nuclear science and technology

HANDBOOK OF MATERIALS TESTING REACTORS AND ANCILLARY HOT LABORATORIES IN THE EUROPEAN COMMUNITY

EUR 5369 e

nuclear science and technology

HANDBOOK OF MATERIALS TESTING REACTORS AND ANCILLARY HOT LABORATORIES IN THE EUROPEAN COMMUNITY

> Directorate General Research, Science and Education

Published by the Commission of the European Communities

Directorate General "Scientific and Technical Information and Information Management"

European Centre, Kirchberg Luxembourg (Grand Duchy)

© ECSC, EEC, EAEC, Luxembourg 1977

Printed in the United Kingdom

LEGAL NOTICE Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

INTRODUCTION

The purpose of this Handbook is to make available to those interested in "in-pile" irradiation experiments important data on Materials Testing Reactors in operation in the European Community. Only thermal reactors having a power output of more than 5 MW(th) are taken into consideration (see Table I).

In particular, detailed technical information is given on the experimental irradiation facilities of the reactors, their specialized irradiation devices (loops and instrumented capsules), and the associated hot cell facilities for post-irradiation examination of samples.

The information is presented in the form of eight information sheets for each reactor. These sheets have the following headings :

Sheet	1	:	Main characteristics of the reactor
Sheet	2	:	Experimental irradiation facilities of
			the reactor
Sheet	3	:	Typical neutron spectra
Sheet	4	:	Utilization and specialization of the
			reactor
Sheet	5	:	Main characteristics of specialized ir-
			radiation devices
Sheet	6	:	Main characteristics of facilities for
			post-irradiation examination
Sheet	7	:	Equipment and techniques available for
			post-irradiation examinations
Sheet	8	:	Utilization and specialization of the
			hot cell facility.

Nuclear engineers often need to refer to pertinent

iii

features of reactors, irradiation devices and hot laboratories, and to compare them easily. It is hoped that this Handbook will prove a useful source of reference in nuclear centres, governmental and industrial organizations, libraries, and so on.

If complete details are required by specialists, reference should be made to the specialized literature or to the reponsable officer of the facility (whose name and address is given on the first information sheet for each reactor).

This Handbook is the result of a co-operative effort between the staff of the European Communities and members of the Coordinating Committee on Materials Testing Reactors, instituted by the Council of Ministers of the European Communities. All data have been either provided or reviewed in March 1975 by national authorities or members of the Coordinating Committee.

TABLE OF CONTENTS

Table 1

vii

Materials testing reactors in the European Community countries

Information sheets

Belgium	BR 2	Mol	1
Denmark	DR 3	Risø	17
Germany	FR 2	Karlsruhe	29
	FRJ-1	Jülich	45
	FRJ-2	Jülich	53
	FRG-2	Geesthacht	77
France	OSIRIS	Saclay	87
	EL 3	Saclay	97
	MELUSINE	Grenoble	109
	SILOE	Grenoble	119
	TRITON	Fontenay-aux Roses	131
	PEGASE	Cadarache	147
Italy	ESSOR	Ispra	161
	OPEC (Hot Lab)	Casaccia	188
The Netherlands	HFR	Petten	193
United Kingdom	DIDO	Harwell	209
	PLUTO	Harwell	223

. .

Table I

MATERIALS TESTING REACTORS IN THE EUROPEAN COMMUNITY COUNTRIES

Country :	Name of reactor	: Owner	: Site : I	n operation since	: Therm.power : MW	Neutron flu Thermal	uxes x 10 ¹⁴ : Fast	: Hot lab
Belgiun	BR 2	CEN	Mel	1961	80	9	7	LMA
Denmark	DR 3	Dan. AEC	Riss	1960	10	1,5	0,45	6 Hot cells
France	OSIRIS EL 3 SILOE MELUSINE PEGASE TRITON	CEA CEA CEA CEA CEA CEA	Saclay Saclay Grenoble Grenoble Cadarache Fontenay R.	1966 1957 1963 1958 1963 1959	70 18 30 8 35 6,5	3,4 2 3,4 1 1 0,7	4,5 0,3 4,0 0,7 3 0,6	LECI LECI-CELIMENE LTHA LTHA LECA 35 Hot cells
Germany	FR 2 FRJ 1 FRJ 2 FRG 2	G.f.K. K.F.A. K.F.A. GKSS	Karlsruhe Jülich Jülich Geesthacht	1962 1962 1963 1959	44 10 23 15 (21)	1 1,1 2 3	0,7 5,4 1 1,6	Hot cells Hot cells THTR - Lab 5 Not cells
Italy	ESSOR	EURATOM	Ispra	1969	45	3	0,9	ADECO, ATFI, LMA
Netherlands	HFR	EURATOM	Petten	1961	45	2,4	3,1	LSO (RCN)
United King- dom	DIDO PLUTO	UKAEA UKAEA	Harwell Harwell	1956 1959	15 23	2,2 2	1,7	19 Hot cells 19 Hot cells

INFORMATION SHEET No. 1 revu le 4. 12. 1974

MAIN CHARACTERISTICS OF THE BR2 REACTOR AT MOL

Name of reactor	BR2	
Organization	CEN-EURATON	
Site	C.E.N./S.C.K.	
In operation	MOL - Bergrum	
since		
Power MW (th)	80 to 120	
Moderator	H ₂ O+beryllium	
Coolant	н ₂ 0	
Fluid and pressure (Kg/cm ²) in	$H_2^{}O$ at 12 kg / cm 2	
experimental channels	<u>N.B.</u> The head of a rig is exposed only to the sta- tic head due to the pool water i.e. 600 g/cm	- L
Nominal operation days / year	220-250	
Operating cycle (days)		
on power	21	
shut down	7	
	Responsable officers: Address	3:
BR2	G. Stiennon CEN/SCK	
Hot Lab	A.G. Dewildt Boeretang 200	
	B-2400 Mol	

EXPERIMENTAL IRRADIATION FACILITIES OF THE BR2 REACTOR

Name	: N	umber	: active length m/m	: Diameter : m/m	Typical thermal	neutron fluxes fast(>100 KeV)	: ^V -heating : W/g Al	Remarks
In pressure vessel Fuel element chan- nels	-	38*	760	17, 25, 34 or 43	1 - 4 x 10 ¹⁴	2 - 7 x 10 ¹⁴	5 - 17	All thermal fluxes expressed as unperturbed thermal flux $\begin{bmatrix} n \end{bmatrix}_{0,5}^{0,5}$ at 2200 m.s ⁻¹ measured at the axis.
Reflector channels Peripheral chan- nels Loop channels	1 9 u p	* to 3 10 to 5	54 760 760 760	85] 50] 200	1 - 9 x 10^{14} up to 9×10^{1}	0,1 to 2 x 10^{14} 4 x 10^{14}	0.5 - 8 10	To obtain fast flux above 1 Mev multiply the >100 KeV value by 0,62
In reactor pool Pool tubes Beam tubes		4 9	v arious	5.10 ¹ 10 ⁷ t	² to 2.10 0 5.10 ¹³	¹³ up to 10 ¹²	<0,5	

1) Irradiation positions (in core, reflector, others)

* Of these channels, 13 are "through-loops", extending completely through the reactor vessel from top to bottom 2) Reactivity available for experiments: ~S 10 (7 % $\frac{\Delta k}{k}$)

INFORMATION SHEET No. 2 (continued)

3) Typical neutron spectra available should be added on sheet N° 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) : Neutrography of active or inactive rigs Underwater Television camera.

- 5) References of relevant publications: "Nuclear Engineering" Nov. 1967 Annual Progress Reports. "Nuclear Engeneering" July 1961
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6) See sheet N° 6
- 7) Are facilities available for irradiation on behalf of other organizations of the European Community ? : yes

INFORMATION SHEET No. 3

n (upper	limit)(lower 1		Ø (n).10 ⁻² Centre of fresh cermet elt 400g	
		• /		
23,106	0,001	eV	0,434	2,132
20,580	0,0125		3,546	17,448
20,080	0,0206		5,782	27,968
10,000	0,540		0,014 9 666	JO, 102 75 119
19,000	0,0500		6,000	05,110 17 8EA
10,000	0,0924		0,004 A 14E	17,050
17 670	0,152		4,145	0,055
17,079	0,227		3,005	2,911 9 190
17 975	0,270		J, JOO 7 99 <i>4</i>	<i>4</i> ,± <i>2</i> 9 1 202
17 078	0,340		3,204	1 847
16 880	0,414		3,291	1 708
16 250	0,30		2 779	1 579
16 206	0,04/0		2 929	1 465
16,166	1,03		2,764	1,519
16,119	1,08		2,675	1.433
16.056	1,15		2,959	1,626
15,933	1,30		2,765	1,453
15.43	2,15		2.868	1.500
14.66	4,65		2,900	1,470
13,89	10		2,975	1,443
13,12	21,5		3,062	1,417
12,35	46,5		3,114	1,382
11,58	100		3,175	1,349
10,81	215		3,258	1,319
10,04	465	eV	3,288	1,279
9,27	1,00	k e V	3,340	1,243
8,50	2,15		3,418	1,209
7,73	4,65		3,473	1,173
6,96	10		3,651	1,166
6,19	21,5		4,106	1,187
5,42	46,5		4,804	1,236
4,65	100		6,094	1,374
3,96	200		8, 3 06	1,630
3,27	400		9,796	1,648
2,58	800	keV	12,405	1,791
2,01	1,40	MeV	14,137	1,998
1,44	2,50		7,694	1,342
0,96	4,00		3,717	0,271
0,48	6,50	MeV	0,696	0,058

INFORMATION SHEET No. 3

INFORMATION SHEET Nº 4

UTILIZATION AND SPECIALIZATION OF THE BR2 REACTOR

1) What were the original purposes of the reactor ? Materials testing - in the core Isotope production - in the reflector Fundamental physics research - in beam tubes

2) What major modifications have subsequently been made and for which particular research programme ? The original alloy type fuel elements, containing 244 g 235U, have been replaced by cermet elements, o f identical geometry, containing 400 235U plus burnable poisons. The original design power of 50 MW has been uprated to 100 MW by provision of new heat exchangers and by changing the cooling tower packing.

3) For which major projects and programmes is the reactor currently being used ? Fast reactor development $\sim 60\%$ Various irradiation programmes $\sim 25\%$ (high temperature gas reactor, water reactors etc.) Radio-isotopes $\sim 15\%$

4) What loops and irradiation devices have been specially developed for this reactor ?
a) give name and purposes of the devices: see sheet N° 5
b) main caracteristics of specialized irradiation devices are to be listed on separate sheet N° 5.

5) Major modifications planned: Steady increase in power level up to 130 MW over next 3 years.

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE BR2 REACTOR (give also references of relevant publications)

- fuel-pin irradiation

sodium loops with cadmium screen
MFBS : up to 250 kW, up to 7 pins (oxide 600 W/cm, carbide 1200 W/em)
MOL 7B : up to 500 kW, 19 pins (oxide 600 W/cm) or 7 pins (carbide 1500 W/cm)
MOL 7C (in design) : safety experiment (Na flow failure test)

```
    helium loop with cadmium screen (in design)
    400 kW, 12 vented pins
```

```
• rig (l pin)
```

- FAFNIR and FASOLD capsules (with Cd screen) oxide. 6 mm diameter, 350 to 600 W/cm or carbide, 8 mm diameter, 1000 to 1500 W/cm fission product pressure measurement, central temperature measurement, thermal cycling.

- CIRCE and CEB (thermal flux)

Continuous measurement of the power, possibility of detecting cladding rupture.

- CFC

Compatibility	fuel	canning	test	- F	basket

- THEBE

Thermal conductivily measurement test of advanced type LWR fuel rod

INFORMATION SHEET Nº 5

(contied)

- fissile material irradiation

- CPUR and MOPS : swept loops for irradiation of coated particles.
- . POM : high burn-up (100.000 MWd/t) in short time (a few months) with continuous measurement of the power.
- . Mol 12 : creep experiment with in-pile measurement.
- . Mol 13 : hollow fuel pellet rig (oxide, 1000 W/cm).

INFORMATION SHEET No. 5

- (continued) (2)
 cladding material and structural material irradiation.
 MOL 1 : samples directly cooled by the reactor water
 (<100 °C)
 MOL 3 and DISP : in NaK or Na, 600 to 700 °C
 MOL 2 and 5 : creep experiment with in-pile measurement
 MGR : graphite irradiation, 150 to 1200 °C
 IPCTL : helium loop for graphite irradiation (carbon
 transfer experiment)
 radioisotopes production
 </pre>
 - PACT : production of transplutonium elements.
 - CSF : standard capsule
 - Co and Ir capsules
 - Actinium thimble (irradiation of Ra Co_3 with double containment)

Hydraulic rabbit and self-service thimble.

INFORMATION SHEET No. 5 (Continued) (3) References. J. Planquart et al. In-pile experimental equipment for BR2. Third U.N. International conference on the peaceful uses of atomic energy. Geneva. 1964. J, Planquart Dispositifs d'irradiation pour BR2. EAES Symposium on irradiation experiments. The Hague. 1965. M. Soenen Experience gained with the in-pile sodium loop for fast neutron irradiation after the first run in the BR2 reactor. Symposium on alkali metal coolants corrosion studies and system operating experience. Vienna. 28 Novembre - 2 December 1966. J.M. Baugnet Boucles d'irradiation au réacteur BR2. H.F.R. Information meeting. Petten. 7-8 December 1967. P. von der Hardt Development and in-pile performance of some BR2 irradiation rigs. EUR 3626e. 1967. W. Hebel Production d'éléments lourds par irradiation d'américium 241 dans le réacteur BR2. EUR 3560f. 1967. M. Soenen Experience gained with the 200 kW integrated in-pile sodium loop in the BR2 reactor. International Conference on Fast Reactor Irradiation Testing. Thurso, 14-17 spril 1969.

INFORMATION SHEET No. 5 (Continued) (4) G. Vanmassenhove In-pile sodium loop 500 kW. Conceptional design. International Conference on Fast Reactor Irradiation Testing. Thurso, 14-17 April 1969. P. von der Hardt BR2 irradiation of fuel pins in liquid met 1 rigs. International Conference on Fast Reactor Irradiation Testing. Thurso, 14-17 April 1969. A. Lhost Thermal neutron fuel irradiation rig with continuous heat flux measurements. International Conference on Fast Reactor Irradiation Testing. Thurso, 14-17 April 1969. J. Debrue, Ch. De Raedt, H. Lenders, F. Léonard, N. Maene, F. Motte, G. Stiennon Utilization of the BR2materials testing thermal reactor for fast neutron irradiation. A/CONF. 49/P/280 Fourth United Nations International Conference on the Peaceful Uses of Atomic Energy. Geneva, 6-16 September 1971. P. von der Hardt Some BR2 Irradiation Devices for Fast Reactor Fuel and Fuel Elements. EUR 4632e - 1971 P. von der Hardt BR2 Irradiation Devices for HTGR Fuel. EUR 4737e - 1971. J.M. Baugnet et J.M. Gandolfo Groupe d'exploitation du réacteur BR2 et de ses installations connexes - GEX.

INFORMATION SHEET No. 5 (continued) (5)

Rapport d'activité 1971. GBX/760/72 - June 1972.

Main	characteristics of	Facilities	for post.	-irradiation	examinations
	at	C.E.N./S.C.K	. Center	(MOL-Belgium	n)

Lo gai Na	cation, or-: nization. me of Lab.	Year of acti ve: operation	Sco Acti ve area	pe : Number of working po- sition	Gamma shield- ing (material, thickness, density)	Leak tight-: ness	Special i atmosphere	Manipulators no. and type (spare mani- pulators incl- uded)
MO) Cer de Nuc St: vo gi A.	L-Belgium ntre d'Etude l'Energie cléaire. udiecentrum or Kernener- e Laboratory for Medium Activity (L.M.A.)	1965	~1200 m ²	26 + 8 under construction	lead 0,10 m 0,15 m 0,20 m concrete 0,80m d:3,4	most of fa- cilities are atight ≤0,51m ⁻³ h ⁻¹	One faci- lity under Ar One faci- lity under N2	12 - M 7 25 - MA 11 7 - BF 700 8 - M 8 3 - GM 150
В.	Atelier très haute activité (A.T.H.A.)*	1965	~200 m ²	5	concrete 1,37 m d:3,4	$\texttt{not} \ \alpha$	no sp ecia l atm.	10 - M 8 4 - M 9 1 - GM 300

*Jointly operated by C.E.N. - S.C.K. and Euratom

C.E.N. / S.C.K. Hot Laboratories

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION

EXAMINATION

- Owner or operator of the facility.

 A. L.M.A. building C.E.N./S.C.K. Division of applied research.
 B. A.T.H.A. building GEX (C.E.N./S.C.K. Euratom as-sociation).
- 2) A. L.M.A. not especially associated with a reactor.B. A.T.H.A. especially associated with BR2.
- 3) Details of equipment and techniques.
 - A. L.M.A.
 - a) Current metallographic examination facility including preparation of samples (vacuum impregnation apparatus, grinding and polishing machines, micro sampling apparatus, Leitz M M 5 R T microscope with Vickers micro-hardness tester).
 - b) Metallographic examination facility under controlled atmosphere including preparation of samples (grinding and polishing machines, Reichert Telatom 61 microscope with Vickers micro-hardness tester and Leitz Aristophot micrograph).
 - c) Microprobe analyser metallographic preparation facility (under construction). (Vacuum impregnation apparatus, grinding and polishing machines, ion bombardment apparatus, metallisation unit, ultra-sonic decontamination set ...).
 - d) Mechanical test facility including tensile test

INFORMATION SHEET No. 7 (continued)

.

apparatus at high and low temperatures and fracture toughness, impact test apparatus at high and low temperatures, possibility of macroscopic examination of fractures, photography and metrology.

- e) Metrology and profile projection facility.
- f) Physical test facility including, thermal treatment (up to 1200 °C under vacuum or inert atmosphere),
 Vickers hardness measurements and swelling measurements by immersion density determination.
- g) Workshop facilities (one under controlled atmosphere) equipped with several mechanical tools and machines, possibility of final dismantling of experimental samples, conditioning of samples, photography, punction and fission gas collection.
- h) Burn-up determination preparation facility including dissolution of fuels, fission gas recuperation, sampling for gamma spectrometry and chemical analysis.
- i) Hot thermobalance facility for several Kinetic studies.
- j) Several multi-purpose cells for chemical or metallurgical work.
- k) Several glove-boxes for low level preparation and measurement (plutonium boxes, decontamination boxes, tests on graphite, etc.).

B. A.T.H.A.

Dismantling and observation facilities including a variety of mechanical apparatus and tools, non destructive testing, metrology, gamma scanning and neutrography.

Information sheet nº8

UTILIZATION AND SPECIALISATION OF THE L.M.A. AND A.T.H.A.

- 1) Post irradiation examination of several materials.
 - A. L.M.A. building essentially destructive tests.
 - B. A.T.H.A. building essentially non destructive tests and dismantling operations.
- 2) Adaptations to new techniques and fuels for example carbide fuels and H.T.R. fuels.
- 3) Fast breeder reactor fuel pin development programmes (oxides and carbides of U and Pu)
 - High temperature reactor fuels (coated particles).
 - Thermal and power reactor fuel pins.
 - Examination of structural materials (candidate cladding materials, structural elements of fuel assemblies, reactor vessel surveillance programmes).
- 4) A. L.M.A. Extension of hot acilities for non destructive and destructive testing of fuel pins for power reactors (thermal and fast).
 - B. A.T.H.A. Extension of hot facilities for non destructive testing and dismantling of fuel assemblies for power reactors.
- 5) Yes.

		INFORMATIO	N SHBET Nº 1
		Jan. 1975	•
MAIN CHARACTERISTIC	S OF THE DR	3 REACTOR A	T RISOE
Name of reactor	DR 3		
Organization	Danish A Research	tomic Bnergy Establishme	Commission nt RISØ
Site	RISØ		
In operation since	1960		
Power MW(th)	10 MW		
Moderator	D ₂ 0		
Coolant	D20		
Fluid and pressure (kg/cm ²) in experimental channels			
Nominal operation days / year	305		
Operating cycle (days)	28		
on power	23.5		
shut down	44.5		
	Responsi	ble officer	Address
DR 3 :	H. Floto	R b D R	eactor DR 3 esearch Esta- lishment Risø K - 4000 coskilde
Risø Hot Cell :	J.S. Qui	st R R	tisø Hot Cell Kesearch Esta-

blishment Risø DK - 4000 Roskilde

INFORMATION SHEET No 2

IRRADIATION POSITION OF THE ... DR3... REACTOR

1) Irradiation positions (in core, reflector, others)

Nam	e		Number	Active length m/m	Diameter m/m	Typical neutron thermal	unperturbed fluxes fast(>100 K	^V heating W∕gr Al TeV)	Remarks
-fu ce	el (ntra	element al holes	26	610	50	1.5	0,45	1.5	
7	v	holes	4	450	175	0.6	0.005	0.3	
4	V	holes	4	150	100	0.3	0.001	0.2	
7	т	holes	4	135	175	0.7	0.002	0.4	

2) Reactivity available for experiöents : ~~8% dk/k

3) Typical neutron spectra available should be added on <u>sheet No 3</u>. Not measured, refer to PLUTO data

INFORMATION SHEET No 2

(contn'd)

4) Specialized equipment available for experimenters (e.g. neutrography, etc.) :

- 5) References of relevant publications :
- 6) If hot cell facilities are available on the reactor site give its name and the organization to which they belong (give details on sheet No 6)
- 7) Are facilities available for irradiations on behalf of other organizations of the European Community ? :

UTILIZATION AND SPECIALIZATION OF THE DR 3 REACTOR

1) What were the original purposes of the reactor ? Materials testing and isotope production

2) What major modifications have subsequently been made and for which particular research programme?

Beam experiments for solid state physics research governed by DAEC have been installed at each end of the 4 horizontal, tangential experiment tubes (17.5 om ϕ). A cold neutron source is being installed in one of these tubes at the moment (1973/74)

3) For which major projects and programmes is the reactor presently being used ?

