COMMISSION OF THE EUROFEAN COMIMUNITISS

Com(75) 573 final
Brussels, 17 December 1975

HILLMAN

PROPOSAL FOR A COUNCIT DIRECIIVE
on the approximation of the laws of the Member
States relatine to
CHECK-WEIGHING AND GRADING MACHINES
(submitted to the Council by the Commission)

HKPLAMATORY IEORANDUI

This directive is adopted in application of Article 100 of the Treaty and Council Directive N^{0}. $71 / 310 / \mathrm{EFC}$ of 26 July 1971 on the approximation of the laws of the Member States relating to common provisions for both measuring instruments and methods of metrological control (1).

The aim is to remove existing technical barriers to intra-Community trade in the check-weighing and grading machines sector which exist because of differences between the notional laws governing these instruments in the various Member States.

The rules applicable in the Member States to cheok-weighing and grading machines differ fairly widely. These differences are not limited to technical design specifications but also concern the degree of precision required and the control techniques to which these weighing machines must be subjected before being put on the market.

At the trading level similar situationsarise from the fact that manufacturers are obliged to diversify their production to take into account the laws in force in the Member State where the weighing machines are to be used, and the fact that they have to undergo repeated checks carried out in accordance with differing procedures.

As the existing national laws are justified by a legitimate wish to protect consumers and users, the only possible method of removing the inconvenience resulting from divergences between the laws' would appear to be the harmonization of those laws and the oreation of the conditions necessary for establishing the common 解arket.

The term "weighing and grading machines" oovers instruments which can - without the help of an operator - divide up a group of articles, also called "loads", into several subgroups according to the respective weights of these articles.
There are several types of "weighing and grading machine" ; of these, the check-weighing and grading machine divides up articles the weights of whioh vary on either side of a predetermined value called the nominal weight.
(1) OJ of the European Communities N°. L 202 of 6 September 1971.

Ciock-weighing machines ars used chiefly in filling and prepackaging works. They are used at the end of the process to cheok whether each prepackaged lot complies with the appropriate nominal quantity and where it does not, to eliminate any lot whose weight or volune falls short of this nominal value.

This application illustrates how important the instrument is both for the producer or packers and for the end consumer.

To some extent, correat prepackaging of products put on the market depends on the precision of this type of weighing machine.

This draft direotive therefore aots as a complement to direotives on prepaokaging submitted earlier and, together with them, forms a corpus which cannot but be beneficial to the consumer.

In addition, at the same time as bringing about harmonization between the different national laws concerning these machines, the directive would make it possible for them to circulate freely within the Community ; at present this is not the case.

Defining Community procedures on pattern approval and initial verification for these weighing machines; and the concomitant reciprocal recognition of controls, would simplify the formalities which producers and oustomers have to undergo. This Birective would mean one more measuring instruments seotor harmonized at Community level:

CONSULTATION OF PARLIAMENT AND THE ECONOMIC AND SOCIAL COIMTMEP

Pirsuant to the provisions of the second paragraph of Article 100 of the Treaty, these two bodies must be consulted. Implementation of the provisions of the Directive would, in the case of some Member States, require amendments to their laws.

Pioposaiv ion a comvil dinemtrij
on the approximation of the laws of, the liember States
relating to CHECK-WEIGHING AND GRADING MACHINES

(subnitted by the Commission to the Council)

THE COUNCIL OF THE BUROPRAN COMUNITISS,
Having regare to the Treaty establishing the Buropean Economic Community, and in particular Article 100 thereof,

Having recard to the proposal from the Commission,
Having regard to the Opinion of the Buropean Parliament,
Having regard to the Opinion of the Economic and Social Committee,
Whereas in the variaus Member States construction and testing methods for oheol-weighing and grading machines are subject to mandatory provisions which differ from one Hember State to the next and therefore hinder trade in these instruments ; whereas it is therefore necessary to align these provisions,

Thereas the Council Directive of 26July 1971 on the approximation of the laws of the Member States relating to common provisions for both measuring instruments and methods of metrological control (1) defines the procedures for hich pattern approval and EEC initial verification ; whereas, in accordanoe with this Directive, it would be appropriate to draw up technical design and operating specifications with whioh theso check-weighing and grading machines have to comply if they are to be imported, marketed and freely used after undergoing tests and having tho relevant marks and signs affixed, Whereas, the abovementioned Directive also states that, where the conditions allow, the separate direotives may specify the date by which cach Member State shall annul the national provisions applioable to instmunents similar to those which comply with the Community provisions ; whereas in this casc it is not yet permissible to fix such a date,

HAS ADOPTHD THIS DIRECTIVE:

article 1

This Directive shall apply to cheok-weighting and grading machines. These instruments are defined in point l of the Annex.

Article 2

Check-weighing and grading machines for which EEC signs and marks may be issued are described in the Annex. They shell be subject to IFEC pattern approval and FEC initial verification.

