation. 
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TABLE 4 

Production of carbon-14 in nuclear reactors 

Carbon-14 production rates, Ci/GW(th)y a) 
Source of C-14 

HTR i) MAGNOX AGR PWR BWR 

via C-13 25 40 7.0 

via 0-17 - - -
Moderator via N-14 39 

b) 62 b) 10.9 b) 

Total 64 102 -g) -g) 18 

via C-13 - c) - c) -
via 0-17 0.6 0.6 -

Coolant via N-14 0.7 d) 2.4 d) 

Fuel 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

-
Total 0.9 3-0 2.0 h) 5.3 h) -
via 0-17 - 1.5 0.9 0.9 0.8 

via N-14 26 e) 5.9 f) 3.6 f) 3.6 f) 3-3 f) 

Total 26 7-4 4-5 4-5 4.1 

All production rates are theoretical predictions other than 
for BWR and PWR coolants, these being derived from measured 
discharges (20,21). 

Based on 10 ppm (by weight) N-14 impurity in graphite 
moderator (22,23). 

Production via activation of C-13 negligible in comparison 
to that via activation of 0-17 and N-14 (approximately 5% 
of that via 0-17). 

Based on 200 ppm (by volume) N-14 impurity in C02 coolant. 

Based on 50 ppm (by weight) N-14 impurity in metal MAGNOX 
fuel (24). 

Based on 20 ppm (by weight) N-14 impurity in oxide fuel (25). 

Moderator and coolant synonymous in BWRs and PWRs; production 
rates have for convenience been assigned solely to the 
coolant. 

Values based on measured discharge rates at PWRs and BWRs 
(20' 21). 

Values apply to prismatic style HTR; in pebble bed type 
values some three times greater may be expected. 
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TABLE 5 

Predicted discharge rates of carbon-14 from nuclear reactors 

and reprocessing plants 

Predicted discharge rate of C-14 per unit energy 

Reactor generated, a) Ci/GW(th)y 

At the reactor At the reprocessing plant b) Total 

MAGNOX 2.5 c) 2.6 g) 5.1 

AGR 5.6 c) 0.7 g) 6.3 

PWR 2.0 d) 0.5 g) 2.5 

BWR 5.3 d) 0.5 g) 5.8 

HTR 0.9 e) 21 h) 22 
HWR f) 3.6 f) 0.5 f) 4.1 f) 

Notes 

a) Discharge rates quoted are all theoretical predictions apart 
from those at PWR and BWR reactors which are measured values 
(20,21 ). 

b) Discharge at reprocessing plants arises from C-14 content of 
the fuel and also in the case of HTR from the C-14 content of 
the graphite fuel element. 

c) Discharges comprise the total C-14 produced in the co2 coolants 
together with that arising in the coolant as a result of 
graphite moderator corrosion (5% corrosion of moderator over 
30 years reactor life assumed). 

d) These discharge rates are measured values (20,21). 

e) Discharge rate based on moderator/fuel element corrosion with 
accumulation of C-14 in helium coolant purification system, 
discharge to the environment assumed to result from regenera
tion of the purification system. 

f) Discharge rates associated with HWR have been assumed in this 
study to be equal to the mean discharge rate from PWR and BWRs. 
Preliminary estimates have indicated that considerably greater 
discharge rates may be appropriate (see text). 

g) Values based on 100;6 of the C-14 produced in the fuel being 
discharged, the remainder assumed to be isolated from the 
environment in other waste streams. 

h) Based on reprocessing by grind-leach-bum process in which 
essentially 100% of the carbon content of the fuel element is 
burned and discharged as C02 (26). 





- 79-

TABLE 6 

Summary of the rates adopted in this stuQy for the discharge of 

krypton-85, tritium, carbon-14 and iodine-129 associated 

with unit energy generation in each of the reactor types 

Discharge rates, Ci/GW(th)y 

Reactor 
Kr-85 a) I-129 b) H-3 c) C-14 d) 

at rep. at rep. at at rep. e,f) at at rep. 
plant plant reactor plant reactor plant 

MAGNOX 1 • 1 105 0.3 2. 6 1 o2 7 103 2.5 2.6 

AGR 1 .1 105 0.) 1.9 103 7 103 5.6 0.7 

PWR 1 • 1 105 0.) 4 102 7 103 2.0 0.5 

BWR 1 • 1 105 0.3 7 101 7 103 5.3 0.5 

HWR 1 • 1 105 0.3 7 103 7 103 3.6 0.5 

HTR 1.1 105 0.3 < 3.4 103 7 103 0.9 21 

FBR 8.4 104 0.3 < 1 104 1 104 - -

Notes 

a) Essentially 10~~ of the discharge occurs at the reprocessing 
plant, with little contribution at reactors. Discharge occurs 
in airborne effluent. 