- Isotope production
- Dragon-project
- Fuel pin testing
- Basic research on solid state physics

4) What loops and irradiation devices have specially been developed for this reactor ?

a) give name and purposes of the devices :

- High pressure Rig HP 1 for fuel pin testing
- High pressure Rig HP 2 for fuel pin testing (also with thermal cycling)
- Corrosion Rig
- HTGR Rig for fuel irradiations up to 2000° C

INFORMATION SHEET Nº4 (cont'ed)

- b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5 $\,$
- 5) Major modifications planned :

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE DR 3 REACTOR

(give also references of relevant publications)

fuel pin irradiations:

- High pressure Rig type HP 1 ^(*) :	l pin, 200 W/cm ² , 9-15 mm., length 600 mm, 150 bars pressurized water failed fuel pins may be tested
- High pressure Rig type HP 2(*):	l pin, 9-15 mm diam. length 400 mm, 80 bars pressurized water- thermal cycling tests may be performed
- Corrosion test facility :	cladding samples 15 mm diam., 500 mm length, 80 bars 20 - 400° C water
- HTGR fuel irradiation rig	in fuel position, 700 - 2000° C
- Structural materials irra- diation rig	reloadable, 40 - 500° C
- Thermal conductivity rig	for UO ₂ up to 1900° C

*) H. Hagen, K. Hansen, J.A. Leth : Design and experience with rigs simulating LWR conditions in a research reactor IAEA - SM - 165/8, 1972.

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT RISO CENTRE	CENTRE	Remarks and references	24
	IONS AT RISO	Manipulators number and type	<pre>7 pairs of master-slaves, Nuclear Equipment, heavy-duty, Harwell type α-seal. l power-operated manipulator, GEC Mk. 1. l power-operated cell hoist, GEC, capacity :1,5 t-</pre>
	L'TAN L WAY	Special atmosph- ere	Theoretically : Yes In practice : No
	ADLT TOL	Leak tight- ness	Yes - provided that all master-slave boots are intact.
	HAL-TON POST-TAR	Gamma shielding (material, thick- ness (m) and density g/cm ³)	<u>CAVES</u> Floor : Normal concrete, 0.8 m, Roof : Normal ² concrete, 1.0 m, Back and front wall: Normal ² concrete, 1.7-2.0m, Walls between caves: Magnetite concrete, 1.0m, 3.6 g/cm ³
	TERISTICS OF FACIL	Scope Number of Active working area positions (m ²)	Caves and frogmens area Room for glove-boxes and shielded Cells: 334- area: Other blue and red areas Total, classified areas 7
	MAIN CHARAC	Year of active operation	1964
		Location Organization Name of lab	Denmar'd Danish Atomic Energy Commission Research Establishment Risó Hot-Cell Facility

INFORMATION SHEET Nº 7

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE HOT CELL (FACILITY)

- 1) Owner or operator of the facility : Danish Atomic Energy Commission.
- 2) With which reactor is the facility associated? : DR2 and DR3 at Risø.
- 3) Give details of eouipment and techniques available :

Maximum weight of transport containers is 25 t. Max. length of <u>fuel elements</u> to be received is 5 m. Max. activity is 10°Ci (1 MeV).

Dismantling: Cutting machines, milling machines, saws, lathe, drilling machines, tools etc. etc.

- Visual inspection: Monoculars, binoculars, periscope, techniscope, epitechniscope, polaroid cameras.
- Dimensional measurements: Profilometer (continuous diameter recording), length measuring bench. Max. length 2.1 m.
- <u>*P*-scanning and <u>*P*-densitometry</u>: Continuous recording of single isotopes and of relative density. Max. length 2.1 m. Use of multichannel analyzer and Ge-Li-detectors being considered.</u>

Leak testing: Bubble-test used at present; SF_6 -test being planned.

X-radiography: High energy X-radiography for water-reactor fuel rods; low energy X-radiography for coated-particle fuel.

Fission gas sampling: Pressure and amount of fission gases measured; gas analysis by massspectrometry.

<u>Metallography</u>: Impregnation of fuel rods if necessary; grinding, polishing, etching; Reichert Telatom microscope.

<u>Miscellaneous</u>: Surface replication, extraction, replication and analysis by X-ray-diffraction or chemical methods; burn-up-determination by Nd-method; H₂/D₂-determination by mass-spectrometry (Zr-alloys); autoradiography.

4) References of relevant publications : Facilities at Research Establishment Risø for Post-Irradiation Examination of Dragon Project Experiments. Dragon Project Report No. 446, July 1966, F. Bundgaard Larsen and Arne Sørensen.

> Post-Irradiation Services at Risø. Danish Atomic Energy Commission, Research Establishment Risø, July 1969.
UTILIZATION AND SPECIALIZATION OF THE RISØ (HOT CELL FACILITY)

1) What were the original purposes of the facility? : General purpose facility for examination of irradiated materials, for encapsulation of irradiation sources, and for repair work on contaminated/radioactive components.

2) What major modifications have subsequently been made and for which particular research programme? None.

3) For which major projects and programmes is the facility presently being used? The Danish programme for studies and development of water-reactor fuel. Post-irradiation examination on contract-basis for foreign institutions.

- 4) Major modifications planned : None only development and improvement of equipment are foreseen.
- 5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community? Yes - during several years, more than 50% of the work has been carried out on contract-basis for foreign firms and institutions.

.

MAIN CHARACTERISTICS OF THE FR2 REACTOR AT KARLSRUHE

Name of reactor	Forschungsreaktor (1	FR2)
Organization	Gesellschaft für Ken	rnforschung
Site	Leopoldshafen bei Ka	arlsruhe
In operation since	1961	
Power MW(th)	44	
Moderator	D ₂ 0	
Coolant	D ₂ O	
Fluid and pressure (kg/cm ²) in experimental channel	3-1.2 kg/cm	
Nominal operation days / year	280	
Operating cyclæ (days)		
on power	38	
shut down	11	
	Responsible officer:	Address:
FR 2 :	Steiger	Ges. für
Hot Cells:		Kernforschung D - 7500 Karlsruhe Postfach 3640

ł

.

EXPERIMENTAL IRRADIATION POSITIONS OF THE FR 2 REACTOR

Name :	Number:	active length m/m	: Diameter m/m :	: Typical un neutron : thermal fas	nperturbed : fluxes t (>100 KeV) :	V-heating :Remarks W/gr Al
l. Isotope posi- tions	41	2100	26	5-9,5.10 ¹³	2 - 6 .10 ¹²	0.5
2. Free fuel-ele- ment positions	40	2100	56	4-9,5.10 ¹²	2 - 6 .10 ¹²	0.5
3. Thermal columns	- 6 2 1 2	1000 2000 2000 2000	200x200 100x100 600x400 200x200	0,3-2,2.101	-	
4. Radiation chan- nels -	9. 2 1	300 3000 2000	130x190 55 55	$3-5 \cdot 10^{13}_{13} \le 9 \cdot 10^{13}_{13} \le 6 \cdot 10^{13}_{13}$	$\begin{array}{c}1 -2,5.10 \\ \leq 6 \\ \leq 4 \\ 10 \\ 10 \\ 10 \\ 12 \\ 10 \\ 12 \end{array}$	0,1 ≦0,5 ≦0,3
5. Vertical chan- nels	3	2100	130	≦9 .10 ¹³	≦6 .10 ¹²	≦ 0,5

1) Irradiation positions (in core, reflector, others)

2) Reactivity available for experiments : ca. 5%

-) Typical neutron spectra available should be added on sheet Nº 3
- 4) Specialized equipment available for experimenters (e.g. neutrography, etc.) : Neutron radiography, gamma scanning, gamma irradiation facility, hot cell in the reactor building, various transport casks, low-temperature transport cryostat, cold neutron source, facility for changing samples during operation, etc.
- 5) References of relevant publications :
 - 1.) Kerntechnik 8 (1966) N°6, p. 253 "Utilization of the reactor FR-2 as a research facility, etc." H. Oehme, W. Marth
 - 2.) KFK-Reports Nº 688,742, 746, 1415 (annual operating reports)
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6) Hot cells of the GFV

	(Nuclear Research Ins- titute)	Onerated by RBT/H7 in the
	Transplutonium labora- tory ("PL) of the GFK	GFK

7) Are facilities available for irradiations on behalf of other organizations of the European Community? • Yes.

UTILIZATION AND SPECIALIZATION OF THE FR 2 REACTOR

1) What were the original purposes of the reactor?

Pure research, solid-state physics, materials research, isotope production

2) What major modifications have subsequently been made and for which particular research programme ?

Reactor power increased from 12 MW to 44 MW Neutron flux increased from $\emptyset_{th} = 3.10^{13}$ to 1.10^{14} cm⁻² sec⁻¹

3) For which major projects and programmes is the reactor currently being used?

```
"Fast breeder" Project (PSB)
"Actinides" project (PACT)
Solid-state physics
Materials research
Isotope production
```

- 4) What loops and irradiation devices have been specially developed for this reactor?
 - a) give name and purposes of the devices : 1.) Low-temperature irradiation facility (solidstate physics); 2.) He loop (fuel element development); 3.) D₂O pressurized water circuit (fuel-element development); 4.) Superheated steam circuit (detection of cladding defects, filtering radioactive waste gases, decontamination, reactor safety); 5.) various capsule

INFORMATION SHEET Nº 4 (cont'ed)

tests (fuel-element development); 6.) Pneumatic rabbit (isotope production); 7.) Thermionic converter (ITR development).

- b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5
- 5) Major modifications planned : None.

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE FR-2 REACTOR

(give also references of relevant publications)

1. Low-temperature irradiation facility

Medium: He in gaseous form; Expansion: reciprocating-piston device; \emptyset_{th} (unperturbed): 8.10¹³ \emptyset_{f} = 2.5.10¹²; Refrigerating capacity at 12°K = 500 W; Pressure experimental container: 2.5 atg; Lowest attainable irradiation-sample temperature: 10° - 20° K according to reactor power. Facility for cold transport in liquid He. Publication: KFK Report N° 463.

2. He loop

Medium: He; Operating pressure: 30 atm; Gas throughput through the test section: maximum 350 kg/h; Maximum He temperature: 200° C; Maximum removable heat output ca. 30 kW; Specific test sample output: 1000 W/cm; cladding temperature: 600° C; Test sample change during reactor operation; Circuit is designed without stuffing boxes; H₃ and fission-gas clean-up section, iodine filter. Precise adjustment of the test-sample output by axial movement of the test sample; Gamma \scanning device on removal. Publications: 1. Kerntechnik <u>10</u> (1968) N° 6, P. 344

2. Kerntechnik 11 (1969) N° 7, P. 403

3. D₂0 - Pressurized water circuit

Medium: D₂O in the bypass to the reactor coolant circuit; Operating pressure: 50 atm.; D₂O throughput

INFORMATION SHEET Nº 5 (cont'ed)

per test section: $1 - 6 \text{ m}^3/\text{h}$; Two test sections; Output dissipated per test segment: 150 kW; Maximum D_2^0 temperature: 150° C; Components without stuffing boxes; Mechanical filter; Cladding defect detectors.

Publications: Kerntechnik (submitted).

4. Superheated steam circuit

Medium: H_2O superheated steam; Operating pressure: 160 atm.; Maximum steam throughput: 140 kg/h; Maximum steam temperature: 550° C; Test sample output = 4 kW; Temperature of fuel cladding: $\leq 800°$ C; Circuit suitable for operation with cladding defects, and cladding defects up to 90 mm² have so far been brought in; Proof of cladding defects through gamma spectroscopy and delayed neutrons; various sample chambers in the circuit; H_2O sampling; Gas analysis; Iodine filter and inert gas delaying section.

Publications: KFK Report Nº 1255

5. Various instrumented capsule experiments for fuel rod irradiation, of high-performance fuels, for measurement of fuel creep and swelling under various operating conditions.

Publications: Kerntechnik <u>10</u> (1968) N° 3, P. 136 Kerntechnik <u>12</u> (1970) N° 5/6 Kerntechnik <u>12</u> (1970) N°10, P. 454 Kerntechnik <u>14</u> (1972) N° 2, P. 12 Atomwirtschaft N° 2 (1973)

6. Pneumatic tube conveyor (rabbit)

Medium: Air under suction; Operating pressure in the irradiation channel: - 175 mm w.g.; Air throughput: 35 m³/h; Velocity: 15 m/s; Irradiation time: between 10⁻¹ and 3.6.10⁵ sec; $p_{th} = 9.10^{13}$; $p_{f} =$ 1.5.10¹²; Rapid discharge. In addition to the FR-2 building, the isotope laboratory and the radiation chemistry laboratory have each a dispatching and receiving unit.

7. Thermionic converter

Emitter temperature: ca. 1500° C; Collector temperature: ca. 700° C; Nuclear operating power: 1.7 kW; Efficiency: ca. 10%; Irradiation testpieces, with the exception of the auxiliary facilities, are not re-usable. Irradiation time attained so far: Maximum 8000 h. Publications: Kerntechnik <u>11</u> (1969) N° 5 Kerntechnik <u>13</u> (1971) N° 1 1971 Meeting on reactors of one German Atomic Forum, Paper H.7-518 Int. Conf. on thermionic power Production, Jülich, 5 - 9 June 1972.

IRRADIATION FACILITIES

INFORMATION SHEET No. 5 (Continued) (3)

Types (e.f. isotope production holes, hydraulic rabbits, thermal		liceful	Jucles	ar Characteri	Environmental Characteristics			
columns, loops in core, loops in reflector, beam tubes, through holes, etc.)	No.	dimensions	Thermal Neutron flux	Fast Neutron flux	Camma flux	Max. allowed temp.	Max allowed pressure	Sur- roundin <i>g</i> medium
 A) <u>Facilities for Routine</u> <u>Irradication</u> 1) Air-cooled Isotope Production Channels a) Standard Type 	12	Standard sample (mo- dified harwell can): dia: 2,6 cm, len#th: 6,8 cm (longer samples ros- sible) 29 standard				200 [°] C	ambient	air
b) Special Type 1)	(12)	dia: 3,7 cm length: core height	5-9,5.10 ^{13x)}	2-6. 10 ^{12x)}	1,6-8.10 ^{13x)}	200 ⁰ C	ambient	air
2) Water-cooled Isotope Production Channel 2)	1	Dia: approx 2 to 4cm length: core height				100 ⁰ C	approx 1.5 ata	D ₂ 0
3) Instrumental Capsule 2) Irradiation Rig	1	dia: approx 3 cm length:approx.30cm				approx. 500°C	ambient	He, Ne
4) Pneumatic Rabbit	1	dia: 3,5 om length 10 cm	7,2-9,5.10 ¹³ xx)	5,8-6.10 ¹³ xx)	6-8.10 ¹³ xx)	100 ⁰ C	ambient	air
5) Thermal Column a) Vertical Holes 3)	6	20 x 20 x 100 cm 4)	0 ,3- 2,2.10 ¹¹			approx. 100°C	ambient	air
 B) <u>Other Facilities</u> 5) Thermal Column 	1	60 x 40 x 200 cm 4)						
b) Horizontal Holes 5)	2	10 x 10 x 200 cm 4) 20 x 20 x 200 cm 4) 20 x 20 x 190 cm 4)	0.3-2,2.10 ¹¹			approx 100°C	ambient	air

x) range of maximal flux in these facilities

xx) average and maximum flux in this facility

IRRADIATION FACILITIES

INFORMATION SHEET No. 5 (Continued) (4)

Types (e.g. isotope production holes, hydraulic rabbits, thermal			Nucle	ear Characteri	Environmental Characteristics			
columns, loops in core, loops in reflector, beam tubes, through holes, etc.)	No.	Useful dimensions	Thermal neutron flux	Fast neutron flux	Gamma. flux	Max. allowed temp.	Max allowed pressure	Sur- rounding medium
6) Horizontal Beam Holes 5) a) Thimbles	ç	dia.in biol.shield: from 22 to 35 cm dia. in reflector: from 13 to 19 cm	3-5.10 ¹³	1-2.10 ¹²	1-1,5.10 ¹³	approx. 100°C	embient	eir
b) Through Holes	2	dia. in biol. shield: from 22 to 35 cm dia in reflector and core: 5,5 cm	3-6.10 ¹³	1-2,5.10 ¹²	1-2.10 ¹³			
7) Superheated-Steam Loop 6) (in core)	1	dia.: 2 cm length: 200 cm	2-2,5.10 ¹³	1,6-2.10 ¹²		550 ⁰ C	160 ata	^н 2 ⁰
8) Pressurized-Water Loop (in core)	2	dia: approx. 4 cm length: core height	6-8.10 ¹³	10 ¹²		140 ⁰ C	55 ata	D ₂ 0
9) He-Cooled Loop (in core)	1	dia.: 2,0 cm length: 60 cm	8.10 ¹³	10 ¹² `		350 [°] C	150 ata	He
10) Low-Temperature Irradiation Facility (in core)	1	dia.: 1 cm Length: 10 cm	4-5.10 ¹³	2,3.10 ¹²		from 216 to 73°C	4 ata	He

39

Remarks

- Sample geometry and sample holding device may be designed according to the pertinent cooling necessities within the given dimensions.
- 2), Presently in design phase.
- 3) Revolving sample holding device available for elimination of flux gradient.
- 4) Last number = axial dimensions within graphite block.
- 5) The horizontal beam holes and the horizontal holes of the Thermal Column are occupied by various experiments, preferably in the field of basic neutron physics research. Besides several neutron spectrometers, a cold neutron source is installed and provides a beam of neutrons with energies down to 5 x 10^{-3} eV.
- 6) The loop is designed for the operation of fuel samples with intentionally damaged canningş. The canning defect can be generated during operation.
- 7) Characteristics of coolant.

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT KARLSRUHE CENTRE

Location : Organiza-: tion : Name of : lab :	Year of active opera- tion	: Sc Number of working : positions	ope : : Active : : area (m ²):	Gamma shielding : (material, thick-: ness (m) and ; density g/cm ³) :	Leak tigh- tness	: Special: : atmos= : phere	Manipulators number and type	Remarks and references
Dismant- ling cell FR 2	196 1	2	7	¢oncrete	no	no	Mod 8 GM 300 3 to.crane	Inspection & dismantling
Hot cells Bldg 32	1965	7 4	60 24	concrete concrete	уев уев	possible possible	HWM - AZ oog Em 50	Testing of irradiated fuel
Hot Chemis- try cells Bldg 32a	1965	4 3	27 13	concrete concrete	no no	possible	HWM A 100 GM300	Testing of irradiated fuel & repro- cessing

(Continued)

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT Gfk CENTRE

Location : Organiza- tion Name of lab	Year of : active opera- tion	Scop Number of: working positions:	Active : area (m ²):	Gamma shielding : (material, thick- ness (m) and density g/cm ²)	Leak : tigh- tness :	Special: atmos- phere	Manipulators: Remarks and number and references type
Gesell- schaft für Kernfor-	9	11	84	Concrete 90 cm 4 ₉ 5 and 3 ₉ 5	0,5 Vol% per∽h	N ₂	22 Wälischmiller
schung Karlsruhe Hot cells Building 701	Ο	29	60	Lead 20 cm		N 2	58 Wälischmiller

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE GTK HOT CELLS FACILITY

1. Owner or operator of the facility : Gesellschaft für Kernforschung mbH, Karlsruhe, Post box 3640, Reactor operation and technology section, hot cells

2. With which reactor is the facility associated? : FR-2

3. Give details of equipment and techniques available :

Dismantling cell, X-ray examination, Dimension measurements, Gamma spectrometry, Gas metering plant, Sample manufacturing, Metallography, radioautography, Tensile testing, Creep-rupture testing, Internal tube pressure testing, Charpy impact testing, Hardness testing, X-ray microstructure testing, Calorimetry, Electron microscopy, Micro sensing, Micro-weighing, Welding plant.

4. References of relevant publications :

"Reports from the hot cells"

UTILIZATION AND SPECIALIZATION OF THE HOT CELLS

1. What were the original purposes of the facility? :

Post-irradiation investigations for the "fast breeder" project

- 2. What major modifications have subsequently been made and for which particular research programme? Expansion of metallography and structural materials testing for the "fast breeder" project.
- 3. For which major projects and programmes is the facility presently being used? "Fast breeder" project
- 4. Major modifications planned :

- 5. Are facilities available for post irradiation examinations on behalf of other organizations within the European Community?
 - No, currently working at full capacity

MAIN CHARACTERISTICS OF THE MERLIN REACTOR AT Julich

Name of reactor	FRJ-1 MERLIN									
Organization	KFA-Jülich GmbH									
Site	Jülich									
In operation since	1962									
Power MW(th)	10									
Moderator	н ₂ 0									
Coolant H ₂ 0										
Fluid and pressure (kg/cm ²) in experimental channels	Connected to ventilation system air with -0,01 kg/cm ² respecti- vely coolant water of the prima- ry circuit for vertical channels									
Nominal operation days/ year	290									
Operating cycle (days)										
on power	26									
shut down	5									
	Responsible officer:	Address:								
FRJ 1 :	Dr. Friedewold Ker	nforschungs-								
Hot cells	Dr. H. Müller D-	11age GmbH - 517 Jülich								

Postfach 1913

IRRADIATION POSITIONS OF THE MERLIN REACTOR

1) Irradiation positions (in core, reflector, others)

Name	:Number:	active length m/m	: Diameter : m/m	Typical un neutron fl thermal	nperturbed Luxes :fast (>100 KeV):	V-heating : W/gr Al :	Remarks
Randposio- nen	24	600	76 ,1x 76,1	0,4 -1.10	¹⁴ 1,5.10 ¹³	4,0) vertical tubes on
Incore po- sitions	5	600		1,1.10 ¹⁴	5,4.10 ¹³	6,4) lattice
D3, E5, F6	3	1000	153 Ø	7.10 ¹²	5.10 ¹¹)
Al	l	1000	300 Ø				horizontal beam tubes)
TH I 1,2,3, TH II 1,3,4	,4))	1500	101x101 x1750	2.10 ¹⁰	2.10 ⁸) 2 thermal columns with) 7 channels
TV2.1, TV2. TV1.1, TV1.	2) 4 2) 4	600	80 x 80	3.1 0 ¹²	0,2.10 ¹²) vertical graphite ir-) radiations channels
V1, V2	2	200	150 Ø	2.1012			vertical channels
Rabbits BE1 BE22/1 BE22/3 BE 25 BE 26	L) 5) 5) 1) 1	ca.400 ca.100 ca.10	40) 65) 40) 10	5.10 ¹³ 1.10 ¹⁴ 5.10 ¹³ 4.10 ¹³	7.10^{12} 1.5.10^{13} 1.10^{13} 1.10^{13})) 4,0)))) irradiation facilities)

2) Reactivity available for experiments : $\Delta k/_{1}$, 2,5% to 9,5% dependent on burn-up of fuel

3) Typical neutron spectra available should be added on sheet N° 3

- 4) Specialized equipment available for experimenters (e.g. neutrography, etc.) : storage block and radiation protection flasks for handling long and short, experiments facility, for neutro-radiography planned
- 5) References of relevant publications : 1. Sicherheitsbericht des Reaktors FRJ-1 (MERLIN) vom 26. April 1961
 - 2. Sicherheitsbericht zu 1. vom 5. August 1963
 - 3. Sicherheitsbericht für den Betrieb d. Forschungsreaktors FRJ-1 (MERLIN) mit einer therm. Leistung von 10 MW
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6) Institut für Reaktorwerkstoffe, IRW Heisse Zellen, KFA Jülich, Institut für chemische Technologie

7) Are facilities available for irradiations on behalf or other organizations of the European Community? :

UTILIZATION AND SPECIALIZATION OF THE MERLIN REACTOR

- What were the original purposes of the reactor?
 Research in neutron physics, physics, chemistry, medicine, biology, fuel testing, education and training
- 2) What major modifications have subsequently been made and for which particular research programme?