Article 3

No Member State may prevent, proinibit or restrict the placing on the market of entry into service of cheok-weighing and grading machines bearing the sign certifying ITC pattern approval or the mark certifying ITS initial verification for reasons connected with their metrological characteristics.

Article 4

1. Member States shall put into force the laws, regulations and administrative provisions needed in order to comply with this Directive within eighteen months of its notification and shall forthwith inform the Commission thereef.
2. Member States shall communicate to the Commission the text of the provisions of national law which they adopt in the field oovoriod by the perbotive.

Article 5

This Directive is addressed to the Member States.

Done at Brussels, For the Council

The President

GEIPITMR 1
Gencral considerations

1. General definition

A weighing and grading maohine divides up, without the help of an operator; a group of articles; also called "loads", into soveral sub-groups aocording to the respective weights of these articles. A distinction is made between: grading and checling machines and grading and classifying machines : ':

- a grading and checking machine divides up articles the woights of which vary on either side of a prodotermined value called the nominal woight. The function of the grading machine is to divide the articles into two or more sub-groups according to the valuc of the difference between their weight and the nominal weight ;
- a grading and classifying machine divides articles of different weights for which there is no predetermined nominal woight. The function of the grading machine is to classify the articles into several sub-groups, each characterized by a fixed weight rance. This Directive only concerns checkwoighing and grading machines.

2. Terminology

2.1. Classification of machines

2.1.1. according to their method of operation :

- weighing and grading machines with continous movement of the loads; or"contanwous grading machines" : the movement of the loads on to the load receptor is continuous and the weight information is accuired during this movement;
- weighing and grading machines with discontinuous movenent of the loads, or "discontinuous grading machines" : the movement of the loads on to the load receptor is discontinuous and the weight information is acquired when the load is at rest.
2.1.2. according to their method of grading :

The grading may take the form of :

- the appearance of physically distinct sub-groups leaving the machine ;
- the counting of these sub-eroups by meters without any physical separ ration ;
- the etamping on each load of a distinctive mark for the subgroup to which it belongts ;
- sevaral of the operations mentioned above.
2.2. Component equipment
2.2.1. Measpuring train
2.2.1.1. Weigh cell

Non-automatic weighing instrument or part thereof designed to supply information relating to the weight of the loads to be graded.

It consists of a load reocptor, a load-balancing device which may

 weon if mad ärofaremoc value, in units of weight.
2.2.1.2. Tripping dovice

Device that gives the order to acquire weight information.
2.2.1.3. Processing transducer

A devide which converts the date from the weighing unit into an electrical or other signal and processes this signal to give a grading order.

2.2.1.4. Grading indicator

A device which givos at least one of the following items of information :

- the weight of the graded load; ;
- the difference between this weight and a reference value;
- the sub-group to which the gradod load belongs.
2.2.2. Load Conveyor

Device designed to enable the loads to be moved on to the load recepter. It may form part of the weigh cell.
2.2.3. Presotting Devico

Dovice for fixing the weight limits of the load sub-groups.
2.2.4. Grading Device

Dovice by which, where appropriate, the loads are divided into physically scparate sub-groups.
2.2.5. Zeroing Device

Device which automatically corrects, in the light of the grading results, the setting of the machine making up tho loads upstroam fron the gracing machine.
2.2.6. Counters

Devices indicating the number of loads which have moved on to the load receptor (movement counter) or indicating the number of the loads in each of the sub-groups (division counters).
2.3. Grading characteristics
2.3.1. Grading Reference Setting

Value expressed as a unit of weight, set by the operator by means of the presetting device, in order to establish the limit between two consecutive load sub-groups.
2.3.2. Grading Point

Value in unit of woight in respect of which two different grading decisions may be taken, each having the same probability.
2.3.3. Grading Range

Wiight interval within which the grading reference settings can be adjusted for a given nominal weight valuo of the loads.
2.3.4. Grading Interval

Rango, expressed in units of weight botwoen two consecutive grading roference sottings.
2.3.5. Grading Brror

Difference between the value of the grading reference setting, and that of the grading point.
2.3.6. Weight Category
n grading referonce settings divide the whole range of weights from zero to infinity into ($n+1$) weight oategories consisting of load sub-groups.
2.3.7. Drift

Variation in the value of the grading point per unit of time.
2.3.3. Zone of Indecision

Extent, expressed in units of weight, of the zone within which the machine may make two different decisions in respect of the same load.
2.3.9. Conventional Zone of Indecision

Zone in whioh the smallest ratio of distribution of the saine load in two oonsecutive sub-groups is greater than or equal to $0,1 \%$.
2.3.10. Orading Rate

Number of loads graded per unit of time.
2.3.11. Load Length

Size of the load as measured in the direction in which it is moving.
2.3.12. Weighint Time

Time elapsed between the moment when the load is oompletely on the load receptor and the moment of aoquisition of the weight information.
2.4. Motrological oharacteristice
2.4.1. Maximun Capacity (Max)

The design value of the maximum weight of the load which can be gram ded under normal conditions.