b) Discharge assumed to occur solely at reprocessing plants, with 
75% and 1% of that produced in the fuel being discharged to sea 
and to atmosphere respectively. The value quoted refers to 
discharge to sea, a further 4 10-3 Ci/GW(th)y is discharged in 
airborne effluent. The above values are representative of a 
coastal sited reprocessing plant. Different considerations may 
apply to an inland sited plant. 

c) The distribution of the discharge between liquid and airborne 
effluent is summarised in Section 3.2 and Table 3. 

d) The discharge is assumed to comprise solely C02• 

e) Simplifying assumption has been made that discharge from repro
cessing plant is equal to the production rate of fission product 
tritium (see Tables 2 and 3 and Section 3.2). 

f) 75% and 25% of tritium discharged at reprocessing plant are in 
liquid and airborne effluent respectively. The above distribu
tion among the two effluent streams is representative of a coastal 
sited reprocessing plant; different considerations would apply to 
an inland sited plant. Tritium discharged as liquid effluent will 
be in the form of tritiated water; that in the airborne effluent 
has been assumed, pessimistically, to comprise solely tritiated 
water. 
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TABLE 7 

Discharges of krypton-85, tritium and carbon-14 adopted in the evaluation 

of dose commitments associated with unit nuclear energY generated 

Discharge, Ci/GW(th)y 
Nuclide 

Airborne a) Total b) Liquid 

Kr-85 c) 1.1 105 - 1 • 1 105 

H-3 d) 1.8 103 5.2 103 7 103 

C-14 e) 4.0 - 4.0 

Notes 

a) Dose commitments from first pass of 
activity based solely on airborne dis
charges. 

b) Dose commitments from global circulation 
of activity based on total discharges. 

c) Values based on discharge from thermal 
reactors. 

d) Values based on discharge of total 
fission product tritium produced in 
thermal reactor fuel, no aeeount being 
taken of contribution from activation 
product tritium. 

e) Value adopted is the mean discharge 
based on the distribution among the 
reactor types of the installed world 
nuclear capacity in the year 2000 
(Figure 2). 
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TABLE 8 

Collective dose commitments to the gonads of the European Community 

(EC) population from the discharge of krypton-85, tritium and carbon-14 

associated with the generation of 1 GW(th)y of nuclear energy 

Collective gonad dose commitment to ) 
the population of the EC, man-rad/GW(th)y a 

Nuclide Energy generated in EC Energy generated in world 

First Global Total First Global Total 
pass pass 

Kr-85 0.86 1.1 2.0 0.19 1 .1 

H-3 9-9 0.08 10 2.2 0.08 

C-14 1.5 1.1 b) 2.6 0.3 1.1 b) 

Total 12.3 2.3 14.6 2.7 2.3 

Notes 

a) Population of European Community assumed constant at 1975 
level. 

b) Applies to a 30 year collective dose commitment; infinite 
collective dose commitment is some 14 times greater. 

1.3 

2.3 

1.4 

5.0 
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TABLE 9 

Population gonad dose commitment from the discharge of 

krypton-82, tritium and carbon-14 associated with the 

generation of 1 GW( th)y of nuclear energy 

Population gonad dose ) 

Nuclide commitment, man-rad/GW(th)y a 

First pass Global Total 

Kr-85 0.86 15 16 

H-3 9.9 1.1 11 

C-14 1.5 15 b) 16 

Total 12 31 43 

~ 

a) World population assumed constant at 
1975 level. 

b) Applies to 30 year population dose 
commitment; infinite population dose 
commitment is some 14 times greater. 
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TABLE 10 

Comparison of gonad dose rates from other sources with those 

from the discharge of krypton-85, carbon-14, tritium and iodine-129 

Average gonad dose rate 
mrad/y 

Internal External Total 

Natural background 21 66 87 

Other Medical irradiation - 14 14 

routes of Fallout 1 • 1 b) 1 .1 
b) 

2.2 
a) Miscellaneous sources 0.6 0.1 0.7 exposure Occupational exposure - 0.6 0.6 

Total other sources 22 82 104 

Discharge of Average dose to (1985) 0.018 0.001 0.019 

krypton-85, regional group 
within EC from tritium, first pass of carbon-14 & activity c) (2000) 0.073 0.004 0.077 iodine-129 ---------- ---- ----- ------ ----from the Average dose to (1985) 0.003 0.002 0.005 world 

nuclear whole population 
of EC from global power circulation of programme activity (2000) 0.022 0.014 0.0}6 

a) Values taken from reference 64 and are applicable to the UK 
population; they are assumed here to be representative of the 
whole of the European Community. 

b) 

c) 

Division of dose rate associated with miscellaneous sources 
(eg, luminous devices) between internal and external irradiation 
is very approximate. 

Average dose is to an assumed regional group within 1000 km of 
the representative reprocessing plant~ (airborne discharges 
only). The first pass dose at a distance of 250 km has been 
adopted as the average dose to the regional group. 
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