Substantial modification 1967 to improve accessibility to reactor core and to run reactor longer operation cycles on power (up to 5 weeks) Power increase from 5 MW to 10 MW in 1971 to short irradiation time

3) For which major projects and programmes is the reactor presently being used?

Fuel irradiation for graphite moderated high temperature reactors (especially for testing new reprocessing procedures). Small sample-irradiations for medicine, biology and chemistry

4) What loops and irradiation devices have specially been developed for this reactor?

a)	give	name	and	purposes	of	the	devices	: 1) £	Several simple irradiation facilities in Incore- and
									r £	neutron fluxes of a broad scale of material (e.g. organic substances) at a temperature level of 50° C.
								2	:) I	Fast pneumatic rabbit facility (time for shooting out

lower than 1 sec.)

INFORMATION SHEET Nº 4 (cont'ed)

3) Multi purpose irradiation rigs for fuel samples cooled by gas, water or liquid sodium

b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5

5) Major modifications planned :

New facility for solid state physics in the Al beam tube.

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE FRJ - 1 (MERLIN)

	Type	:Number:	Useful dimension (mm)	: Nuclea	r Character	ristics	: <u>Environmental</u> - Characteristics		
		: :		Thermal : neutron : flux :(n/cm ² s):	<pre>Fast : neutron : flux : (n/cm²s):</pre>	Gamma flux r/h	:Capsule : Temp. : °C : : :	Surrounding medium	
FRJ -1	Insertion proce- dure (BE 3) (in-	ı	Dia, 50x110 (4 off)	1 - 10 ¹⁴	4 - 10 ¹³	10 ⁹	50	НО	
FRJ-1	Insertion proce- dure (BE 3) (out-	, –		17	1 2 20	20	20	2°	
	side of Core)	5	Dia. 50x110 (4 off)	$7 \cdot 10^{15}$	$1 \cdot 10^{19}$	2.100	50	н ₂ 0	
FRJ-1	Tube insertion procedure (BE 22)	1	Dia. 50x110 (3 off)	1.10 ¹⁴	4 . 10 ¹³	10 ⁹	50	H ₂ 0	
FRJ-1	Tube insertion	٦	D_{12} , $50x110$ (3 off)	8 10 ¹³	1 1013	2.10^{8}	50	н О	
FRJ -1	Tube insertion procedure (BE 22)	1	Dia. 50x110 (3 off)	$7 \cdot 10^{13}$	8 . 10 ¹²	2 . 10 ⁸	50	¹¹ 2 [°] H ₂ 0	
FRJ-1	Tube insertion procedure (BE 22)	1	Dia. 50x110 (3 off)	6 . 10 ¹³	8 . 10 ¹²	2 . 10 ⁸	50	н_0	
FRJ-1	Pneumatic-Rabbit (BE 1) (tube 3)	1	Dia. 23 x 80	5 . 10 ¹³	1.10 ¹³	2.10 ⁸	110	2 CO ₂	
FRJ-1	Pneumatic-Rabbit (BE 1) (tube 2)	1	Dia. 23 x 80	5 . 10 ¹²	3 . 10 ¹¹	10 ⁸	100	co2	
FRJ-1	Pneumatic-Rabbit (BE 1) (tube 4)	1	Dia. 23 x 80	3,5.10 ¹²	1,5.10 ¹¹	10 ⁸	100	co ₂	
FRJ-1	Fast Rabbit (BE 25) Testrig (LV 16)	1	Dia. 10 x 30 Dia. 13 x 90	$6 \cdot 10^{13}$	$8 \cdot 10^{12}$	10^8	110	со но/со	
						- • • •		-2-12	

INFORMATION SHEET N° 5 (cont'ed)

	type	:Number:	Useful dimension (mm)	: Nuclea:	r Characte	ristics	: <u>Environmental</u> - Characteristics		
		: :		Thermal : neutron flux :(n/cm ² .s):	Fast : neutron flux (n/cm ² .s):	Gamma flux : r/h	:Capsule : Temp. °C : : :	Surrounding medium	
FRJ -1	Capsule rotating facility (BE 26)	l	17x15x 4 (10 off)	3 • 10 ¹³	2.10 ¹²	10 ⁸	50	но	
FRJ -1 FRJ -1	Cage faci- lity (BE 15) mal Low Temper- Col-	- 1	65 x 55 x 15	2 . 1 0 ⁹	10 ⁷	2.10 ²	40	Air	
	diation (BE 14)	1	200 x 60 x 60	1. 10 ¹⁰	10 ⁸	6 • 10 ³	down to O	Air/CO ₂	

Publications

Bestrahlungstechnik an Forschungsreaktoren	W. Marth	Thiemig - Verlag München
Z I R - Ergebnisse und Möglichkeiten	M. Pollermann	K F A - Bericht (JüL - 796 - RX)
The facilities for reactor irradiation	M. Pollermann	Sonderdruck K F A Jülich (1964)
Die Bestrahlungseinrichtungen an den Reaktoren	M. Pollermann	Atompraxis 10 (1964)
Rigbestrahlung von Stahlproben	D. Pachur	Kerntechnik 6 (1964)
Hydraulische Rohrpost	H. Stechemesser and K. Sachse	Kerntechnik 12 (1970)

MAIN CHARACTERISTICS OF THE DIDO REACTOR AT Julich

Name of reactor	FRJ-2
Organization	KFA-Jülich GmbH
Site	Jülich
In operation since	1962
Power MW(th)	23
Moderator	D ₂ 0
Coolant	D ₂ 0
Fluid and pressure (kg/cm ²) in experimental channels	Connected to ventilation system air with -0,01 kg/cm ²
Nominal operation days/year	240
Operating cycle (days)	
on power	23
shut down	5

	Responsible officer:	Address :
FRJ 2 :	Dr. Friedewold	Kernforschungsanlage GmbH
Hot cells :	Dr. H. Müller	D - 517 Jülich
		Postfach 1913

IRRADIATION POSITIONS OF THE DIDO REACTOR

Name	:Number:	Active Length: m/m	Diameter m/m	Typical : neutron thermal	unperturbed fluxes :fast (>100 KeV)	V-heating : : ₩/gr Al	Rema rks
Fuel element	25	610	51	2.1014	1.10 ¹⁴	2,5	vertical
2V, 4V, 6V	7/4/4	610	51/102/ 153	2-0,5.10	1.10 ¹³	0,3	v ertical in D ₂ O
4VGR, 6VGR, 10VGR	2/6/2	610	102/153 254	1.10 ¹³	1.10 ¹⁰	0,005	vertical in gra- phite
4н, 6н, 10н	6/1/1	1500	108/152/ 253	1.1014	1.10 ¹¹	0,7 - 1,5	horizontal in D ₂ 0
6 hgr	10	1100	152	2.10 ¹³	2.1010	0,025	horizontal in graphite
4 HTC	9	1100	101	7.10 ¹⁰	10 ⁹	1,15	horizontal ther- mal column
2 TAN	l	2000	21,5/85	2.10 ¹⁴	1.10 ¹³	1,15	below the core in D ₂ O

1) Irradiation positions (in core, reflector, others)

2) Reactivity available for experiments : $8\% \Delta k/k$ (about 10 irradiation facilities in fuel elements and V-channels)

3) Typical neutron spectra available should be added on sheet N° 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) :

Cold source (liquid hydrogen)

- 5) References of relevant publications : Safety report on research reactor FRJ-2 (DIDO), February 1962 Safety report on the operation of FRJ-2 at 15 MW, May 1967 Safety report on the operation of FRJ-2 up to a maximum of 25 MW, October 1970
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6)

7) Are facilities available for irradiations on behalf of other organizations of the European Community? :

TYPICAL NEUTRON SPECTRA FOR THE REACTOR AT

UTILIZATION AND SPECIALIZATION OF THE DIDO REACTOR

1) What were the original purposes of the reactor?

Materials testing at 10 MW thermal power

2) What major modifications have subsequently been made and for which particular reaearch programme?

Power increase to 15 MW (1967)) Power increase to 23 MW (1972)) Cold water cooling circuit for experiments) Better working conditions) generally for all experiments

3) For which major projects and programmes is the reactor currently being used?

Beam experiments for solid state physics Beam experiments for neutron physics Irradiation experiments for HTR- and BWR-fuels Irradiation of steel samples

4) What loops and irradiation devices have specially been developed for this reactor?

a) give name and purposes of the devices :
 Liquid hydrogen loops for low energy neutrons
 Boiling water loop facility for testing canned fuel rods under irradiation conditions (4 loops at the same time)

INFORMATION SHEET Nº 4 (cont'ed)

Irradiation rigs for coated particles in connection with sampling facility to measure release of fission products

- 4 flight spectrometers, one of them with backscattering devices
- b) main characteristics of specialized irradiations devices are to be listed on separate sheet N° 5
- 5) Major modifications planned :

New experimental facilities for solid state physics

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE

(DIDO) REACTOR

Туре	:Number: Useful	dimension :	Nuclear	Character	<u>istics</u> :	: Environmental	
	(m	nm) The neu f] (n/	ermal : itron Lux ₂ (cm ² s)	Fast neutron flux ₂ (n/em ² s)	Gamma flux r/h	Character Capsule Temp. ° C	<u>istics</u> Surround- ing medium
FRJ-2 Rig (BE 9) 6 10 x 10)x55(24 off) 1,5	5.10 ¹⁴ /	+ . 10 ¹³	1,4.10 ⁹	250 700	He/N
FRJ-2 Rig (BE 2)) 2 Dia.45	5x20(2 off) 1,5	5 . 10 ¹⁴ 1	+ . 10 ¹³	1,4.10 ⁹	70	D ₂ 0
FRJ-2 Hydraulic Rabbit (BE 20) l Dia.23	3x80 1, ¹	+.10 ¹⁴]	1 10 ¹³	1.108	4	^H 2 ⁰
FRJ-2 Standard Rabbit (BE 12) l Dia.23	3x80(2 off) 3,5	5.10 ¹³ 1	1,5.10 ¹⁰	5 • 10 ⁷	100	co ₂
FRJ-2 Fast Rabbit (BE 11) l Dia. 4	+x25 6	. 10 ¹³ 5	5.10 ¹⁰	1.108	200	co ₂
FRJ-2 Isotope Unit	l Dia.23	3x70(70 off) 10 ¹	¹⁰ -10 ¹³]	10 ⁷ -3.10 ⁹	10 ⁵ -10 ⁷	50-300	co ₂
FRJ-2 Fuel Irradiation Loops Core Automatic Analysing System for Fission Cares	in r	1, ⁴	+•10 ¹⁴ /	4 . 10 ¹³	1,4.10 ⁹		

Publications

Irradiation techniques in research reactors, W. Marth, Thiemig Verlag, Munich ZIR - results and possibilities, M. Pollermann, KFA report (Jül - 796 - Rx) The facilities for reactor irradiation, M. Pollermann, reprint KFA Jülich (1964) The irradiation facilities in reactors, M. Pollermann, Atompraxis 10 (1964) Rig irradiation of steel test samples, D. Pachur, Kerntechnik 6 (1964) Hydraulic rabbit, H. Stechemesser and K. Sachse, Kerntechnik 12 (1970).

.

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT KFA CENTRE

Location Organi- sation Name of lab	Year of: active opera- tion	: se Number of work- ing pos- itions	ope Active : area (m ²)	Gamma shielding (material, thick- ness (m) and density g/cm ³)	Leak tight- ness	Special atmos- phere	Manipulators number and type	Remarks and references			
Jülich KFA											
HZ 1	1969	11	70m ² Cell 95 m ²	<pre>110 cm, 85 cm barytic concrete 3.5 gcm⁻³</pre>	alpha- gamma- tight	N2	8 Drath & Schrader ELMA 50- 1000-2 24 HWM 100 1 HWM 200	H.O.Witte, H.Müller; Proc.17.Conf. Remote Syst. Technol.1969 S. 87-98 H.Müller K.Stradal H.Witte atomwirtschaft XIII, 8-9 (1968) S.444-448			
HZ 2	1970	15	52 m ²	85 cm barytic concrete 3,5 gcm ⁻³	alpha- gamma- tight	N2	2 Drath & Schrader ELMA 50- 1000-2 30 HWM 100	as above			

INFORMATION SHEET Nº 6 (cont'ed)

Location Organi- zation Name of lab	:Year of active opera- tion	Scor Number of work- ing pos- itions	pe : Active area (m ²)	Gamma shielding (material, thick- ness (m) and density g/cm ³)	Leak tight- ness	Special atmos- phere	Manipulators number and type	Remarks and references
HZ 3	-		-	-		-	-	-
BZ I	1965	10	llm ²	Lead 25 cm	Beta-	-	2 CRL 7	
		15 cm 10 cm	gamma- tight		l7 (rod grabs			
BZ II	1966	7	7 15,5m ² Cast I	Cast Iron_46 cm alpha- 7.0 g cm ⁻³ gamma-	alpha- gamma-		12 HWM 100	
					tight; boxes		1 CRL	
BZ III	BZ III 1967 5 17 m ²	17 m ²	Concrete 140 cm 2.3 and 2.8 g	alpha- gamma-		9 HWM 100	G.Pott, F.Stockschläder:	
				cm ⁻³	tight; boxes		1 HWM 200	Proc. 14. Conf. on Remote Syst. Techn. 1966 S. 11-20
Preparation of metallographic sections, periscope

Leaching of surfaces to determine contamination

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE HOT CELLS FACILITY

 Owner or operator of the facility: K F A Jülich
 With which reactor is the facility associated? : FRJ-1, FRJ-2, AVR (communication only by means of motor vehicles)
 Give details of equipment and techniques available: <u>B Z I</u> Inward and outward transfer, dismantling, sample removal, repacking, thread cutting. Determination of the crystalline proportion in notched-bar impact test samples, photography. Grinding notched-bar impact tests, hardness testing. Notched-bar impact tests, hardness test. Length marking, length measurement, weighing.

photography.

level, Leaching of particles in a leach apparatus, Tensile test, small-load hardness test.

4) References of relevant publications:

(Continued)

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE

HOT CELLS FACILITY

1)Owner or operator of the facility : K F A Jülich

2) With which reactor is the facility associated? : FRJ 1, FRJ 2, AVR (Communication only by motor vehicles)

3) Give details of equipment and techniques available: B Z II

Dismantling of reactor modules, longitudinal and transversal sectioning, removal of test samples, repacking, periscope photography, length measurement.

Gamma scanning up to a length of 0.6 m, gamma spectrometry,

Diameter and generatrix measurements (0.6 m long, 50 mm in diameter), optical inspection and periscope photography (magnification x 30), puncturing and removal of fission gas, void determination.

Dismantling of fuel rods, removal of test samples, repacking, capsule dismantling, test-sample impregnation, measurements of spherical-element burn-up (Cs determination)

INFORMATION	SHEET	<u>No 7</u>	
(cont'e	ed)(2)		

4) References of relevant publications :

Studies of irradiated high-temperature reactor fuels, Atomwirtschaft XIII, Nº 8-9 (Aug-Sept 1968) PP 449 - 452, E. Groos, G. Pott, F. Stockschläder, B. Thiele.

-

(Continued) (3)

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE

HOT CELLS FACILITY

1) Owner or operator of the facility : K F A Jülich 2) With which reactor is the facility associated? : FRJ-1, FRJ-2, AVR (Communication only by means of motor vehicles) 3) Give details of equipment and techniques available : B Z III Test sample removal, repacking, periscope photography, leach testing, electrolytic disintegration. Baking-out testing of spherical elements and coated particles. Gamma spectrometry and gamma scanning up to a length of 0.5 m. Test sample removal, optical inspection and periscope photography, dimension measurements, weighing, oxidation test, drop test, crush test, particle crushing experiment. 4) References of relevant publications : 1. Studies of irradiated high-temperature reactor fuels, Atomwirtschaft XIII, Nº 8-9 (Aug.-Sept. 1968) pp. 449-452, E; Groos, G. Pott, E. Stockschläder. B. Thiele.

,	INFORMATION SHEET	<u>Nº 7</u>
	(cont'ed) (4)

- 2. Apparatus for measuring the release of fission gases and other fission products resulting from baking out, KFA report Jül-707-RW, 1970, K.A. Stradal
- 3. Removal and handling of small test samples from HTR fuel elements, Paper presented at the 12th meeting of the Euratom Committee for Hot Laboratories, Cadarache, 25-26 May 1970.
- 4. Sampling from fuelled spheres and irradiated graphite pieces; Post-Irradiation Examination Techniques, Conference Reading/England, March 22-23, 1972. London: The Inst. of Civil Engineers, Vol.C.,p.35-38 M.Herren

(Continued) (5)

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE

HOT CELLS FACILITY

1) Owner or operator of the facility :

K F A Jülich

2) With which reactor is the facility associated? : FRJ-1, FRJ-2, AVR (Communication only by means of motor vehicles)

3) Give details of equipment and techniques available: <u>H Z 1 (+HZ 3</u>, outside the cells)

Inward transfer of reactor modules, (horizontal and vertical up to 400 mm diameter, dismantling, leak testing.

Turning, milling, abrasive cutting, capsule opening, repacking, gamma spectrometry and gamma scanning of spherical elements.

Baking-out testing of coated particles, drop testing of spherical elements, crush testing of spherical elements and compacts (force, displacement diagram), weighing.

Dimension measurements (length, diameter, bowing up to a length of 4 m and a diameter of 200 mm).

Test sample storage

Metallographs and micrographs of ceramics,

removal of microspecimens, microscopy.

Up to circa 1980, 60 000 AVR spherical fuel elements will be stored in the cool-ing pond of the HZ 1.

<u>HZ 3</u> :

Electron scan microscopy of small, and also radioactive, bodies, such as coated particles, powders, etc. (outside the cells).

- 1. Work programme and equipment of hot cells l and 2 in Jülich, Atomwirtschaft XIII, N° 8-9 (Aug.-Sept. 1968) pp. 444-448, H. Müller. K. Stradal. H. Witte.
- 2. Disassembling machine for in-core thermionic diodes Post-Irradiation Examination Techniques, Conference Reading/England, March 22-23, 1972. London: The Inst. of Civil Engineers Vol.C, p.43-44 K.-A. Stradal

4) References of relevant publications :

(Continued) (7)

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST IRRADIATION EXAMINATIONS AT THE

HOT CELLS FACILITY

- 1) Owner or operator of the facility : K F A Jülich
- 2) With which reactor is the facility associated? : FRJ-1, FRJ-2, AVR (Communication only by means of motor vehicles)

3) Give details of equipment and techniques available: H Z 2

The laboratory is currently being cleared out and decontaminated.
A reprocessing plant on a semi-works scale (graphite combustion, dissolution of the fuel) for spherical THTR fuel elements will then be installed. The laboratory will be thus occupied until about 1980.
4) References of relevant publications :
Planning a semi-works scale experimental plant for the reprocessing of HTGR fuel elements, paper presented at the meeting on reactors of the German Atom Forum, Bonn 30 March - 2 April 1971, G. Kaiser, P. Sckuhr, H. Witte.

UTILIZATION AND SPECIALIZATION OF THE KFA JULICH (HOT CELL FACILITY)

- 1) What were the original purposes of the facility? :
 - BZ I Steel studies
 - BZ II Test fuel-rod studies
 - BZ III Studies of THTR fuel elements (spheres)
 - HZ 1 General materials testing of large components
 - HZ 2 Physical and chemical studies of all kinds
 - HZ 3 Area prepared for setting up of lead cells
- 2) What major modifications have subsequently been made and for which particular research programme?
 - BZ I
 - BZ II
 - BZ III
 - HZ ٦
 - HZ 1 Conversion to PADIRAC airlock system
 - HZ 2 Conversion of the area to the maintenance of alpha-tight boxes Changeover of the airlock system

These conversions were carried out, without any particular programme in mind, simply to keep pace with the latest developments in technology.

3) For which major projects and programmes is the facility presently being used?

see item 1)

- 4) Major modifications planned :
 - HZ 3 Two lead cells are to be installed here for steel studies (electron beam welding and tensile testing machine K_{TC})
 - HZ 1 A facility for gamma scanning objects 4 m in length will be installed here
- 5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community?

All the hot laboratories mentioned above are in a position to accept projects that fall within the scope and capacity of their equipment, provided their work schedule permits it = (HZ 2 is occupied until 1980).

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS

AT KFA CENTRE

Location Organi- zation Name of lab	Year of active opera- tion	of Scope Gamma shielding L e Number of Active (material, thick-t - working posi- area ness (m) and tions (m ²) density g/cm ³)		Leak tightness	Special atmos- phere	Manipu- lators number and type	Remarks	
Kernfor-] schungs_ anlage Jülich "Chemie- zellen"	1973 .ch	15 Hot cell boxes 2 Transfer stations	51 4	Barytic concrete 0,85; 3,5g/cm ³ Lead, 0,25m and 0,20m	crete α -tight cm ³		40 Master- slave ma- nipulators of the Wä- lischmiller	
		l Technolo- gical box with vari- able shield- ing	35	Lead, variable			A-100 ty	pe

-

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATION AT THE

CHEMIEZELLEN FACILITY

- I) Owner or operator of the facility : Operator of the "Chemiezellen" is the Institute for Chemical Technology
- 2) With which reactor is the facility associated? : FRJ-1 (MERLIN), AVR Jülich
- 3) Give details of equipment and techniques available : The gastight boxes in non-gastight cells of barytic concrete and lead are interchangeable. Each experiment is assembled inside a box and cold-tested in the mock-up room, and the fully-equiped box is then moved into the charging zone of the concrete cells. The fully-equipped connection module for the electrical supply and control of the experiment is inserted into the appropriate console situated in the service area so that no further electrical connections need be made at the site of the experiment. In the charging zone the box is taken over by the manipulator, the shielding door of the charging zone is closed, and the box is placed by remote control on two forks which are attached to the plug-door. When the plug-door is closed, the box is moved to a position above the specially designed stand, and on being lowered into this stand is automatically coupled to all the supply connections. When a box is being removed, the plug-door performs the reverse function of uncoupling the box from the supply connections and returning it to the charging zone. All the boxes in both cell banks are gastightly connected to an underlying conveyor tunnel in which a dolly runs and from which they are sealed off by a cover inside the boxes. All transport of materials and radioactive substances from the transfer station to the individual boxes is effected via this tunnel. Besides commonly used transport systems, the PADIRAC and the CENDRILLON systems will be used for the transport of radioactive solids and radioactive liquids, respectively.
- 4) References of relevant publications :
 - 1. J. M. Davis, B. Javary, A. Tarbe de St. Hardouin and L. Schlösser: Proc. 13th Conf. Rem. Syst. Techn. (1965) p. 69

- 2. H. Müller, F. Stockschlaeder, H. Witte: Radiation Safety in Hot Facilities; pp. 193-200 IAEA, Vienna 1970
- 3. H. Müller, F. Stockschlaeder, H. Witte: Radiation Safety in Hot Facilities; pp. 461-472 IAEA, Vienna 1970

.

4. H.J. Riedel, W. Utecht: Report JUL-777-CT, July 1971

UTILIZATION AND SPECIALIZATION OF THE CHEMIEZELLEN (HOT CELL FACILITY)

- L) What were the original purposes of the facility? : The facility was planned for chemical work on hot radioactive materials.
- 2) What major modifications have subsequently been rade and for which particular research programme? None.
- 3) For which major projects and programmes is the facility presently being used? The facility will be used in the reprocessing programme which is the main project of the Institute for Chemical Technology. The work includes experiments for waste treatment, refabrication of fuel particles, testing of experimental components under hot conditions and all the hot analytical work in connection with JUPITER (JUelicher PIlot-Anlage für Thorium-Element Reprocessing).
- 4) Major modifications planned : None.
- 5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community?

Not yet; there is no free capacity at the present.

Mesnerhude

MAIN CHARACTERISTICS OF THE FRG 2 REACTOR AT

GEESTHACHT

Name of reactor	FRG-2	
Organization	Ges. für Kernene in Schiffbau und m.b.H.	rgie-Verwertung Schiffa hrt
Site	GEESTHACHT (near	Hamburg)
In operation since	1958	
Power MW(th)	21. MW	
Moderator	H ₂ O	
Coolant	H ₂ O	
Fluid and pressure (kg/cm ²) in experimental channels		
Nominal operation days/year		
Operating cycle (days)		
on power	28 days	
shut down	7 days	
	Responsible officer :	Address:
FRG 2 :	Dr. Röbert	Kernenergie
Hot cells :	Dr. Spalthoff	Zentralabt. Forschungsreak- toren D-2054 Geesthacht

IRRADIATION POSITIONS OF THE FRG 2 REACTOR

1) Irradiation positions (in core, reflector, others)

Name	Number	active Length m/m	Diameter m/m	Typical neutron thermal	unperturbed fluxes x 10 ¹⁴ fast (>100 KeV)	γ-heating W∕gr Al	Remarks
In - core positions	Ĵ	600	75	4	2.3		
Peripheral positions	20	600	75	1.3	0.8		

- ?) Peactivity available for experiments :
- 3) Typical neutron spectra available should be added on sheet Nº 3
- 4) Specialized equipment available for experimenters (e.g; neutrography, etc.) : neutronography
- 5) References of relevant publications : The research reactors and irradiation facilities at the Research Centre Geesthacht of the G.K.S.S., by J. Ahlf and G.A. Röbert (72,I,12) EAES Sympos. at Petten, 16 17 May 1972
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6)

INFORMATION SHEET Nº 2 (cont'ed)

7) Are facilities available for irradiations on behalf of other organizations of the European Community? :

UTILIZATION AND SPECIALIZATION OF THE FRG 2 REACTOR

1) What were the original purposes of the reactor?

Nuclear research

2) What major modifications have subsequently been made and for which particular research programme?

Materials research

- 3) For which major projects and programmes is the reactor presently being used?
 - Fortschrittlicher Druckwasser Reaktor (FDR) for ship propulsion
 - HGTR fuel irradiation in collaboration with K.F.A.
- 4) What loops and irradiation devices have specially been developed for this reactor?
 - a) give name and purposes of the devices:

Magazinkapsel for structural materials Creep capsule Water corrosion capsule HTL capsule for HTGR fuel samples

- b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5
- 5) Major modifications planned :

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE FRG 2 REACTOR (give also references of relevant publications)

- 1) <u>Magazine Rig A5</u>: for non fissile materials, 200 1000°C electric heating 3 KW, up to 15 bar He, Ne, N₂ mixtures, 100 W/cm²
- 2) Magazine Rig Cl : for Charpy specimens, 200 400°C
- 3) <u>Magazine Rig Fl</u>: inert gas mixture 5 bars for temperature control specimen diam. 20 mm, length 240 to 480 mm, 500 W/cm
- 4) Creep Rig Kl : 5 tubular specimens 350 450°C, in He-Ne gas mixture, maximum force 4000 N
- 5) Water corrosion Rig W3 : for Zircaloy cans at full PWR conditions, at 350°C and 150 bars
- 6) Test fuel elements for burn up studies : solid burnable poison containing FDR fuel rods assembled in a basket 350 W/cm
- 7) Device for HTGR fuel irradiation HT 1 : 600 1400°C, on line fission gas analysis.

INFORMATION SHEET No. 6 Dec. 1974

and the second sec

1

Location Organization Name of lab.	Year of active op- eration	Scope Number of working positions	Active area (m ²)	Gamma shielding (material,thick- ness (m) and density g/cm ³)	Leak tichtness	Special atmosphere	Manipulators Number and type	Remarks and references
GK <u>SG</u> Old hot cell region	1963	1	20	concrete 1,2m; 3,3g/cm ³	none	none	2 Mod. 8 (Central Research)	1 crane 2 to
new hot cell region (concrete cells	1969	2 2	18 18	concrete 1,1m; 3,6g/m ³ concrete 1,1m;3,0g/cm ³	$\frac{\Delta V}{V} = 1\%/h$ ($\Delta r = 50$ rm WS	none none	8 A 100 (Wälischmiller)	l heavy duty manipulator 1to (Draht & Schrade)
technological cells	1969	3	7	lead 10 cm	none	none	2 mod. 7 (Hobson) several tongs	impact, hardness and tensile test
metallography cells	1972	4	10	lead 17,5 cm	$\frac{\Delta V}{V}$ 1%h	none	7 A 200 (Wälischmiller)	ont. microscope
chemical cells	1973	3	5	lea d 17,5 cm	$\frac{\Delta V}{V} = 1\%h$	none	4 A 200	

.

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE GKSS Hot Cells (FACILITY)

- 1) Owner or operator of the facility : Gesellschaft für Kernenergieverwertung in Schiffbau und Schiffahrt mbH. (GKSS), 2054 Geesthacht-Tesperhude
- 2) With which reactor is the facility associated? : swimming-pool reactors FRG-1 (5 MW th) and FRG-2 (21 MW th)

3) Give details of equipment and techniques available :

- a) Examination of LWR fuel rods (gamma scan; burn-up determination; dimensional measurements; neutron radiography; cladding inspection by periscope, eddy current techniques and helium leak test; fission gas analysis).
- b) Examination of oxide fuel and canning material (metallography; chemical analysis; electron microprobe; stereoscan; mechanical tests).
- c) Examination of pressure vessel steels (notch impact test; drop weight test; tensile test;

F_{Ic}-measurement).

d) Handling of irradiation rigs.

4) References of relevant publications : Das Heisse Labor der Reaktorstation Geesthacht:
F. Borchers, W. Spalthoff and D. Wittstock
GKSS 71/E/5. (vorgelegt auf der 13. Sitzung des EURATOM-Kommitees für Heisse Laboratorien am 24./25. Juni 1971 in Jülich)

UTILIZATION AND SPECIALIZATION OF THE GKSS-HOT-CELLS (HOT CELL FACILITY)

1) What were the original purposes of the facility ?

Materials research for ship reactors (LWR-type).

2) What major modifications have subsequently been made and for which particular research programme ?

--//--

3) For which major projects and programmes is the facility presently being used ?

4) Major modifications planned :

--//---

5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community ?

Examination of fuel elements and pressure vessel steel specimens from landbased reactors.

MAIN CHARACTERISTICS OF THE OSIRIS REACTOR AT SACLAY

Name of reactor	OSIRIS	
Organization	C.E.A.	
Site	SACLAY (C.E.N./S)	
In operation since	1966 (September)	
Power MW (th)	70 MW	
Moderator	H ₂ 0	
Coolant	H ₂ O	
Fluid and pressure (kg/cm ²) in experimental channels	H ₂ 0	
Nominal operation days/year	230	
Operating cycle (days)		
on power	21	
shut down	7	
	Responsable officer:	Address :
Coordinat ^{eu} r des		
piles experimentales:	A. Deville	CEN - Cadarache
(Coordinator of expe- rimental piles)		B.P. no 1 F - 13 St. Paul- lez-Durance
OSIRIS :	J.J.Graf	CEN- Saclay B.P. no 2 F-91190 Gif-sur- Yvette

.

IRRADIATION POSITIONS IN THE OSIRIS REACTOR

I) Irradiation positions (in core, reflector, others)

Name	Number:	Active Length m/m	:Diameter m/m	Typical neutron thermal	unperturbed fluxes fast (>10) KeV)	: V-heating: W/gr Al	Remarks
in-core lo- cation								
34 42 46 54 62 66	4 4 4 4 4	600 600 600 600 600 600	37 37 37 37 37 37 37		4,18.10 ¹⁴ 4,85 3,74 5,72 5,72 4,85		14 14 14 14 14 14	four positions can be grouped to obtain an 84,4 mm square section
core grid location								
21 00 04 05 in	4	600	37	1,7 10 ¹⁴	⁴ 1,1 10 ¹⁴			
Be	3	600	32	2,6 to 3,1 10 ¹⁴	1,75 10 ¹⁴			
ll to 17	7	600	84,4	1,4 to 2,8 10 ¹⁴	1			
Ext grid lo- cation	- 25	600	82,4	l to 3,	710 ¹⁴		3	

2) Reactivity available for experiments :

3) Typical neutron spectra available should be added on sheet Nº 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) :

-neutrography ; gammascanning
-fission product analysis in line
-hydraulic rabbits for activation analysis and isotope production
-neutron model Isis (800 kW)

- 5) References of relevant publications :
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on <u>sheet N° 6</u>) : two hot cells for dismantling and L.E.C.I. for post irradiation examination

7) Are facilities available for irradiation on behalf of other organization in the European Community ? : Yes

UTILIZATION AND SPECIALIZATION OF THE OSIRIS REACTOR

1) What were the original purposes of the reactor ?

Materials testing and isotope production

2) What major modifications have subsequently been made and for which particular research programme ?

In december 1968 the original design power of 50 MW was uprated to 70 MW.

- 2) For which major projects and programmes is the reactor currently being used ?
 - fast reactor development
 - light water reactor development
 - high temperature reactor development
 - safety studies
 - radio isotope production

4) What loops and irradiation devices have specially been developed for this reactor ?

a) give names and purposes of the devices :

see sheet No 5

b) main characteristics of specialized irradiation devices are to be listed on separate sheet No 5

5) Major modifications planned :

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE OFIRIS REACTOR (give also references of relevant publications)

High temperature irradiation

- Colibri	:	in gas up to 1 500 °C, fissile materials and structured materials with separa- te compartments and independently controlled atmosphere fission product analysis.
- Cythère	:	for Wigner effect measurements up to 1 150 °C - 0,01 mm accuracy
- Othello	:	Helium loop 900 °C - 60 bars - 33 g/s - 45 kW for HTR fuel rods
- Spitfire	:	Helium loop 800 °C - 60 bars - 160 g/s - 75 kW for HTR fuel rods
- Aida 4	:	Helium loop 1 000 °C - 60 bars - 300 g/s for HTR fuel rods (\emptyset 120 mm)
Fast reactors		
-Banjo	:	Sodium loop - 650 °C - 280 g/s - 2 000 W/cm - 70 kW for fast reactor
-Médina	:	Rig for measurement of fuel can variations ($\sim 5\mu$ m) in liquid metal
Light water read	cto	rs

-Marina : boiling water rig - 325 °C - 165 bars for power cycling and safety studies

INFORMATION SHEET Nº 5 (cont'ed)

- Elsa : NaK filled rig 325 °C for fuel pin power cycling 750 500 W/cm by He 3
- Irène : water loop 300 °C 155 bars 6 m/s 140 kW 700 W/cm for power cycling of 4 or 8 UO₂ rods reloadable with fission products analysis in line
- Colibri : in H_2^0 170 bars for dynamic corrosion studies.

INFORMATION SHEET No 6

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT SACLAY CENTRE

Location Organization Name of lab	Year of active operation	Sc Number of working positions	ope Active area cm ²)	Gamma shielding (material, thick- ness (m) and density g/cm ³)	Leak tightness	Special tmosphere	Manipu- lators number and type	Remarks and referen- ces
Cellules Osiris	1966	2	15	l,20 m heavy concrete (d= 3,5)		2 Ci r hi d	In each cell light RL emote andling evices	
						l E r h d	heavy RTN emote andling evice	
						р Т	micro- ridge	

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATION AT THE OSIRIS HOT CELLS (FACILITY)

Owner or operator of the facility : Service des Piles de Saclay

With which reactor is the facility associated? : OSIRIS reactor, Saclay

Give details of equipment and techniques available :

These two cells are for the post-irradiation handling of samples used mainly in experiments in the OSIRIS reactor i.e., the recovery of the testpieces and integrators for shipment to the specialist examination laboratories (and above all LECI) and the disposal of active waste.

There are in each cell : - 2 light-duty handling devices - 1 heavy-duty handling device and adequate shearing machines

One of the cells enables the Na or NaK produced by the irradiation equipment to be neutralized.

References of relevant publications : OSIRIS reactor - Descriptive report dated May 1969.

UTILIZATION AND SPECIALIZATION OF THE SACLAY CENTRE (HOT CELL FACILITY)

1) What were the original purposes of the facility ? :

At the Saclay Centre there is a hot-laboratory complex (LECI) which is very important for the post-irradiation stripping and examination of fuels and testpieces.

Full information is available from Mr Roussel, Head of Laboratory

- 2) What major modifications have subsequently been made and for which particular research programme ?
- 3) For which major projects and programmes is the facility presently being used ?

4) Major modifications planned :

5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community ?

MAIN CHARACTERISTICS OF THE EL3 REACTOR AT SACLAY

Name of reactor	EL3	
Organizetion	C.E.A.	
Site	SACLAY	
In operation since	1957	
Power MW(th)	18	
Moderator	D ₂ 0	
Coolant	D ₂ 0	
Fluid and pressure (Kg/cm ²) in experimental channels	D ₂ 0 2 bars	
Nomimal operation days/year	260 - 270	
Operating cycle (days)	105	
On power	90	
shut down	15	
	Responsable officer :	Address :
(Coordinator of experimental reactors)	A. DEVILLE	CEN - Gadarache B.P. no l F-13 ST.Paul-les- Durance
EL3 :	J.J. GRAF	CEN - Saclay B.P. No 2 F-91190 GIF-sur- Yvette

IRRADIATION POSITIONS OF THE EL3 REACTOR

1) Irradiation positions (in core, reflector, others)

Name	Number:	Active Length m/m	: Diameter m/m	Typical :neutron thermal	unperturbed fluxes x 10 ¹⁴ : fast (>180 KeV):	-heating: W/gr Al	Remarks :
Cells	9	1 000	43	1,2-2,75		iı	n the core
Independent cell	l	1 000	43	2 ,2- 2,75		iı	n the core
Cells	25	1 000	43	0,9-1,5		i	n the moderator
Radial Cha- nnels	10	1 200	140	0,5 - 0,9		ş	in the moderator
Radial Channels	2	1 200	240	0,5-0,9			
Tangential channels	4	l 800 along the pile axis	180 x 180)		iı	n the reflector

2) Reactivity available for experiments :
3) Typical neutron spectra available should be added on sheet Nº 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) :

X-ray examinations. for vertical devices Stripping cell

- 5) References of relevant publications :
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on <u>sheet N° 6</u>) : CELIMENE hot cell belongs to Services des Piles, Saclay
- 7) Are facilities available for irradiations on behalf of other orranizations of the European Community? : Yes

INFORMATION SHEET Nº 4

UTILIZATION AND SPECIALIZATION OF THE EL3 REACTOR

1) What were the original purposes of the reactor?

.

- Pure research

- Technological research
- Radioactive elements
- Irradiation for analysis

for biological studies

2) What major modifications have subsequently been made and for which particular research programme?

In 1971 - Replacement of UO, fuel by a sandwich fuel

?) For which major projects and programmes is the reactor currently being used?

Physical research : Spectrometry Neutron guides cooled by hydrogen loops

4) What loops and irradiation devices have specially been developed for this reactor?

.

a) give name and purposes of the devices :

INFORMATION SHEET Nº 4 (cont'ed)

- b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5
- 5) Major modifications planned :

INFORMATION SHEET No. 5

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THEEL3..... REACTOR (give also references of relevant publications)

EXPERIMENTS ON THERMAL NEUTRONS IN THE FIELD OF NUCLEAR FUEL IRRADIATION

Many types of instrumented irradiation devices were investigated, several units of each of them having been used. They are: LAG, SOPHIE, DANIELLE, CECILE, AGNES, OLGA.

DEVICES		Extracted Cladding power maximum W/cm temperature ^O C		Burnup MWd/T	Cooling mode of fuel specimen	Temperature control	Special features
	DANIELLE	650	650	> 30 000	din <i>r</i>		Simplicity, low development cost
1 O R	CECILE	650	650	> 20 000	tatic bon	eet ixed l ance	Electric heating up of sodium
REAC	AGNES	650	650	> 20 000	Sodium s	Gas sh with f therme resist	Measurement of reactor core temperature
EL3	OLGA	650	630 [.]	> 100 000			

INFORMATION SHEET No 5

(Continued)

EXPERIMENTS

REMARKS

HORIZONTAL CHANNELS

- H l Hydrogen loop linked with two spectrometers.
- H 2 Polarized-neutron spectrometer
- H 4 Spectrometer, study of inelastic Triple-axis scattering of slow neutrons by solid spectrometer bodies.
- H 5 Hydrogen loop linked with two extreme-length neutron guides.
- H 7 V capture spectometer
- H 9 Two spectrometers :
 - l polarized-neutron (horizontal plane)
 - l conventional, intended for study of crystalline structures (vertical plane).
- H 10 Crystal spectrometer for study of neutron diffraction by solid and liquid bodies (horizontal plane),
- H 11 Crystal spectrometer for study of textures of samples of uranium for fuel-element fabrication purposes, and other types.
- H 12 Double crystal spectrometer for study of neutron diffraction by solid bodies.
- T 3 Alice loop Study of BSD components.

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT SACLAY CENTRE

•

Location Organi- zation Name of lab	:Year of: active opera- tion :	Sco Number of: working : positions:	ope Active area (m ²)	:Gamma shielding e:(material, thick- ness (m) and :density g/cm ³)	:Leak tight- ness :	:Special: atmos- :phere	Manipulators: number and type :	Remarks and references
Celimène	1 965	two	18 m ²	baryt ^{;c} concrete density 3.4 thickness 1 m	β,γ	no	4 light- duty manipu- lators CRL type E 2 heavy- duty OTER	

INFORMATION SHEET No 7

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE .CELIMENE. (FACILITY)

1) Owner or operator of the facility : Centre d'Etudes Nucléaires de Saclay - Services des Piles de Saclay

2) With which reactor is the facility associated ? : EL3 reactor

3) Give details of equipment and techniques available :

4) References of relevant publications :

INFORMATION SHEET Nº 8

UTILIZATION AND SPECIALIZATION OF THE CELIMENE (HOT CELL FACILITY)

1) What were the original purposes of the facility? :

Stripping of experimental devices irradiated in the research reactors - removal or recharging of irradiated samples, metrology, visual inspection.

2) What major modifications have subsequently been made and for which particular research programme?

Addition of sodium-potassium or sodium eutectic neutralizers (breeder research)

- 3) For which major projects and programmes is the facility presently being used? Long-term shutdown
- 4) Major modifications planned :

Under way, modification for stopping of actual PWR or BWR fuel elements and examination of needles in Laboratoire d'Etudes des Combustibles Irradiés (Irradiated Fuel Study Lab.)

5) Are facilities available for post irradiation examinations on behalf of other organizations

INFORMATION SHEET Nº 8 (cont'ed)

within the European Community? :

The cell is available in every way to whoever applies through the Laboratoire d'Etudes des Combustibles Irradiés.

MAIN CHARACTERISTICS OF THE MELUSINE REACTOR AT GRENOBLE

Name of reactor	MELUSINE	
Organization	C.E.A.	
Site	CEN - Grenoble	
In operation	1958	
since		
Power MW (th)	8	
Moderator	H ₂ 0	
Coolant	H ₂ 0	
Fluid and pressure (kg/cm ²) in experimental channels		
Nominal operation days / year	230 days in a next fu	ature
Operating cycle (days)		
on power	5)	25)
shut down	2 β now and then	3) future
	Responsable officer :	Address :
Coordinator of experimental piles	A. DEVILLE	CEN - Cadarache B.P. no l F-13 St.Paul-lez- Durance
MELUSINE	MILLIES	CEN - Grenoble Cédex no 85 F-38041 Grenoble

IRRADIATION POSITIONS OF THE MELUSINE REACTOR

1) Irradiation positions (in core, reflector, others)

Name	:Number	Activ Lengt m/m	e h Diameter : m/m	Typical :neutron thermal	unperturbed fluxes n/cm ² .s fast (>100 KeV	: V-heating F V): W/gr Al :	lemarks
- in-core positions	4	600	32	7 x 10 ⁻	¹³ l x 10 ¹⁴	3	
- peripheric positions	3 0	600	77	6 x 10	$13 5 \times 10^{13}$	1,5	
- beam tubes	s 5			3,5x10 ^{8*}	×	×	• At the outer end of a standard collima- ter.
							Thermal flux at the neutron source sur- face of the beam tube is 6 x 10 ¹³ n/cm ² .s

2) Reactivity available for experiments : 2 per cent.

3) Typical neutron spectra available should be added on sheet Nº 3

4) Specialized equipment available for experimenters (e.g. neutrography, etc.) :

INFORMATION SHEET Nº 2 (cont'ed)

Neutrography - Cold loops (liquid Nitrogen, liquid Neon, liquid Helium)
 Hot Cell - 3 pneumatic rabbits (1 in D₂0, 1 in H₂0, 1 fast rabbit)
 Automatic data logging - D₂0 tank with various irradiations positions
 Sampling and analysis of gaseous fission products

5) References of relevant publications : - CEA/B.I.S.T. nº 156 (Feb. 1971) - CEA/B.I.S.T. nº 153 and 154 (Nov. - Dec. 1970)

6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on <u>sheet N^o 6</u>) dismantling cell in the reactor hall LAMA - Service des Piles

7) Are facilities available for irradiations on behalf of other organizations of the European Community? : CNEN, CISE, Instituto Galileo Ferrario (Italia)

TYPICAL NEUTRON SPECTRA FOR THE MELUSINE REACTOR AT GRENOBLE

UTILIZATION AND SPECIALIZATION OF THE MELUSINE REACTOR

1) What were the original purposes of the reactor ?

-Testing of structural materials and fuel samples in instrumented capsules
-Solid state physics at very low temperature and under magnetic field
-Nuclear physics on beam tubes (neutron diffraction, Mössbauer effect application, short period fission products...)
-Radio activation analysis

- 2) What major modifications have subsequently been made and for which particular research programme ?
 - Modifications

```
The power was uprated several times; in 1971 a power of 8 MW was reached. -Programme
```

Applied and fundamental research

- 3) For which major projects and programmes is the reactor presently being used ?
 - Reactor materials devlopment, for high temperature reactors, light water reactors, thermoelectronic conversion, CIRENE Project.
 - Solid state physics for university
 - Radio isotopes production
- 4) What loops and irradiation devices have specially been developed for this reactor ?
 - a) give name and purposes of the devices :
 - CHOUCA rigs for structural or fissile materials, 200 900° C
 - HEBE rigs for structural materials, 350 1 400° C
 - CYRANO rigs for fissile materials in NaK at 900° C
 - High Frequency Furnace (2000° C)
 - Cold loops liquid He Liquid Neon Liquid Nitrogen

INFORMATION SHEET No 4

(Continued)

b) main characteristics of specialized irradiation devices are to be listed on separate sheet no 5

.

5) Major modifications planned :

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE MELUSINE .REACTOR (give also references of relevant publications)

See irradiation devices listed for SILOE-reactor

Reference : CEA/B.I.S.T. nº 153 and 154 : Nov. - Dec. 1970

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT MELUSINE REACTOR

Location Organi- zation Name of lab.	Year of active opera- tion	Scor Number of working positions:	Active area (m ²)	:Gamma shielding (material,thick- :ness (m) and density g/cm ³)	:Leak tight- ness	:Special - atmos- :phere :	Manipulators: number and type	Remarks and references
Melusine Hot Cell	1 960	l	4	Heavy concrete Th = 1 m d = $3,2 \text{ g/cm}^3$		Negati- ve pres- sure	l manipu- - lator PYE	

INFORMATION SHEET Nº 7

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE MELUSINE... (FACILITY)

1) Owner or operator of the facility :

2) With which reactor is the facility associated? :

3) Give details of equipment and techniques available :

4) References of relevant publications :

INFORMATION SHEET No 8

UTILIZATION AND SPECIALIZATION OF THE .MELUSINE...... (HOT CELL FACILITY)

1) What are the original purposes of the facility ? :

2) What major modifications have subsequently been made and for which particular research programme ?

- 3) For which major projects and programmes is the facility presently being used ?
- 4) Major modifications planned :
- 5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community ?

INFORMATION SHEET No 1

MAIN CHARACTERISTICS OF THE SILOE REACTOR AT GRENOBLE

Name of reactor	SILOE	
Organization	C.E.A.	
Site	C.E.N Grenoble	
In operation since	1963	
Power MW (th)	35	
Moderator	H ₂ 0	
Coolant	н ₂ 0	
Fluid and pressure (kg/cm ²) in experimental channels		
Nominal operation days / year	235 days on nominal po	ower
Operating cycle (days)	28 d ays	
on power	21 days	
shut down	7 days	
	Responsable officer :	Address :
Coordinator of experimental piles	A. DEVILLE	CEN - Cadarache B.P. no l F-13 St.Paul- lez-Durance
SILOE	MILLIES	C E N -Grenoble Cédex no 85 F-38041 Grenoble

IRRADIATION POSITIONS OF THE SILOE REACTOR

1) Irradiation positions (in core, reflector, others)

Name	:Number:	Active Length m/m	:Diameter m/m	Typ: neu: the:	ical tron rmal	unpertur fluxes fast	bed (>100	:) KeV):	<i>P-</i> heating: W/gr Al	Remarks
core positions	12	600	36 mm	бх	1014	4,2	x 10 ¹	L4	12	
peripherical positions	40	600	80x76 mm	5 x	1014	2	x 10 ¹	4	7	
beam tubes	2			3 x 8 x	10 ⁸ 10 ⁸	xx				xx at the o uter end of a stan- dard collimator.
pneumatic rabbits	2			4.	1013					

2) Reactivity available for experiments : 2 to 2,5 per cent.

3) Typical neutron spectra available should be added on sheet N° 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) :

- Neutrography, on line computers, in-pile gamma spectrometry, gaseous fission product sampling and analysis during irradiation dismantling hot cells.

5) References of relevant publications :

6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on <u>sheet N^o 6</u>) Dismantling HOT CELL in the reactor hall LAMA - Service des Piles

7) Are facilities available for irradiation on behalf of other organizations of the European Community ? :

CHEN (Italy) GfK Karlsruhe and KFA Jülich (Germany), UKAEA and CEGB (Great Britain)

INFORMATION SHEET Nº 4

UTILIZATION AND SPECIALIZATION OF THE SILOE REACTOR

1) What were the original purposes of the reactor?

Materials testing, basic research with neutron beams

2) What major modifications have subsequently been made and for which particular research programme?

In 1968 the original design power of 15 MW was uprated to 30 MW

In 1972 the nominal power level was uprated to 35 MW.

3) For which major projects and programmes is the reactor currently being used?

- Fast reactor development
- High temperature reactor development
- Light water reactor development (Pressurised and boiling water)
- Gas -cooled reactor development
- Neutron diffraction

4) What loops and irradiation devices have specially been developed for this reactor?

INFORMATION SHEET Nº 4 (cont'ed)

a) give name and purposes of the devices : see sheet 5

The irradiation devices are standardized Adaptation to other testing reactors has been made when necessary

b) main characteristics of specialised irradiation devices are to be listed on separate sheet N° 5

5) Major modifications planned :

INFORMATION SHEET Nº 5

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE SILOE REACTOR

- CHOUCA : rig for structural and fissile material irradiation, 200 900° C, with 5 different types of sample holders for graphite, dispersed fuel, creep, swelling, growth and corrosion studies. Rechargeable capsule.
- HEBE : rig for structural material irradiation, 350 1 400° C, 60 bars.
- CYRANO : rig for fuel pin irradiation (in Na or NaK, 300 800° C, from 1 to 155 bars) with continuous measurement of the fuel sample nuclear power. Sample diameter : 4 - 35 mm. That rig was used for fission product studies (release, pressure, diffusion) and for dimensional measurements (length and diameter).
- HF 3 and High Frequency Furnaces for small fissile material samples up to 2 000° C (High burn up HF 5 irradiation).
- Thermopump sodium loop for experimental irradiation of fuel pins (up to 3), 70 KW, 2 6 m/s flow rate, temperature regulation. Cladding failure studies through fission products release and by gamma scanning during irradiation.
- Thermosiphon-boiler : rig for irradiating fuels of the light water reactor family with possibility of water sampling (water chemistry, fission product recuperation, gamma spectrometry) and studying cladding failure evolution.
- Gas loops : 2 loops, previously used to study graphite corrosion under irradiation, are going to be adapted to high temperature fuel irradiation (fission product migration and plating, continuous in-pile gamma spectometry).

INFORMATION SHEET N° 5 (cont'ed)

- TUMULT : rig with separate internal divisions for irradiation of high temperature fuel, 800 1 500° C. Possibility of thermal cycling. Measurement of the fission product release rate. Gamma spectometry.
- Resonant cavity : methods of accurate in-pile measurement of dimensional changes can be adapted to HEBE, CHOUCA, HF furnace, Thermopump.

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT Grenoble CENTRE

Location: Organi- a zation o Name of t Lab. :	lear of active opera- tion	Scope Number of: working positions:	Active area (m ²)	:Gamma shielding : (material, :thickness (m) and density g/cm ³)	Leak tightness:	Special Atmosphere:	Manipulators number and type	Remarks and references :
Siloé reactor Hot Cell	1963	1	9 m ²	e = 1 000 mm of heavy concrete (d = 3,5)		Negative atmospheric pressure inside	2 PYE CD 3 985	Equipped with va- rious special tools used for dismantling, loading and re- loading of rigs capsules, etc.
Laborat- ory for the ana-	1961	3	14	<pre>barytic concrete - 1 m d = 3,5 g/cm³</pre>			6 PYE modèl 8	Machining
measure- ment of high-level Radioacti-	1962 L	9	10	lead - 0,15 m d = 10,5 g/cm ³			14 Hobson model 7	Metallog raphis tests
vity CEA-CEN/ Grenoble Service	1965	3	19	barytic concrete - 1 m d = 3,5 g/cm ³	air exchange	n il	6 PYE model 8	sectioning X-ray test
des Piles	1966	5	8	lead - 0,20 m	10-50 times/h		10 CRL model 9	Non-destructive tests
	1966	12	17	lead - 0,15 m	15 mm WG negative pressure		swivel- jointed tong	Strength of gs materials

INFORMATION SHEET Nº 6 (cont'ed)

x

Location Organi- zation Name of Lab.	active opera- tion	f Scope Number of: working positions:	Active Area (m ²)	Gamma shielding (material, :thickness (m) and density g/cm ³)	Leak tightness	Special Atmosphere	Manipulators number and type	Remarks and references :
	1970	6	7	lead - 0,15 m	15 mm WG negative pressure		10 Hobson model 7	HTR-specific tests
	1973	5	6	lead - 0,15m	"		10 Hobson model 7	Metallographic tests

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE LAMA (FACILITY)

1) Owner or operator of the facility : CEN.G - USSTC

2) With which reactor is the facility associated? : Mélusine - Siloé and if required with other CEA reactors.

3) Give details of equipment and techniques available :

- Stripping of all testpieces irradiated in research pile-various machining operations (sectioning, unselting, removal of samples and testpieces by spark erosion).
- Non-destructive testing: observation, viewing through periscopes and macroscopes X-ray photography high-accuracy metrology (diameters, eccentricity, camber, length), density measurements, *V* spectro-metry and *V* scanning.
- Destructive testing: taking of gaseous fission product samples, testing of material strength: hardness, tensile strength, toughness (Charpy, Pellini tests, etc.).
- Metallography: sample preparation and examination by optical microscopy preparation of samples for examination by election microscopy of microprobes.
- 4) References of relevant publications:

INFORMATION SHEET N° 8

UTILIZATION AND SPECIALIZATION OF THE LAMA (HOT CELL FACILITY)

The Laboratory for the Analysis and Measurement of high-level Activity (LAMA) was conceived in 1958 to meet the needs of arising out of the ^{commissioning} of the Mélusine research reactor. The building was extended during 1964-65 in order to fulfil the new requirements linked with the criticality of SILOE. This Laboratory has never had a specific task relating to a clearly defined research programme: on the contrary the highly diverse nature of its equipment enables it to adapt easily to the wide range of testpieces irradiated in the piles at Grenoble.

The additional capacity installed in the LAMA since 1965 meets two requirements, namely,

- for specific studies concerning new families of reactors (e.g., installation of cells for HTR particles)
- for an increase in the LAMA's potential in a field already exploited (metallographic testing, for example).

The non-specialist nature of the Laboratory therefore enables it to offer its services for post-irradiation tests in connection with all reactor families and for all public or private bodies in the European Community. In addition this potential has already been exploited by several European organizations.

INFORMATION SHEET Nº 1

F-13 St.Paul-lez-

Durance

MAIN CHARACTERISTICS OF THE TRITON REACTOR AT FONTENAY-AUX-ROSES

Name of reactor	TRITON
Organization	Experimental Reactor
Site	Fontenay-aux-Roses
In operation since	1959
Power MW (th)	6,5 MW since 1965
Moderator	^н 20
Coolant	н ₂ о
Fluid and pressure (kg/cm ²) in experimental channels	
Nominal operation days / year	335 days for year
Operating cycle (days)	
on power	32
shut down	2,5
	Responsible officer : Address:
Coordinator of experimental piles:	A. DEVILLE CEN - Cadarache B.P. n°l

INFORMATION SHEET Nº 1 (cont'ed)

Responsible officer: Address:

FRANZETTI

CEN- Fontenay-aus-Roses B.P. n° 6 F - 92 Fontenay-aux-Roses

TRITON:

•

IRRADIATION POSITIONS IN THE TRITON REACTOR

Irradiation positions (in core, reflector, others)

Name		:Number	Active Length m/m	:Diameter: m/m	Typical neut thermal	unperturbed ron fluxes fast (>100 KeV)	Heating : W/gr Al	Remarks : :
in core	25	1	600	≼ 70	≤4,2.10 ¹³	<3,5.10 ¹³	≤1,7	Five positions in first
	44	l	600	≦ 70	≤4,2.10 ¹³	≤ 3,5.10 ¹³	≤1,7	periphery with lead shield.
First po phery	eri-	17	600	<i>≼</i> 70	2.10 ¹³ <0<6.10	¹³ 3.10 ¹² (0 10 ¹³	0,2≤x ≼1	Five beam out reactor
Second j phe ry	pe ri-	22	600	≼ 70	2.10 ¹² ≤ 3.10 ¹	3	0 ,1 ≰x	two tangential
Third po phery	eri-	10	600	≼70	6.10 ¹¹ ≤ 3.10 ¹	2	0,1≤x≤0,3	one radial axial
Fourth phery	pe ri-	10	600	<i>≰</i> 70	1,510 ¹¹ ≼7.10 ¹	1		two radial lateral
Stool	(3)	45	600	≼ 70	10. ⁷ ≤ 10 ¹¹			neutron flux $\leq 10^9$

INFORMATION SHEET Nº 2 & 3 (cont'ed)

Typical Neutron Spectra for the TRITON Reactor at FONTENAY-aux-ROSES

The histogram of flux per unit of lethargy for the TRITON reactor is the same as that supplied for the SILOE and MELUSINE reactors, which are tankless pool reactors.
UTILIZATION AND SPECIALIZATION OF THE TRITON REACTOR

1) What were the original purposes of the reactor ?

Since it was mainly intended for studies on protection against radiation the reactor core could be moved for irradiation purposes in various parts of the pool. Operation was with natural or forced draught for a given setup, with a maximum power of 1.2 MW.

2) What major modifications have subsequently been made and for which particular research programme ?

As a result the pile was completely modified for the purpose of specializing in irradiation in fixed positions and of increasing the number of irradiation positions. Following this modification the operating power of Triton increased to 6.5 MW. In view of this new potential, experimental vues have been directed towards the irradiation of fuel, graphite, cladding and structural materials, protective devices, radioactive-element fabrication, pure research.

3) For which major projects and programmes is the reactor currently being used ?

Currently the reactor is being used:

- for an extensive programme covering the irradiation of low gamma heat-up reactor vessel steels.
- to complete the thermoelectronic studies.
- to supply radioactive elements at all times, thanks to a reactor availability in exceeding 8000 hours/year.

This availability also permits the further development of Industrial Neutrography in high-efficiency plant which is unique in France and even in Europe.

Finally, the reactor is used for pure research basically on lowtemperature studies and on the **stu**dy of metal dispersion.

INFORMATION SHEET Nº 4 (cont'ed)

- 4) What loops and irradiation devices have specially been developed for this reactor ?
 - a) give name and purposes of the devices

A type of loop developed for this reactor has since been used with other CEA reactors, namely low-temperature loops incorporating a cryogenerator.

b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5

Mention should be made of the high-performance "FRUIT"-type irradiation devices and also of conventional devices: Furnaces, CHOUCA, HEBE; COLIBRI, NICOBRA. These simple inexpensive devices have been developed for the irradiation of protective materials (concretes) and vessel steels. They are "BETSY" and "SIAT".

5) Major modifications planned

No major modifications are currently envisaged but potential experiments in the pool and on extracted fuel clusters are constantly being improved.

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES

IN THE TRITON REACTOR

1) - "Fruit" device for continuous creep studies

This device was designed for studies of the creep in reactors of uranium samples subjected to tensile stress⁽¹⁾. Its range of use devices from its initial intended purpose i.e.,

- the medium in which the testpiece is submerged consists of a mixture of sodium and potassium:
- the temperature may be set at a predetermined value between 300°C and 600°C and can be maintained during reactor shutdowns;
- a tensile force of up to 10 kg can be applied.

The deformation rates which one can reasonably expect to study via testpieces having a measuring base about 50 mm long are not less than $10^{-6}/h$. The total deformation which can be studied is 20 mm.

The deformation is measured in accordance with an original procedure for which a patent application has been made (2).

Under this procedure the core of a transducer having two windings (the coefficients of self induction of which vary inversely in accordance with the position of the core) which is rigidly attached to the movable head of the testpiece by a short rod made of molybdenum, a metal having a low coefficient of thermal expansion.

The displacement of the movable head in relation to the fixed head is measured by a micrometer gauge, of which the essential components, which are submerged in the reactor water, are made of Invar. A 4 mm micrometer screw is actuated by a 20 stepping motor capable of operating at 1/4356 rev.

At any given point in time the position of the movable head can be determined from the position of the motor, which corresponds

INFORMATION SHEET N° 5 (cont'ed)(1)

to a given ratio between the values for the coefficients of self induction of the transducer windings connected to the micrometer screw via the Invar chamber.

The extension of the testpiece is therefore measured by converting variations in the differences in length between the testpiece core support rod assembly and the components of the micrometer into the angle of rotation of the micrometer screw.

It can be seen from the above description that in this device the dimensions of the micrometer components are little affected by variations in heating due to nuclear radiation, so that there is little drift.

Literature

- (1) C. Thomas de Montpreville Dispositif "FRUIT" pour l'étude en continu du fluage de l'uranium, Note C.E.A. N-1426
- (2) Demande de brevet N° EN 70 33976.

2)- Systems for Irradiation at low Temperatures

With the appearance on the international market of cryogenerators adapted for the recondensation of cryogenic fluid vapours, it has become possible to modify considerably the design of irradiation systems in swimming-pool reactors. Because of their small size they are easy to install, while their flexibility and the fact that they operate in closed nitrogen, hydrogen or neon circuits ensures a high degree of safety, excellent reliability and economic operation in irradiation experiments. The Fontenay-aux-Roses systems (Vinka loops), which operate at 20 °K, are liquid hydrogen cryostats with nitrogen heat insulation mounted - with their cryogenerators - on a carriage by means of which the bottom of the loop can be moved close to the core, thereby making possible

INFORMATION SHEET N° 5 (cont'ed) (2)

investigations at fluxes of up to 2.2 x $10^{12} n_{f} \cdot cm^{-2} \cdot s^{-1}$. Through pressure regulation it is possible to stabilize the temperature to within $\stackrel{+}{-} 0.05$ degK over a temperature range from 20 to 300°K. With these systems, which operate automatically, a total irradiation experience of over 15000 hours * has been accumulated with continuous cycles of as long as 2500 hours. Many different types of experiment can be performed (in situ measurements of length, resistivity, traction, etc.), with the possibility of post-irradiation annealing and removal of samples while cold. All the measuring is done remotely through a data acquisition circuit.

3)- Industrial Neutrography

This very-high performance installation, which is mounted on a cluster removed from the Triton reactor (axial channel) is partly automated and used 90% to cater for French and foreign industrial needs.

The principal characteristics of this monitoring unit are as follows:

- Collimation ratio	1/200
- Useful range, formats used	18 x 24 cm
- Total flux densityl	0^{7} n.cm ² = 24 x 30 cm
- Thermal fux density	,
energies $\leq 0.5 \text{ eV}$. 6,3.10 ⁶ n.cm ² .s
- Gamma dose rate:VA	17 \leq A \leq 27 rad/h
- Max. dimensions of (test) pieces	0,50 x 0,50 x 0,50 m
- Length of traverse	≤4 m
- Weight of testpieces	≤100 kg
- Exposure range	1'-20'
- Films currently used	from Industrex A
	to Industrex R
single	coated or equivalent
	、

* (start-up of the first loop (20 °K) in 1966)

INFORMATION SHEET N° 5 (cont'ed)(3)

REFERENCES OF RELEVANT PUBLICATIONS FOR SYSTEMS OF IRRADIATIONS AT LOW TEMPERATURE

- (1) Les irradiations neutroniques à basses températures dans Mélusine et Siloé, Irradiations à 20 K dans le réacteur Triton, Bull. Infs scient. techn. CEA n° 153-154 (nov.-déc.1970) 60 et 66.
- (2) DEPIERRE, Y., VERDIER, J., Dispositif d'irradiation à basse temperature, Brevet français P.V. 8525 du 9 avril 1965.
- (3) CONTE, R.R., Irradiations aux basses températures, Rapport CEA-R-3910 (1969).
- (4) CONTE, R.R., Dispositif d'irradiation en pile à 20 K, Cryogenic Engineering Conf., Comm. I, Annexe 1966-5, Boulder (Institut International du froid, Paris).
- (5) CONTE, R.R., 20 K in pile irradiation facility, Adv. cryogen. Engng <u>12</u> (1967) 673.
- (6) CONTE, R.R., Dispositif d'irradiation aux neutrons à 20 K, Rev. Phys. appl. 2 (1967).
- (7) WEINBERG, C., CONTE, R.R., DURAL, J., Dispositif de mesures simultanées de longueur et de résistivité sous irradiation à basses températures, Note CEA-N-1315 (1970).
- (8) WEINBERG, C., Croissance de l'uranium sous irradiation à basses températures, Rapport CEA-R-4315 (1972).
- (9) CONTE, R.R., von STEBUT, J., Micromachine de traction fonctionnant aux températures, Rev. Phys. appl. <u>4</u> (1969) 70.
- (10) von STEBUT, J., Elastoresistivity, A property especially sensitive to stage I radiation defects in copper, Phys. Status Solidi
 (a) <u>9</u> (1972) K 145.
- (11) PONSOYE, J., Irradiation de tungstène sous contrainte uniaxiale à basse température, Radiat. Eff. <u>8</u> (1971) 13.

INFORMATION SHEET N° 5 (cont'ed)(4)

- (12) LESUEUR, D., Amorphysation of Pd-Si alloy by irradiation with fission products, Fizika (Italy) 2, suppl. 2 (1970) 13.
- (13) LETEURTRE, J., POUCHON, J.L., ZUPPIROLI, L., FRANCOIS, A.,
 HOUSSEAU, N., DURAL, J., Croissance induite dans le tungstène irradié sous contrainte à 20 K, Phys. Lett. <u>38A</u> 6 (1972) 411.

INFORMATION SHEET N° 5 (cont'ed)(5)

REFERENCES OF RELEVANT PUBLICATIONS FOR INDUSTRIAL NEUTRON RADIOGRAPHY

- La Neutrographie Industrielle auprès du réacteur TRITON

par A. LAPORTE - CEA. Colloque sur les Applications Modernes de la Pyrotechnie TOULON - 19/22 June 1973.

- Industrial Applications of Neutrons Radiography in France

by A. LAPORTE - CEA. Conference on Radiography with Neutrons BIRMINGHAM - 10th September 1973

- Two Examples of Quantitative Neutron Radiography

by A. LAPCRTE & J. MARS - CEA. Conference on Radiography with Neutrons BIRMINGHAM - 10th September 1973

- Neutrographie Qualitative et Neutrographie Quantitative

par J.P. BOULOUMIE - CNES A. LAPORTE - CEA.

Jème Colloque International sur les Méthodes de Contrôles non Destructifs TOULOUSE - May 1974

- Industrial Neutron Radiography for Nuclear Uses

by G. FARNY & A. LAPORTE - CEA. Euratom Working Group on Irradiation Devices HARWELL meeting - 2 and 3 July 1974.

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT FONTENAY CENTRE

Location Organi- zation Name of lab.	n:Year of active opera- tion :	Sc Number of working position	ope f:Active area ₂ s: (m ²)	:Gamma shielding (material, thick- ness (m) and :density g/cm ³)	: Leak - tight ness :	:Special: - Atmos- :phere :	Manipulators name and type	Remarks
TRITON Cell	1962	2	12 m ²	1.03 m heavy concrete, density 3.5	_	-	4 manipulators light-duty CRL E remote-control handling devices.	
							l heavy-duty ERTN E 600 handling device.	

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION

EXAMINATIONS IN THE TRITON CELL (FACILITY)

1) Owner or operator of the facility :

Section d'Exploitation TRITON.

2) With which reactor is the facility associated ?

With the Triton reactor, Fontenay aux Roses.

3) Give details of equipment and techniques available :

This cell is used solely for stripping of material irradiated in the Triton reactor i.e., the recovery of testpieces and integrates for shipping to the specialist CEN laboratories at Saclay, and the disposal of radioactive waste.

This cell's equipment comprises :

- 1 stripping miller
- 1 cutting machine for use under a controlled atmosphere
- 1 ac electric saw
- 1 set of hydraulic shears
- 1 pneumatic vice, plus pneumatic tools.

4) References of relevant publications :

- PILE TRITON Rapport descriptif, Septembre 1967 (CEA N° 840)
- Demantèlement "COLIBRI T" en tronçonneuse étanche pour mesures de pression et analyse des produits de corrosion MICHEL FAURE - DPE/SET N° 169/70.

UTILIZATION AND SPECIALIZATION OF THE HOT CELL AT

FONTENAY-AUX-ROSES

There is at the CEN, Fontenay-aux-Roses a very large hot laboratory complex specializing basically in the examination of Pu pins (RM2 system).

Detailed information is obtainable either from the Head of Department at Fontenay, Mr. Dieumegard, or more simply from the Euratom Hot Lab. Committee, which is due to meet nextin October 1974.

MAIN CHARACTERISTICS OF THE PEGASE REACTOR AT Cadarache

Name of reactor	PEGASE
Organization	C.E.A.
Site	C.E.NCadarache
In operation since	1963
Power MW (th)	35
Moderator	H ² 0
Coolant	^H 2 ^O
Fluid and pressure (kg/cm ²) in	Gas (He or CO_2) up to 60 kg/cm ² or
experimental channels	Na and (N ₂ , He)
Nominal operation days / year	300
Operating cycle (days)	
on power	120
shut down	7

	Responsible officer:	Address :
Coordinateur des piles expérimentales :	A. DEVILLE	CEN - Cadarache B.P. n° 1 F - 13 St.Paul-lez- Durance

PEGASE :

÷

-

ECKERT

IRRADIATION POSITIONS OF THE PEGASE REACTOR

1) Irradiation positions (in core, reflector, others)

Name	Numbei	Active Length m/m	:Diameter: m/m	Typic neu thermal	al unperturbed tron fluxes fast (>100 KeV):	γheating W∕gr Al	Remarks :
8 positions around the reactor core	8	914	114 up to 229	2 10 ¹⁴	0,5 10 ¹⁴	0.5	Distance between loops and reactor core can be adjusted separately for each one.

2) Reactivity available for experiments : 8500 p cm

3) Typical neutron spectra available should be added on sheet N° 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) : PEGGY nuclear model

- X ray, facility (loop radiography)
- Special Lab. for physico thermal measurements (several gas chromatographs)
- Several Ge-Li V spectrometers on line
- Neutron radiography facilities in Pegase and in Peggy
- Neutron radiography facility for loop examination

- 5) References of relevant publications : See attached sheet
- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6)

Pegase hot cell for dismantling, packaging, transfer and transportation to hot laboratories of Cadarache (LECA) and ADAC

7) Are facilities available for irradiations on behalf of other organizations of the European Community? :

yes (examples : KFA, Dragon, General Atomic)

UTILIZATION AND SPECIALIZATION OF THE PEGASE REACTOR

1) What were the original purposes of the reactor ?

Specialized for EDF and EL 4 full size fuel element testing.

2) What major modifications have subsequently been made and for which particular research programme ?

- 1 improvement of the reactor fuel, with burnable poison, to avoid flux perturbation on experimental rigs.
- 2 out of pile circuits of the different loops to have a permanent checking of the experiments, and a maximum of versatility (HTR, and fast breeder programmes ...).

3) For which major projects and programmes is the reactor presently being used ?

- High temperature reactor fuel element testing.
- Fast breeder fuel element testing.
- 4) What loops and irradiation devices have specially been developed for this reactor ?
 - a) give name and purposes of the devices : * loop ** devices
 - * EDF loops for gas graphite reactor
 - * EL 4 loops for heavy water reactor

INFORMATION SHEET Nº 4 (cont'ed)

- * INCA
- ****** PIRATE for fast breeder fuel failure in pile testing
- ****** SAPHIR for Fission Products plate out experiments
- ** CPL for Fission Products studies, release, trap, plate out, etc ...
- ** CYCLAMEN for high temperature and cycling experiments
- ****** IDYLLE Fission product release experiments (to serve as a reference)

b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5

5) Major modifications planned :

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE PEGASE REACTOR

(give also references of relevant publications) (1)

- for HTR - fuel irradiations

- HERMES general device charged in the loop :

cooling gas temperature 900°C, flow <200 g/s, pressure 60 bars, fuel power <400 KW, test section 130 mm ϕ and 900 mm length for safety experiments with irradiated fuel Fission products release and plate out studies, the HERMES device can be modified and designed for special purpose (for instance IDYLLE and CPL) and for power cycling.

- HELIOS special device charged in the loop :

cooling gas temperature 1200°C, flow 400 g/s, pressure 60 bars, fuel power 300 KW, test section 125 mm Φ , action length 900 mm for safety experiments with faulty fuel elements and for power cycling experiments.

- for fast reactor fuel elements

- PIRATE special device charged in the loop :

fuel pins formerly irradiated in Rapsodie are reloaded into Pirate to study

- a) the interaction of Na with UO₂ PuO₂,
- b) the emission of fission products through the can and

INFORMATION SHEET N° 5 (cont'ed)

c) the evolution of can failures

- Publications

- Les boucles du réacteur Pégase	CEA R 3564
- La sûreté des combustibles nucléaires. Essais effectués dans la Pile Pégase	A/Conf 49/P./580
- Compte rendu des essais fusion Magnox	DPE/SPP 70/252
- Boucle d'irradiation Hélios "HTR et applications calogènes"	UTC/SPP/GEF 70/014
- Essai en conditions de fonctionnement anormales	UTC/SPP/GEF 73/198
 Essai dans une boucle de Pégase d'un dispositif à trompe pour obtenir les hautes températures d'Hélium 	CEA R 4143
- Pegase loop experiment BIP Ol	SPP 73/104
- Compte rendu de l'essai Cyclamen	SPP 73/054

(1) publications and technical notes available upon request

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT CADARACHE CENTRE

Location	:Year of	Scope	e Gamma	shielding			Manipulators		
Organi-	active	Number of:	Active 2 (mater	rial, thick-	Leak	Special	number and		
zation Name of	opera- tion	working positions:	area (m ⁻):ness`(sity g	(m) and den- g/cm ³)	tight- :ness	atmos- : phere :	type :	:	Rema rks and references
lab.	:								

CEN/ Cadarache information not available

LECA

 $\begin{array}{c|c} CEN/\\ Cadarache & 7 & 4 & 40 \ m^2 & concrete : 1,20 \ m & X & (Air or 14 \ CRL A \ 8 \\ ADAC & d = 3,5 & N_2 \ pos-\\ sible & 2 \ CRL \ 5 \\ lead \ glass :90 \ cm \\ d = 4,5 & 5 \ NEL \ 150 \end{array}$

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE LECA (FACILITY)

(Information not available)

(Continued)

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE ADAC (FACILITY)

1) Owner or operator of the facility :

Commissariat à l'Energie Atomique C.E.N./Cadarache

2) With which reactor is the facility associated? :

Rapsodie

3) Give details of equipment and techniques available :

Equipments allows the wasning of fuel assemblies, continuous X Ray Radiography and metrology. Quality inspection and measurements are accurate within $l\mu$ over the diameter and 10^{-2} for length, weight and bend.

XRay and Neutron radiography - Gas pressure measurements inside the fuel by drilling (destructive testing), clad permeability, cracks detection by Eddy current method. Reassembling of clusters by welding with manipulator.

4) References of relevant publications :

BIST - Nov. 1972

UTILIZATION AND SPECIALIZATION OF THE LECA (HOT CELL FACILITY)

(Information not available)

^

(Continued)

UTILIZATION AND SPECIALIZATION OF THE ADAC (HOT CELL FACIDITY)

1) What were the original purposes of the facility? :

Dismantling and non destructive testing of fuel assemblies from Rapsodie.

2) What major modifications have subsequently been made and for which particular research programme?

- Setting up of a pulsed reactor in cell for neutron radiography purpose.
- Pressure measurements of gaseous fission Products.
- Reconstruction of assemblies including fresh and irradiated pins in order to have a new irradiation after check up.

3) For which major projects and programmes is the facility presently being used?

- Supervision of standard fuel elements.
- Inspection of irradiated structure materials.
- Inspection of Foreign experimental assemblies.
- 4) Major modifications planned :
- 5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community?

159

(November 1974)

MAIN CHARACTERISTICS OF THE ESSOR REACTOR AT ISPRA

Name of rea c tor	EX	SOR			
Organization	CI	SE EURATOM	JRC IS	PRA	
Site	JI	RC ISPRA -	VARESE	ITALY	
In operation since	DI	EC. 1968			
Power MW(th)		25/33 in (up to 18)	driver : MW in es	zone xperimental	zone
Moderator	D	0 at 99,7	4%		
Coolant		D_20 in dr: H_20, D_20	i v er zom organic zone	ne in experim	ental
Fluid and pressure (kg/cm ²) in experimental channels	56	e sheet n'	°5		
Nominal operation days/year	~	[,] 200			
Operating cycle (days)	tj	rpical	long	short	
on power			42	18	
shut down			8	4	
	Responsibl	.e officer	:	Address :	
ESSOR :	T.DOYLE		Centro	D EURATOM	
ADECO :			Divis	ion ESSOR	
ATFI :			(Vares	se)	

INFORMATION SHEET Nº 1 (Continued)

Main features of ESSOR

Care

Active dimensions:	diameter 118 c m height 154 cm
Sub-assemblies:	16 feeder fuel elements of 5 concentric pla- tes containing 465 or 650 grammes of uranium- 235 each
	12 experimental zone positions, maximum dia- meter 17 cm
	4 peripheral zone positions, maximum diame- ter 7.5 cm
Moderator	12 000 kg D_2^0 at 50°C and atmospheric pressure
Control	
Safety rods:	4 mechanical type, B ₄ C (3% negative reacti- vity in 2 seconds)
	6 liquid poison type, LizBOz (7% negative reactivity in 0.2 seconds)
Shim rods:	10 mechanical type, Cd (15% negative reacti- vity at 0.007%/sec.)
Control rods:	2 mechanical type, stainless steel (0.8% negative reactivity at 0.04%/sec.)
Pressure vessel	
ATCT JOH I stainlage st	
AISI JO4 L Stainless S	height 423 cm diameter 238 cm
Design pressure:	8 kg/cm ²
Handling	
Feeder zone machine:	Maximum capacity: diameter 14 cm height 573 cm
Experimental zone maching	ine: Maximum capacity:
	HARIMUM CAPACELY:

INFORMATION SHEET N° 1 (bis) (cont'ed)(2)

Reactor operation

Long	cycle:	Total duration of cycle:	50	days
		Duration of shutdown:	8	days

Short cycle: Fotal duration of cycle: 22 days Duration of shutdown: 4 days

IRRADIATION POSITIONS OF THE ESSOR REACTOR

1) Irradiation positions (in core, reflector, others)

Name	:Number	Active :Length: m/m	Diameter m/m	Typica neutro: therma	al unperturbed on fluxes alfast (>100 KeV	: ^γ -heating:) W/gr Al	Remarks
				x10 ¹⁴	n cm ⁻² sec ⁻¹		
Experimental channel	12	2200	170	3-4	0,05	unknown	
Driver zone channel	16	1540	32	1,5	1,1	"	
Reflector zone channel	e 4	2200	75	1,5	0,01	11	

- 2) Reactivity available for experiments : 12000 pcm
- 3) Typical neutron spectra available should be added on sheet N° 3
- 4) Specialized equipment available for experimenters (e.g. neutrography, etc.) : clean workshop, analytical chemistry laboratory, Hot Laboratories for dismantling and post-irradiation examination of experiments
- 5) References of relevant publications : see Sheet nº 5

- 6) If hot cell facilities are available on the reactor site, give its name and organization to which they belong (give details on sheet N° 6)
- 7) Are facilities available for irradiations on behalf of other organizations of the European Community ? : Yes.

INFORMATION SHEET No. 2a

(Continued) (2)

Axial Unperturbed Max. Dimensions Coolant neutron flux Name of the form power Thermal Fast Loss of Flow Inlet Outlet loop Diameter Length Pressure MW factor x10⁴ x10⁴ pressure Kg/sec temp. temp. max. C cm cm Nature max at at als als CART I & II 10,6 0,05 0,65 264 220 3 1,5 fog 50 1,5 10 250 10,7/ 28,6 CLEOPATRA 10,9 0.05 180 220 0,5 3,15 H₂Opres 5,5 3 320 335 CABIRIA 12,4 H₂Oboil 70/90 6 4,5/18 284,5/302 220 0,05 0,5 3,15 3 _ IRA 5,6 0.05 0,80 0,300 H20 180 150 1,5 350 3 300 ----5,6 0,450 180 SARA 150 0,05 0,80 H20 3,3 350 3 --MK 5 (3 9,2 0,05 0,75 1,8 Thermip 15 23,6 450 160 3 -_ channels) each channel

MAIN CHARACTERISTICS OF THE EXPERIMENTAL LOOPS IN ESSOR

INFORMATION SHEET No. 2_

(Continued) (3)

MAIN CHARACTERISTICS OF THE EXPERIMENTAL DEVICES IN ESSOR

.

	Dimensions		Unperturbed neutron flux		Axial form y	Max. power	Coolant					
Devices	Diameter cm	Length cm	Thermal x10 ⁴	Fast x10 ⁴	factor	MW	Nature	Pressure Max. kg.	Loss of pressure atm abs	Flow m ³ /h	Inlet temp. C	Outlet temp. max. C
ZENON (Cirene)	3,07	160	1,5	1,1	0,75	0,1	D ₂ 0	8	3	89	45	60
ZENON(Colibri)	3,07	4x14	1,5	1,1	0,80	0,1	D ₂ 0	8	3	89	45	60
MODESTE 4	17	220	3-4	0,05	0,65	0,25	D ₂ 0	1,2	1,2	16	45	80
MODESTE Giocond	a 5,8	1,50	3,5	0,05	0,80	0,06	D ₂ 0	1,2	1,2	6	45	47
Rabbit Radioele	m 2,6	7x11,5	3	0,05	0,9	-	D ₂ 0	~3	-	5	45	80
Fuel	2	4x7	3	0,05	0,9	0,035	D ₂ 0	3	-	3	45	80
Super Zenon	3,6	160	1	1,2	0,75	0,1	D ₂ 0	8	3	89	45	60
Commode	161	120	0,8	0,33	0,85	2,5	D ₂ 0	8	-	90	45	80
Zircon	5,0	1,500	0,8	2,5	0,75	-	co ²	50	-	-	-	-

Fig. 2-AXIAL DISTRIBUTION

Fig.3-RADIAL DISTRIBUTION

UTILIZATION AND SPECIALIZATION OF THE ESSOR REACTOR

 What were the original purposes of the reactor? Technological study of Orgel type reactor: Study of organic coolant, pressure and calandary tube, S.A.P. cladding material U.C. fuel elements Development of CIRENE type fuel

- 2) What major modifications have subsequently been made and for which particular research programme?
 - Some organic loops were dismantled and substituted by LW loops
 - Some specific dispositifs have been added (other indications in successive sheets).
- 3) For which major projects and programmes is the reactor presently being used? Testing of fuel elements for both BWR and PWR types Testing of fuel elements for CIRENE type reactor Testing and experiments of structural materials Special testing on UO₂ and PUO₂ fuel and kernel particles Testing of liquid safety rods.
- 4) What loops and irradiation devices have specially been developed for this reactor?

a) give name and purposes of the devices :

see sheet n° 4 bis

b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5

5) Major modifications planned : Super Zenon, Commode and Zircon devices in development

INFORMATION SHEET Nº 4 (Continued)

Development of point 4 of sheet nº 4

Name and purposes of main devices:

- 1. CABIRIA and CLEOPATRA respectively BW loop (3,15 MW, 90 ata) and PW loop (3,15 MW 180 ata)
 - Studies of fuel bundle under irradiation in advanced routine conditions, including simulation of the load following operation of a power station.
- 2. CART I and CART II loop: light water fog cooled loops for testing CIRENE fuel assemblies.
- 3. <u>IRA loop</u> (300 KW, 180 ata) irradiation of LW reactor fuel pins in normal conditions for the study of densification and interaction between cladding and fuel.
- 4. <u>SARA Loop</u> (450 KW, 180 ata) irradiation of LW reactor fuel pins in critical conditions for safety assessment.
- 5. Zenon devices: irradiation at low temperature into the inner cavity of the driver fuel elements.
- 6. <u>MODESTE devices</u>: simultaneous irradiation of four capsules or instrumented fuel-pins in the experimental zone.
- 7. <u>RABBIT</u>: irradiation of non instrumented capsules or fuel pellets in the experimental zone with the possibility to remove the experiment at any time.
- 8. Liquid safety rods: testing under irradiation of various components of the system.
- 9. MK 5: multiple organic cooled loop connected to 1-3 experimental channels each 1,8 MW power.

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE ESSOR REACTOR

(give also references of relevant publications)

see sheet 2a and 2b

Publications

- 1. A future for the ESSOR plant? P. Bonnaure and coll. Energia Nucleare; Vol. 19 nº 4 April 72 Published jointly in Nuclear Engineering International and in french in Industries Atomiques et Spatiales.
- 2. Notiziario del CNEN Anno 20 nº 8 9 agosto-settembre 1974. Il programma italiano per il reattore ESSOR

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT ISPRA CENTRE

Location Organiza- tion Name of Lab.	Year of active opera- tion	Scope Number of working positions:	Active area (m ²)	Gamma shielding (material, thick- ness (m) and :density g/cm ³)	Leak tightness:	Special atmo- sphere	Manipulators number and type: :	Remarks and references
ADECO	1970	7	70m ²	Heavy concrete 1,10 m d = 3,5	alfa tight	none	12 M.S. Exten- ded reach - central research L 1 HD electrome- chanical type OTER 2300	Associated with large pool 8 m water height protection
ATFI	1971	5	80m ²	Normal concrete 1,10 m d= 2,3	none	none	8 MS HD exten- ded reach central rese arc h L manipulator	
LMA	1969	3 - 17		Heavy concrete 1 m d = 3,4 and 15 cm lead brick	alfa tight	none	6 HD MS manipu- lator, Model 19 1 HD electrome- chanical ERTN 100 KN teleman. M7 MS manipula	

•

(Continued)

MAIN CHARACTERISTICS OF THE ESSOR HOT FACILITIES

Table I - Water Pool and ADECO

 Name and dimensions of the facility Shielding 	General equipment	Specific equipment	
Water Pool - 7.64 x 3.70 m - 8 m of water height	 Crane, 2 trolleys on the same bridge weight 40 T and 6 T Cantilever crane for underwater dis- posal of fuel elements 	 - 39 Supports for driver fuel elements - 48 Supports for experimental fuels and devices 	
Dismantling pool - 7.15 x 3.70 m - 8 m water height		 Dismantling device for PWR fuel elements model Cutting device for MTR fuel elements max. diameter 120 mm max. length 5.300 mm 	
Access	- to the reactor: $d = 250 \text{ mm}$ L = 5500 mm	 Air-lock equipped with a swinging arm Air-lock equipped with a rotating arm and lift Several supports 	

TABLE I (continued)

		<u> </u>					
ADECO							
Working Cel	11 4411	- 3 working stations, with	every one equipped	- 8 dry storage pits: internal diameter 280 mm			
Length: 10	0.40 m	a) 1 shielded glass	window	length 5300 mm - 1 washing pit : internal diameter 120 mm			
Width:	3.20 m	b) 2 heavy duty, ext	ended reach,				
Height	7.10	master-slave manij c) 1 periscope	pulators	length 5470 mm			
		- 1 travelling crane	weight 20 kN	 1 visual and photographic examination pit equipped with a vertical presentation bench. Diameter capacity of 110 mm for bundle and of 4 to 25 mm for pin 4500 mm max length 			
				 cladding failures detection de- vice, bubble type 110 mm max diameter 2 m max length 			
				 pucture test, vertical system with mechanical drilling device -capacity: a) fuel pin diameter 4 to 22 mm b) max length 5300 mm 			
				 dismantling rig equipped with a) longitudinal milling, 1,70m max length b) transversal cutting, 120 mm max diameter c) extremity milling fuel pin cutting device equipped with diamond setting disc 			

177

(Continued)

TABLE I (continued)

Working	cell	4411
(cont	inued	1)

Access to

evacuation zone	70 mm internal diameter 1670 mm max. length	LMA 20 cm lead shielding container equipped with a "Ragueneau" shell
	105 mm internal diameter 645 mm internal diameter	"La Calhene" type door shielded and tight door equipped with an horizontal trolley
	600 mm internal diameter and 3 m max. length	Vertical access by the roof of the cell with a shielded plug and a tight plate
the neutrography device	240 x 240 mm square shape	Aluminium finger tube equipped with a trolley
testing cell	355 mm internal diameter 505 mm internal diameter	Shielded plug Shielded plug

Ξ

Neutrography cell 4303 L = 2.60 m W = 3.20 m h = 3.70 mheavy concrete: 1.10 m thick: 3.5 g/cm³ and: 55 cm of iron

- electrostatic accelerator with

titan-tritium target 2.1011 n/sec/4π of 14.5 meV

- moderated and collimated neutron beam of 5. 10^5 n cm⁻² sec⁻¹
- tin aluminium window, 100 x 100 mm square shape

(Continued) (4)

Neutrography cell 4303 (continued)							
External Access	Iron door 70 x 200 cm	Iron door on trolley					
Non-destructive testing cell 4304 L = 8.00 m W = 3.20 m h = 3.60 m heavy concrete: l.10 m thick, 3.5g/o alpha tight	 2 working stations equipped with a) a shielded glass window b) 2 HD extended reach. Master-slave tele-manipulators c) 1 periscope hole a travelling crane: weight 20 KN 3 m height under the hook 	 gamma spectrometry device a) vertical bench for fuel pins, diameter 4 to 25 mm; max. length 3.80 m b) several windows 20 x 0.2-0.5- l-2mm c) Ge-Li detector d) A.D.C. 16, 384 channels analyser associated with a minicomputer 20 K bytes memory capacity e) results - on magnetic tape IBM compatibility - on paper A4 format X Y plotter - teletype listing f) micro-programmation to obtain automatik peak identification energy calibration calculation of peak full width at half max. peak area with or without back ground cross and selective gamma scan- ning 					

.

TABLE I (continued)

(Continued) (5) (continued) TABLE I Non-destructive testing - metrological bench for bundle and cell 4304 (continued) fuel pin - cladding failures detection for fuel pins only 50 ata He pressurization 500 mm max length 22 mm max diameter 270°C detection temperature Access to 4305 cell - 200 mm max diameter air lock equipped with a shell and shielded door - 800 mm max length In the roof of the cell - Solid wastes: 230 mm diameter and shielded plugs with adaptation for 170 mm max length a 200 mm lead container : 410 mm diameter and 700 mm max length 4305 cell

L = 3.60 m l shielded glass window bench-scale vitrification installa-W = 3.20 m 2 HD extended reach Master-slave telemanipulators h = 3.60 m l.10 KN travelling crane heavy concrete l.10m thick, 3.5 g/cm³ l periscope hole

INFORMATION SHEET Nº 6

INFORMATION DIEDI N O	INFORMATION	SHEET	N°	6
-----------------------	-------------	-------	----	---

(Continued) (6)

<u></u>		
Access to		
c ell 4304	see cell 4304 access	
cell 4306	- 200 mm max diameter - 800 mm max length	air lock equipped with a shell and 2 shielded doors
Rear zone	- 105 mm/270 mm diameter concentric tight doors with 250 Mm lead shielded	"PADIRAC" system; 20 cm lead
In the roof	- identical to 4304 roof access	see 4304
4306 cell		
L = 7 m	2 shielded glass windows	non equipped
W = 3.20 m	4 HD extended reach master-slave tele- manipulators	
	1 10 KN travelling crane	
	2 periscope holes	
4307 cell		
L = 3 m		
W = 3.20	non equipped	non equipped
h = 3.60		
heavy concrete		

.

INFORMATION SHEET No. 6 (Continued) (7)

MAIN CHARACTERISTICS OF ESSOR HOT FACILITIES

TABLE II - A.T.F.I.

• Name and facility	dimensions of	the General equipment	Special equipment
Storage and cell 3102	l examination		
length width height	3.2 m 4.8 m 11.7 m	 a 20 KN crane and a 10 KN electromechanical manipulator every one equipped with a TV camera tra- velling on the same railway (covered the 3 cells) 	 - 1 through the wall periscope - a Rabbit TV camera - several supports
Dismantling length width height	g cell 3 m 4.8m ll.7m	 a standard working station in the dism. cell 3 standard working stations in the testing cell every one equipped with 1 shielded glass window 2 HD extended reach 	- disk cutting machine moving on vertical bench max.diam.capacity 200 mm; max.length 7000 mm
Testing cel length width height	10.2 m 4.8 m 4.7 m	master-slave manipulator - 1 periscope hole - shielding 1.10 m thick normal concrete	<pre>l burst test device l helium test bench l electro erosion cutting ma- chine l reciprocating saw l 500 KN hydraulic shears</pre>

TABLE II (continued)

Access to reactor building		
	- 250 mm diameter	 air-lock and several supports
	- 11,000 mm length	
wastes in the basement	- 2 holes \emptyset 250 mm diameter	l shielded plug non equipped l shielded plug equipped with alpha
wastes in the roof	- 230 mm diameter and 1700 mm max. length	transfer System
		shielded plugs with adaptation for
	- 410 mm diameter and 700 mm max. length	a 200 mm lead shielded container
rear door	- 1100 mm width 2000 mm height	concrete shielded door on trolley

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE ADECO FACILITY

- 1) Owner or operator of the facility : CEE Euratom JRC ISPRA ESSOR Division
- 2) With which reactor is the facility associated? : ESSOR
- 3) Give details of equipment and techniques available :
 - Under water dismantling device for PWR-type fuel assembly
 - Dismantling rig equipped with longitudinal, transversal cutting, extremity milling
 - 8 dry storage and 1 washing pits.
 - Visual and photografic examination, presentation bench
 - Punter test and fission-gas sampling
 - Fuel pin cutting device
 - Neutroradiography examination device
 - Gamma spectrometry vertical bench with GeLi detector and computer program
 - Cladding fealure detection device, bubble test system in oil at 270°C.

4) References of relevant publications:

- Dismantling workshop for Orgel fuel elements J. Biteau, C. Garric, A. Wilhelen AIEA International Symposium on Working methods in High Activity Hot Laboratories, June 1965 Paper nº 44.
- Facilities at the CCR Ispra for manipulation and post-irradiation examination of fuel elements for

Power reactors. 15th meeting of Euratom Hot Laboratories Committee Geesthacht - June 1973

- Post-irradiation analysis of TRINO Vercelles Reactor fuel elements - EUR 4909e 1972.

UTILIZATION AND SPECIALIZATION OF THE ADECO HOT CELL FACILITY

- 1) What were the original purposes of the facility? : Dismantling and non destructive examination of Orgel fuel elements
- 2) What major modifications have subsequently been made and for which particular research programme? The devices were adapted for Cirene fuel elements type and for dismantling of specific rigs Improvement of the devices for LWR assemblies examination.
- 3) For which major projects and programmes is the facility presently being used? Cirene fuel elements post-irradiation examination Help to the Power LW reactor technology
- 4) Major modifications planned :

Equipment of one cell with other non destructive testing device as Eddy current test and macrophotographic devices for cladding examination. Cutting of cladding by laser techniques. 5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community?

Yes.

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT CASACCIA CENTRE

Location:Year of: Remarks and Scope :Gamma shielding :Leak :Special Manipulators Organi- active Number of: Active (material, thick- tightness: atmosphere: number and type: references zation opera- working area ness (m) and Name of tion :positions: (m²):density g/cm³) : lab. :

Casaccia (Roma)	a)							
CNEN								
OPEC 1	12	5	24	Concrete 0,75 m	only gamma	NO	10 MOD	8
				3,5 g/ml	0		l nel	100
OPEC 2	will start	10	60	Concrete 1 m 3,6 g/ml	α - γ	Provision for inert	10 MOD	8 (HD)
	in			or		$\mathtt{atmosph}$.	2 ABC	
	1975			0,65 m 3,6 g/ml			(Heavy	mechanic arms)
							10 MOD	G
OPEC Hot	;	Responsible	e off	icer:	الى بى خەر بىلەر بىلەر _{تىل} ى بىر بىلەر بىلەر تەرىخىيە بىر يەرىخىيە بىلەر بىلەر يەرىخىيە بىلەر تەرىخىيە بىلەر بى	Address :		

Lab

Dr. C. CESARANO

CNEN CSN della Casaccia C.P. 2400 - I - 00100 Roma

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE OPEC FACILITY

1) Owner or operator of the facility : C N E N - Italy

2) With which reactor is the facility associated? : None

```
3) Give details of equipment and techniques available :
```

Non destructive tests: visual - gamma scan-gamma

densitometry - metrology - X ray radiography

Piercing for fission gas collection and analysis

Dismantling of fuel and capsules

Macro and Microscopy

Radial sampling- and radiochemical analysis

Annealing - HD Determination 0/Me determination

4) References of relevant publications :

 Cacciari, Cesarano, Lepscky, Nepi : Hot facilities of CNRN Proc. 8th Conference Hot Laboratory and Equipment 167 (1960)
 Cesarano, Cudia, Evangelisti, Lauro, Vescia : The Alpha-Gamma Radiometallurgy Laboratory at Casaccia Nuclear Center - Design and Construction Proc. 19th Conference on Remote Systems Technology 145 (1971)

UTILIZATION AND SPECIALIZATION OF THE OPEC 1 HOT CELL FACILITY

1) What were the original purposes of the facility? :

Any kind of experiment Requiring hot facilities

2) What major modifications have subsequently been made and for which particular research programme?

- Enlarging the office and low activity laboratory Space in order to afford a comprehensive program of post-irradiation analysis of ceramic nuclear fuels
- Building a new wing (OPEC 2) for $\alpha \gamma$ post-irradiation work on Pu Fuels

3) For which major projects and programmes is the facility currently being used?

- 1) CIRENE project
- 2) Basic research and development
- 3) Miscellaneous requirement of other programs

4) Major modifications planned :

No one (see 2b)

5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community? :

Not at the moment.

,

INFORMATION SHEET Nº 1 (September 1974)

MAIN CHARACTERISTICS OF THE HFR REACTOR AT PETTEN

Name of reactor		High Flux	Reactor
Organization		EURATOM	
Site		CCR - Pet	ton
In operation since		1961	
Power MW(th)		45 MWth	
Moderator		^H 2 ^{O, Be}	
Coolant			
Fluid and pressure (kg/cm ²) in experimental chennel	S	^H 2 ⁰ 3,6 abs.	
Nominal operation days/year		265 days/;	year
Operating cycle (days)			
on power		2 x 19)	
shut down		1, 3	$\begin{array}{rcl} \text{tal cycle} = 1 + 19 + 5 + \\ 19 = 42 \text{ days} \end{array}$
	Responsible o:	fficer :	Address :
HFR :	P. von der HA	RDT	EURATOM - J.R.E. Westerduinweg NL - Petten (Noord-Holland)
LSO - Hot Lab	H.J. WERVERS		Reactor Centrum Nederland Westerduinweg NL - Petten (Noord-Holland)

IRRADIATION POSITIONS OF THE HFR REACTOR

Name	:Numbe:	Active r:Length m/m	n:Diameter m/m	Typical neutron thermal	10''n/cm ⁻ s unperturbed fluxes fast (>100	max. <i>Y-</i> heating KeV): W/gr Al :	Remarks
In-core positions	6	600	72 max.	2,9	5,3	14	
Reflector positions	9	600	}	1,1	2,1	5	
Poolside facility (PSF)	14	500	50	3,0	1,0	4	Number of PSF positions availa- ble for test irradiations: 10

1

2) Reactivity available for experiments :

3) Typical neutron spectra available should be added on sheet N° 3 see sheet N°3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) :

Neutrography, digital data acquisition, centralized gas control systems centralised in-pile heater control system

5) References of relevant publications :

```
Annual Report 1973 (to be edited)
```

6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6) see sheet N° 6

7) Are facilities available for irradiations on behalf of other organizations of the European Community? :

Neutron spectrum in HFR core position G2, representative for a near-reflector experiment position.

(September 1974)

UTILIZATION AND SPECIALIZATION OF THE HFR REACTOR

1) What were the original purposes of the reactor?

Materials testing, isotope production and beam hole experiments (solid state and nuclear physics)

2) What major modifications have subsequently been made and for which particular research programme?

- Power increase 20-30-45MW, burnable poison fuel elements

- Poolside facility: electrical operation of trolleys for fast and programmed power transients

- Top plate modification for easier access and vibration-free rig fixation

3) For which major projects and programmes is the reactor currently being used?

Graphite, static and creep. Coated particle fuel LWR and LMFBR transient fuel irradiations Various metal radiation damage programmes Isotope production and neutron physics

4) What loops and irradiation devices have specially been developed for this reactor?

a) give name and purposes of the devices :

High Pressure Water Loop Various capsules for above-mentioned programmes

- b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5. see sheet N° 5
- 5) Major modifications planned :--

(September 1974)

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE HFR REACTOR

(give also references of relevant publications)

B - Irradiation devices for non fissile materials

o REFA- Multipurpose reloadable facility, sample diam. 70 m/m, 200-2000°C, Extrapolated designs ("HTJ", o BERO- High Pressure Water Facility "TRIO") o NAST- Steel Irradiation in Sodium

O MASI = Steel Infadiation In Soulum

C - Irradiation devices for in-pile measurements

- o Fuel creep assembly: for elongation measurement of fissile specimens under variable loading, and fission rate, temperature up to 1100°C.
- o Canning creep assembly: for tensile-creep measurements at 250 700°C.
- o Loss of cooling capsule study of a fuel pin, which looses its cooling under fast reactor conditions 600 W/cm, 525°C can temperature
- o Compact creep assembly: for tensile-creep measurements on compact samples under variable loading and temperature up to 1100°C.
- o Graphite creep assembly: for tensile-creep measurements on graphite samples under variable loading and temperature up to ll00°C.
- Information on HFR facilities, dec. 1971, EUR 4639/e (4 reports)

INFOPMATION SHEET NO. 6

September 1974

Location Organization Name of lab.	Year of active operation	Number of ^{Scope} working positions	Active area (m ²)	Gamma shielding (material, thick- ness (m) and density g/cm ³)	Leak tightness	Special atmosphere	Manipulators number and type	Remarks and references
Petton RCI) [#] LSO	1964	5 (5 cells)	37,5	1,20m concrete of 3,5 g/cm	dynamic	possible	5 pairs mod. 9 1 GEC MK 1	
HFR Petton Euratom DM Cell	1966	1	about 10	Cast iron 0,6m; locally:Pb and 2,8g/cm ³ concrete	dynami c	no	1 pair M9, PYE, Nr HD-LD 3985 1 OTER 2100	HFR Dismantling Cell on top of reactor pool side wing
LSO Petten Euratom)H Cell)G 5 Cell [#]	1972 1974	1	3,5 1,8	РЬ 0,254 m РЬ 0,178 m	a-tight	possible	1 pair C.R.L. 1 pair BF 651	Special equipment for fuel pin examinations Special equipment for coated particle fuel

* 4 G-type universal Pb cells for chemical, metallurgical etc. work are available to RCN and Euratom, besides G5.

INFORMATION SHEET Nº 6 (Continued) UPDATED 1-11-1974.

MAIN CHARACTERISTICS OF FACILITIES FOR POST IRRADIATION EXAMINATIONS AT THE PETTEN CENTRE

.

Location Organization Name of lab.	Year of active operation	Scor Number of working positions	pe Active area (m ²)	Gamma shielding (material, thick- ness (m) and density (g/cm ³)	Leak tightness	Special atmosphere	Manipulators number and type	Remarks and roferences
Petten L.S.O. R.C.N.	1964	high activity cell: 4 in line, 5 work- ing stations	\$ 37,5	barytes concrete 120 cm. 3,5 g/cm ³	dynamic	no unless special in- cell box installed	5 pairs master- slaves, heavy duty 1 powermanip. G.E.C. 1 powermanip. Draht & Schrader 1 hoist	cells AB, C, D,E general purpose use, dismantling gauma-scanning dynamic testing
L.S.O. R.C.N.	1965	metallographic cell line with head end cell, 10 working stations	9,6	lead: 11,4 g/cm ³ head end cell: 25 cm. remaining cells: 18 cm.	yes	nitrogen or other	tongs in ball- joints	F metallography
L.S.O. R.C.N.		medium activity cells, 2 cells, 1 working station each. additional cell will be available in 1975.	4 •8	lead and steel 18 cm. lead aequivalent	yes	nitrogen or other	masterslaves 2 pairs, compact type, CRL model G	G2, G3 (G1) chemical operations
L.S.C. Euratom	1972	medium activity cell, 2 working stations	<u>*</u> 4	lead, 25 cm.	yes	nitrogen or other	masterslaves 2 pairs, compact type, CRL model G	H special equipmen fuel pin exemina tion, micro X-ray micro sampling
L.S.O. Euratom	1974	medium activity cells, 1 working station each, 3 working stations	6,6	lead and steel, 18 cm. lead acquivalent	yes	nitrogen or other	masterslaves I pair CRL, model G 1 pair BF 651 1 pair Hobson	G4, G5, G6 special equipment coated particle fuel exam.
H.F.R. Buratom	1966	high activity cell 1 working station	~ 10	cast iron 60 cm.	dynamic	no	1 pair mastersla- ves Pye heavyduty 1 powarmanip.Oter 2100 1 hoist	associated with high flux reactor dismantling of irrad. devices

-

INFORMATION SHEET N^O 6 (Continued) UPDATED 1-11-1974.

١

MAIN CHARACTERISTICS OF FACILITIES FOR POST IRRADIATION EXAMINATIONS AT THE PETTEN CENTRE

Location Organization Name of lab.	Year of active operation	Scope Number of working Active positions area (m ²)		Gamma shielding (material, thick- ness (m) and density (g/cm ³)	Leak 👌 tightness	Special atmosphere	Manipulators number and cype	Remarks and references
Petten L.S.O. R.C.N.	end of 1974	special facility for creep testing 10 machines one headend cell with one working station		lead, 18 cm.	none	none	one pair master- slaves CRL, Compact model G	creep testing only
·								

(updated 1. 11. 1974)

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE PETTEN FACILITY

1) Owner or operator of the facility:

R.C.N. and Euratom, as indicated on sheet nr. 5.

2) With which reactor is the facility associated?:

H.F.R. Petten.

3) Give details of equipment and techniques available:

The combined R.C.N.-Euratom facilities can supply all current post-irradiation examination techniques, e.g., dismantling, dimensional measurements, photography, visual inspection, gamma spectrometric scanning, fissiongas sampling and analysis, burn-up determination, ceramography X-ray techniques (macro and micro) neutrography, microsampling, mechanical testing comprising tensile (static and dynamic), creep, impact, hardness, electron microscopy, electron microscanning, weighing, density determinations; in addition remote assembly of components handling of large radiation sources, chemical sparations, remote welding.

Limitations: shielded flasks max. weight 25 tons

fuel assemblies \longrightarrow max. length appr. 2 metres projection X-ray macro \longrightarrow 0-300 kV, 6 mA micro X-ray \longrightarrow 5-60 kV, 3-60 mA visual inspection \longrightarrow periscope 4-15x

INFORMATION SHEET N° 7 (cont'ed)

INFORMÁTION SHEET Nº 8

UTILIZATION AND SPECIALIZATION OF THE PETTEN HOT-CELL FACILITIES

1) What were the original purposes of the facility?:

Post-irradiation examination of materials irradiated in the H.F.R., inclusive of dismantling of irradiation devices, support of H.F.R. operations and general purposes.

- 2) What major modifications have subsequently been made and for which particular research programme?: None.
- 3) For which major projects and programmes is the facility presently being used?:

See irradiation programme (information sheet nr. 4).

- 4) Major modifications planned:
- a) Modification of material routing system, adaptation of one or two cells and transfer systems to α -compatible standards to meet requirements set by Pu-enriched fuels.
- b) Extension of building to accommodate additional medium-activity cells for mechanical testing of structural materials.
- 5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community?:

Yes.

•

INFORMATION SHEET Nº 1

MAIN CHARACTERISTICS OF THE DIDO REACTOR AT HARWELL

Name of reactor		DIDO					
Organization		U.K.A.E	•A.				
Site		Atomic Harwell	Energy Re , Berkshi	search Establishment, re, England.			
In operation since		1956					
Power MW(th)		Current	Operatin	g Power: 22.5 MW			
Moderator		D ₂ 0					
Coolant		D ₂ 0 - Primary; H ₂ ⁰ - secondary					
Fluid and pressure (kg/cm ²) in experimental channe	ls	Not app	licable				
Nominal operation days / year		310					
Operation cycle (days)							
on power		24					
shut down		4					
	Responsible o	officer:		Address :			
DIDO :	W.F. Wood		Research A.E.R.E.	Reactors Division			
			Harwell, OX11 OR	Didcot,Oxfordshire A			

IRRADIATION POSITIONS OF THE DIDO REACTOR

1) Irradiation positions (in core, reflector, others)

	Active			Typi	Typical unperturbed						
Name	:Number	:Length m/m	n:Diameto m/m	er:neut ther	ron fl	luxes :fast (>	100 KeV)	: <i>Y</i> -heating: W/gr Al	Remarks		
Fuel Element					<u></u>	· · · · · · · · · · · · · · · · · · ·	<u></u>				
(i) Mk 5/4	22	600	50	1.8	10 ¹⁴	0.6	1014	4			
(ii) S2	2	400	25	1.1	10 ¹⁴	1.6	1014	6			
Reflector											
2V	9	600	50	2.0	10 ¹⁴	5	10 ¹²	1			
4v	5	600	100	0.6	10 ¹⁴	4	10 ¹¹	0.2) Can be sub-divided to 50mm		
6 v	4	600	150	2.0	10 ¹⁴	2	10 ¹²	1) or 25mm facilities if re-		
4VGR	2	600	100	8	10 ¹²	-			quii eu •		
6VGR	6	60 0	150	8	10 ¹²	-		-			
10VGR	2	600	250	8	10 ¹²	-		-			
4H	6	-	100	1	10 ¹⁴	-		-			
6н	1	-	150	1	14 10	-		-			
10Н	1		250	1	10 ¹⁴	-		-			

2) Reactivity available for experiments : 8.0%

3) Typical neutron spectra available should be added on sheet N° 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.) : Various handling equipments, sample changing cells, data collection facilities etc.

5) References of relevant publications :

- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6) Yes, Research Reactors Division, also other large hot cells operated by Engineering Division and P.I.E. facilities in Metallurgy Division.
- 7) Are facilities available for irradiations on behalf of other organizations of the European Community? : Yes.

TYPICAL NEUTRON SPECTRA FOR THE DIDO REACTOR AT A ERE HARWELL

INFORMATION SHEET Nº 4

UTILIZATION AND SPECIALIZATION OF THE DIDO REACTOR

1) What were the original purposes of the reactor? Materials and fuels testing in support of civil power reactor programmes. Neutron Beam experiments for fundamental physics research. Isotope Production.

2) What major modifications have subsequently been made and for which particular research programme? Progressive increases in power from 10 MW to 22.5 MW in support of all programmes. Development of special fuel elements to provide more experiment facilities and harder flux spectrum.

- 3) For which major projects and programmes is the reactor presently being used? Gas cooled thermal reactor programme. Fast Reactor'programme.
- 4) What loops and irradiation devices have specially been developed for this reactor?

 a) give name and purposes of the devices :
 Various dynamic gas loops in support of gas-cooled reactor programmes for study of fuels, structure materials, cladding and coolant chemistry.

INFORMATION SHEET Nº 4 (cont'ed)

Irradiation rigs, some of which can be loaded and unloaded at power. Cold neutron beam source at liquid hydrogen temperature. High pressure water loops, used with various experiments in reactor core or reflector (see sheet 5)

b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5

5) Major modifications planned :

Possible increase in reactor power and flux and changes to flux spectra.

INFORMATION SHEET Nº 5

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE DIDO REACTOR

(give also references of relevant publications)

High Pressure Water Loop

A loop constructed in mild steel for the irradiation of fissile specimens in water at the following nominal conditions:

Pressure:17.2 MPaTemperature:up to 300°CPump differential pressure:1 MPa at flow rates up to 2.27 kg/sHeat rejection capacity:Three loops at 150 kW, 50 kW.Experiment volumes at high neutron flux:600 mm long78 mm dia.600 mm long38 mm dia. (two)

Shielding: 600 mm concrete

Neutron radiation facilities for radioactive and non-radioactive specimens and including post radiation examination and measurement of specimens within experimental rig assemblies.

INFORMATION SHEET No. 0

Location Organization Name of lab.	Year of active cperation	Number of ^{Scope} working positions	Active erea (m ²)	Gamma sh (materia (m) and	ielding 1, thickness density /cm ²)	Leak tightness	Special atmosphere	Manipulators number and type	Remarks and references
1. High acti- vity handling building 450.	1958 1960	(a) 5 (b) 5	45 45	1.70 1.35	2.3 2.3	-	-	20 Master slave NEL model 9 1-General Mills Power Manipula- tion type 350. 1-GEC Power Mani- pulator.	General purpose facility Fig & fuel clement dismantling. P.I.E of fuel and reactor components. Preparation of radio-iso- tope sources.
2.Post Irradia- tion Labora- tory B.393.6	1959	 (a) 3 (b) 9 interconnect- ed lead cells. (c) 20 free-stand- ing lead cells 	20 14 20	1.000 0.250 various t to 250mm	3.2 11.4 hickness 50mm density 11.4	To maintain nitrogen atmos. of less than 2% 0 ₂	Nitrogen	6 Master slave NEL model 9 180, Tong Manipu- lators Harwell type	Examination of advanced reactor fuels.
3. DIDO Hardling cell	1957	3	16	1.37	2.3	-	-	6 type ARGONNE 8 and 9. 1 over- head electrical- ly and hydrauli- cally operated (Limbry & Heron Ltd)	Pig and fuel dismentling or repair.
4. Miscellaneous	cells in t	the Metallurgical and	Chemistry B	uilding eq	uipped for spe	cial purposes	s e.g. Gamma	scanning, Chemica	l analysis etc.
5. Miscellaneous reactors for absorber main	cells in 1 rig sample tenance etc	DIDO & FLUTO changing,	up to 1m ²	0.25	11.4	••••••••••••••••••••••••••••••••••••••	-	up to 4 long manipulators	

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE AERE HARWELL (FACILITY)

1) Owner or operator of the facility :

- (1) Owner, Engineering Division, Operator Engineering Division.
- (2) Owner, Metallurgy Division, Operator Engineering Division.

2) With which reactor is the facility associated? :

Primarily, DIDO and PLUTO (Harwell), Dounreay Fast Reactor (Dounreay), DRAGON Reactor (Winfrith) but material is also received from reactors in other countries.

3) Give details of equipment and techniques available :

- 1. Equipment for dismantling of large irradiation rigs and experimental fuel assemblies.
- 2. Equipment for the detailed examination of fuels and components including
 - (a) Measurement of length and diameter changes utilising electrical transducers.
 - (b) Collection of fission product gases using laser piercing techniques.
 - (•) Preparation of materials for examination on optical; electron and stereo-scanning microscopes.
 - (d) Precision gamma scanning of fuels.
 - (e) Machining of irradiated materials in mechanical test pieces.

INFORMATION SHEET N° 7 (cont'ed)

(f) Equipment for mechanical properties testing - tensile creep, fatigue etc.

- (g) Re-encapsulation of irradiated material.
- (h) Preparation and encapsulation of radio-isotopes, Cobalt, Caesium, Californium.

4) References of relevant publications :

See attached list.

INFORMATION SHEET N° 7 (cont'ed) (2)

References of Relevant Publications

- Bown, J.E., et al., "The High-Activity Handling Building at A.E.R.E. Harwell". Proceedings of the 2nd United Nations Conference on the Peaceful Uses of Atomic Energy. Vol. 17, pp 631-644 (September 1958).
- 2. Bown, J.E., Ritchie, A.B., "Operations in the High Activity Handling Building B.459, A.E.R.E., Harwell. Proc. 8th Conf. Hot Labs.Equip., TID7599, 1, 50 USAEC Div.Tech. Info. (1960).
- 3. Venables, H.J., "Remote Handling of Irradiated Alpha-Active Materials in the Metallurgy Division, A.E.R.E., Harwell". Proc. 8th Conf. Hot Labs. Equip., TID7599 1, 78, USAEC Div. Tech. Info. (1960).
- 4. Ritchie, A.B., Serrels, G.A., "Dismantling and Machining Operations on High Activity Rigs at Harwell", Proc. Symp. High Activity Hot Lab. Working Methods, Grenoble 1, 329 (1965).
- 5. Ritchie, A.B., "Safety Experience and the Control of Hazards in Hot Cell Operations at Harwell". Proc. 15th Conf. Remote Systems Technology p.167 (1967).
- 6. Campbell, D., "Post Irradiation Examination Facilities and Techniques" Journal of the Inst. of Nuc. Engs. Vol. 11, N° 5 p 136 (1970)
- 7. Rich, J.B., et al., "Techniques employed in the examination of irradiated prototype fuel pins for high temperature gas-cooled reactors". Proc. Symp. Post-Irradiation Examination Techniques.
- 8. Brown, P.E., et al., "Lead-shielded Micro-handling Cell for coated fuel particles". A.E.R.E. R.6702

UTILIZATION AND SPECIALIZATION OF THE HARWELL (HOT CELL FACILITY)

1) What were the original purposes of the facility? :

The two major post-irradiation examination facilities were designed in support of a materialstesting programme for the British Nuclear Power Programme. This is still the main purpose of the facility.

- 2) What major modifications have subsequently been made and for which particular research programme? No major modifications have been made to the concrete cell facilities, but the equipment within is frequently changed dependent on the research programme. The most recent changes are in support of a High Temperature Reactor programme. In the lead cell facility a number of the cells were regrouped and linked together to achieve better productivity.
- 3) For which major projects and programmes is the facility currently being used?
 - (a) High temperature reactor project.
 - (b) Fast reactor project.
 - (c) Advanced gas-cooled reactor project.

4) Major modifications planned:

A progeamme to re-build several of the older lead cells, including the provision of a new opticalmicroscope is in progress.

INFORMATION SHEET Nº 8 (cont'ed)

5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community? :

Yes.

INFORMATION SHEET Nº 1

-

MAIN CHARACTERISTICS OF THE PLUTO REACTOR AT HARWELL

Name of reactor		PLUTO	PLUTO							
Organization		U•K•A•	E.A.							
Site		Atomic Harwel	Energy R 1, Berksh	esearch Establishmer ire, England.						
In operation since		1957								
Power MW (th)		Curren	t Operati	ng Power: 22.5 MW						
Moderator		D ₂ 0								
Coolant		D ₂ 0 - 1	Primary;	H ₂ 0 - secondary						
Fluid and pressure (kg/cm ²) in experimental channe	els	Not Apj	plicable							
Nominal operation days / year		310								
Operation cycl e (days)										
on power shut down		24 4								
	Responsible	officer :	A	ddress:						
PLUTO :	W.F. Wood		Research A.E.R.E.	Reactors Division						
			Harwell, OX11 ORA	Didcot, Oxfordshire						

ł

IRRADIATION POSITIONS OF THE PLUTO REACTOR

1) Irradiation positions (in core, reflector, others)

Name	:Number	Active Length m/m	:Diamete m/m	Typical unp r:neutron flu thermal :	erturbed xes fast (>100 KeV	<pre> ν-heating): W/gr Al : </pre>	Remarks
Fuel Element (i) Mk 5/4	21	600	50	1.8×10^{14}	6×10^{13}	4	
(ii) S2	5	400	25	1.1×10^{14}	1.6×10^{14}	6	
Reflector							
C.C.A.	3	600		1.3×10^{14}	10 ¹²	0.5)
7V	4	500	175	1014	5×10^{11}	0.3) May be sub-divided to
4 v	4	200	100	5×10^{13}	2×10^{11}	0.1) 50 mm or 25 mm diameter
4VGR	4	200	600	8 x 10 ¹²	7 x 10 ⁹	Neg.)

2) Reactivity available for experiments : 8.0%

3) Typical neutron spectra available should be added on sheet N° 3

4) Specialized equipment available for experimenters (e.g., neutrography, etc.): Various handling equip-

ments, sample changing cells, data collection facilities, etc.

5) References of relevant publications :

- 6) If hot cell facilities are available on the reactor site, give its name and the organization to which they belong (give details on sheet N° 6):
 Yes, Research Reactors Division, also other large hot cells operated by Engineering Division and P.I.E. facilities in Metallurgy Division.
- 7) Are facilities available for irradiations on behalf of other organizatical of the European Community? : Yes.

TYPICAL NEUTRON SPECTRA FOR THE PLUTO REACTOR AT A E R E HARWELL

INFORMATION SHEET Nº 4

UTILIZATION AND SPECIALIZATION OF THE PLUTO REACTOR

1) What were the original purposes of the reactor?

Materials and fuels testing in support of civil power reactor programmes. Neutron Beam experiments for fundamental physics research. Isotope Production.

2) What major modifications have subsequently been made and for which particular research programme? Progressive increases in power from 10 MW to 22.5 MW in support of all programmes. Development of special fuel elements to provide more experiment facilities and harder flux spectrum

3) For which major projects and programmes is the reactor presently being used? Gas Cooled thermal reactor programme.

Fast Reactor programme.

- 4) What loops and irradiation devices have specially been developed for this reactor?
 - a) give name and purposes of the devices :

Various dynamic gas loops in support of gas-cooled reactor programmes for study of fuels, structure materials, cladding and coolant chemistry. Also effect of power cycling on fuels and cladding materials. Irradiation rigs, some of which can be loaded and unloaded at power.

INFORMATION SHEET Nº 4 (cont'ed)

b) main characteristics of specialized irradiation devices are to be listed on separate sheet N° 5

5) Major modifications planned :

Possible increase in reactor power and flux and changes to flux spectra.

MAIN CHARACTERISTICS OF SPECIALIZED IRRADIATION DEVICES IN THE PLUTO REACTOR

(give also references of relevant publications)

Gas Loops

A number of dynamic gas loops are in operation in which helium or other coolant gases at pressures up to 7 M Pa and gas temperatures up to 400° C are circulated over fissile fuel specimens. Fine control of coolant gases down to 1 v.p.m. total impurities is possible and controlled additions of moisture or other impurities is provided for. Automatic control of gas flow rates and specimen temperatures is provided. Neutron flux can be finely controlled using He³ gas as an absorber and power cycling with varying ratios (up to approx. 5) with pre-determined ratio change characteristics are achieved using the same gas.

INFORMATION SHEET No. 6

Location Organization Name of lab.	Year of active operation	Number of ^{Scope} working positions	Active area (m ²)	Gamma shielding (material, thickness (m) and density g/cm ²)	Leak tightness	Special atmosphere	Manipulators number and type	Remarks and references
1. High acti- vity handling building 459.	1958 1960	(a) 5 (b) 5	45 45	1.70 2.3 1.35 2.3	-	-	20 Master slave NEL model 9 1-General Mills Power Manipula- tion type 350. 1-GEC Power Mani- bulator.	General purpose facility Fig & fuel element dismantling. P.I.E of fue and reactor components. Preparation of radio-iso- tope sources.
2.Post Irradia- tion Labora- tory B.393.6	1959	 (a) 3 (b) 9 interconnect- ed lead cells. (c) 20 free-stand- ing lead cells 	20 14 20	1.000 3.2 0.250 11.4 various thickness 50mm to 250mm density 11.4	To maintain nitrogen atmos. of less than 2 ^{% 0} 2	Nitrogen	6 Master slave NEL model 9 180, Tong Manipu- lators Harwell type	Examination of advanced reactor fuels.
3. DIDO Handling cell	1957	3	16	1.37 2.3	-	-	6 type ARGONNE 8 and 9. 1 over- head electrical- ly and hydrauli- cally operated (Limbry & Heron Ltd)	Fig and fuel dismentling or repair.
4. Miscellaneous	cells in t	the Metallurgical and	Chemistry B	uilding equivped for sp	ecial nurpose	s e.g. Gamma	scanning, Chemica	l analysis etc.
5. Miscellaneous reactors for absorber main	cells in l rig sample tenance etc	DIDO % FLUTO changing,	ur to 1m ²	0.25 11.4	-	-	up to 4 long manipulators	

MAIN CHARACTERISTICS OF FACILITIES FOR POST-IRRADIATION EXAMINATIONS AT

230

EQUIPMENT AND TECHNIQUES AVAILABLE FOR POST-IRRADIATION EXAMINATIONS AT THE AERE HARWELL (FACILITY)

1) Owner or operator of the facility :

- (1) Owner, Engineering Division, Operator Engineering Division.
- (2) Owner, Metallurgy Division, Operator Engineering Division.

2) With which reactor is the facility associated? :

Primarily, DIDO and PLUTO (Harwell), Dounreay Fast Reactor (Dounreay), DRAGON Reactor (Winfrith) but material is also received from reactors in other countries.

- 3) Give details of equipment and techniques available :
 - 1. Equipment for the dismantling of large irradiation rigs and experimental fuel assemblies.
 - 2. Equipment for the detailed examination of fuels and components including
 - (a) Measurement of length and diameter changes utilizing electrical transducers.
 - (b) Collection of fission product gases using laser piercing techniques.
 - (c) Preparation of materials for examination on optical, electron and stereo-scanning microscopes.
 - (d) Precision gamms scanning of fuels.
 - (e) Machining of irradiated materials for mechanical test pieces.
 - (f) Equipment for mechanical properties testing tensile creep, fatigue etc.
 - (g) Re-encapsulation of irradiated material.
 - (h) Preparation and encapsulation of radio-isotopes, Cobalt, Caesium, Californium etc.

4) References of relevant publications : See attached list.

INFORMATION SHEET N° 7 (cont'ed)

References of Relevant Publications

- Bown, J.E., et al., "The High-Activity Handling Building at A.E.R.E. Harwell". Proceedings of the 2nd United Nations Conference on the Peaceful Uses of Atomic Energy. Vol. 17, pp 631-644 (September 1958).
- 2. Bown, J.E., Ritchie, A.B., "Operations in the High Activity Handling Building B.459, A.E.R.E., Harwell". Proc. 8th Conf. Hot Labs. Equip., TID7599, 1, 50 USAEC Div. Tech. Info. (1960)
- 3. Venables, H.J., "Remote Handling of Irradiated Alpha-Active Materials in the Metallurgy Division, A.E.R.E., Harwell". Proc. 8th Conf. Hot Labs. Equip., TID7599 1, 78, USAEC Div. Tech. Info. (1960)
- 4. Ritchie, A.B., Serrels, G.A., "Dismantling and Machining Operations on High Activity Rigs at Harwell", Proc. Symp. High Activity Hot Lab. Working Methods, Grenoble 1, 329 (1965).
- 5. Ritchie, A.B., "Safety Experience and the Control of Hazards in Hot Cell Operations at Harwell". Proc. 15th Conf. Remote Systems Technology p.167 (1967).
- 6. Campbell, D., "Post Irradiation Examination Facilities and Techniques" Journal of the Inst. of Nuc. Engs. Vol. 11, N° 5 p 136 (1970).
- 7. Rich, J.B., et al., "Techniques employed in the examination of irradiated prototype fuel pins for high temperature gascooled reactors".
 Proc. Symp. Post-Irradiation Examination Techniques.
- 8. Brown, P.E., et al., "Lead-shielded Micro-handling Cell for coated fuel particles", A.E.R.E. R.6702

UTILIZATION AND SPECIALIZATION OF THE HARWELL (HOT CELL FACILITY)

1) What were the original purposes of the facility? :

The two major post-irradiation examination facilities were designed in support of a materials testing programme for the British Nuclear Power Programme. This is still the main purpose of the facility.

- 2) What major modifications have subsequently been made and for which particular research programme? No major modifications have been made to the concrete cell facilities but the equipment within is frequently changed dependent on the research programme. The most recent changes are in support of a High Temperature Reactor programme. In the lead cell facility a number of the cells were regrouped and linked together to achieve better productivity.
- 3) For which major projects and programmes is the facility presently being used?
 - (a) High temperature reactor project.
 - (b) Fast reactor project.
 - (c) Advanced gas-cooled reactor project.
- 4) Major modifications planned :

A programme to re-build several of the older lead cells, including the provision of a new optical microscope is in progress.

INFORMATION SHEET Nº 8 (cont'ed)

5) Are facilities available for post irradiation examinations on behalf of other organizations within the European Community?

٠

Yes.

.

SALES OFFICES

The Office for Official Publications sells all documents published by the Commission of the European Communities at the addresses below and at the price listed on the back cover. When ordering, specify clearly the exact reference and the title of the document.

BELGIQUE --- BELGIÈ

Moniteur belge — Belgisch Staatsblad

Rue de Louvain 40-42 — Leuvenseweg 40-42 1000 Bruxelles — 1000 Brussel. — Tél. 512 00 26 CCP 000-2005502-27—Postrekening 0000-2005502-27 *Sous-dépôt — Agentschap :* Librairie européenne — Europese Boekhandel Rue de la Loi 244 — Wetstraat 244 1040 Bruxelles — 1040 Brussel

DANMARK

J.H. Schultz — Boghandel Møntergade 19 116 København K — Tel 14 11 95

BR DEUTSCHLAND

Verlag Bundesanzeiger Breite Straße — Postfach 108 006 5000 Köln 1 — Tel. (0221) 21 03 48 (Fernschreiber : Anzeiger Bonn 08 882 595) Postscheckkonto 834 00 Köln

FRANCE

Service de vente en France des publications des Communautés européennes — Journal officiel 26, rue Desaix — 75 732 Paris - Cedex 15 Tel.(1) 578 61 39 — CCP Paris 23-96

IRELAND

Stationery Office — The Controller Beggar's Bush — Dublin 4 Tel. 76 54 01

ITALIA

Libreria dello Stato Piazza G. Verdi 10 00198 Roma — Tel. (6) 85 08 CCP 1/2640 Agenzie : 00187 Roma - Via XX Settembre - (Palazzo Ministero delle finanze) 20121 Milano - Galleria Vittorio Emanuele 3

GRAND-DUCHÉ DE LUXEMBOURG

Office des publications officielles des Communautés européennes Boîte postale 1003 — Luxembourg Tél. 49 00 81 — CCP 191-90 Compte courant bancaire — BIL 8-109/6003/300

NEDERLAND

Staatsdrukkerij- en uitgeverijbedrijf Christoffel Plantijnstraat, 's-Gravenhage Tel. (070) 81 45 11 - Postgiro 42 53 00

UNITED KINGDOM

H.M. Stationery Office P.O. Box 569 London SE1 9NH — Tel. 01-928 6977, ext. 365 National Giro Account 582-1002

UNITED STATES OF AMERICA

European Community Information Service 2100 M Street, N.W. — Suite 707 Washington, D.C. 20 037 — Tel. (202) 872 8350

SCHWEIZ - SUISSE - SVIZZERA

Librairie Payot 6, rue Grenus – 1211 Genève CCP 12-236 Genève – Tél. 31 89 50

SVERIGE

Librairıe C.E. Fritze 2, Fredsgatan — Stockholm 16 Post Giro 193, Bank Gıro 73/4015

ESPAÑA

Librería Mundi-Prensa Castelló 37 — Madrid 1 Tel. 275 46 55

OTHER COUNTRIES

Office for Official Publications of the European Communities Boîte postale 1003 — Luxembourg

Tél. 49 00 81 — CCP 191-90 Compte courant bancaire : BIL 8-109/6003/300

NOTICE TO THE READER

All scientific reports published by the Commission of the European Communities are announced in the monthly periodical **'euro-abstracts'**. For subscription (1 year : FB 1 025.—) please write to the address below.

FB 600 D Kr 94,50 DM 40,50 FF 72 Lit 10900 FI 41,50 £ 7.30 US-\$ 17.20