2.4.2. Nominal Zone of Indecision (U)

Value of the zone of indecision, expressed in a unit of weight, which is characteristic of the machine, fixed by the manufacturer and shown on the machine.

2.4.3. Response Time

Time elapsed between the moment when the load is completely on the load receptor and that following which the instantaneous response of the weigh cell differs from the final response by a quantity constantly less then 0.5 U .
2.4.4. Scale Division of the Weigh cell

If the weigh cell has an indicating device, its actual or conventtional scale and its verification scale shall be specified in accordance with the Annex to Directive No. 73/360/EEC relating to nonautomatic weighing machines.
3. Definition of the various machine precision classes

The machines are divided into three classes, according to their maximum capacity and their nominal zone of indecision.

The class is determined by the ratio of the nominal zone of indecision to the maximum capacity :

Class $0.05: \frac{U}{\operatorname{Max}} \leqslant \frac{1}{1000}$
Class $0.2: \frac{1}{1000}<\frac{U}{\operatorname{Max}} \leqslant \frac{1}{250}$
Class 1
$\frac{1}{250}<\frac{\mathrm{U}}{\operatorname{Max}} \leqslant \frac{1}{50}$

CHAPTHR II

PROVISIONS CONCERNING THE OPERATION OF THE MACHINES

4. Metrological recuirements

4.1. \quad| Minimum Value of a Grading Interval |
| :--- |
| This velue is equal to twice the value of the nominal zone of inde- |
| oision U. |

5. Maximum permissible errors
5.1. On initial Verifioation
5.1.1. Weigh cell

When the weigh cell has its own indicating device it is a nonautomatic weighing machine for the purposes of Direotive N°. $73 / 360 /$ max and must fulfil the requirements relating to the maximum permissible errors inherent in it and ascertained through static tests.
5.1.2. Zone of indecision

The zone of indecision determined during tests carried out in 2000% dance with this Annex shall not exceed 0.8 times the nominal zone of indecision.
5.1:3. Grading Emror

The grading error ehall not exceed 0.8 times the nominal zone of indecision.
5.2: In Servioe
5.2.1. Weigh cell

Whon the weigh cell has its own indicating device, it is regarded as a non-automatic weighing machine for the purposes of Direotive N°. $73 / 360 / \mathrm{xGC}$ and must fulfil the requirements relating to the maximum permiseible errors inherent in it and ascertained through statio tests.

5.2.2. . Zone of indecision

The zone of indecision determined during tests carried out in accorddance with this Annex shell not exceed the nominal zone of indecision.
5.2.3. Grading error

The grading error shall not exceed the nominal zone of indecision.
6. Conditions for the application of the maximum permissible errors

6.1. Normal Conditions of Use

6.1.1. Weight of loads

The weight of the graded loads shall be less than or equal to the maximum capacity of the machine.
6.1.2. Weighing time

This must be greater than or equal to the response time and less than or equal to the time during which the load is completely on the load receptor.

Accordingly, for loads of a given length, there is a maximuconveyor speed and a maximum grading rate above which the normal conditions of use are no longer fulfilled.

For ail speeds less than or equal to the maximum speed, the errors and the sone of indecision shall remain less than or equal to the values specified in point 5 .
6.2. Influenoe Factors
6.2.1. Power supply

Variations in the voltage of the power supply source ranging from $+10 \%$ to -15% of its nominal value and frequency variations of $\pm 2 \%$ of the nominal value shall not cause the grading point values to very by more than 0.5 times the nominal zone of indecision.
6.2.2: Ambient temperature

If the identifioation plate oarries no particular speoifioation, the machines shall meet the requirements of items 5.1.2. and 5.2 .2 between -10° and $+40^{\circ} \mathrm{C}$ and the requirements of items 5.1.3. and 5.2.3. within a range of plus or minus $x^{\circ} \mathrm{C}$ on either side of any ambient temperature at the time of adjustment, ranging between $0^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$.

Machines for which a specific temperature range of at least $30^{\circ} \mathrm{C}$ is given on the identification plateshall neet the abovementioned requirements only within the limits of this range.

However, when the identification plate speoifies that the machine must be operated in an air-conditioned atmasphere the temperature range may be reduoed to $10^{\circ} \mathrm{C}$.

These provisions apply to stabilized temperatures and to fluctuations in ambient temperature not exoeeding $5^{\circ} \mathrm{C}$ per hour.
6.2.3. Tilting

This relates only to machines which are not permanently fixed to one place. In relation to its reference setting position, a machine shall meet th: requirements of Point 5 when tilted longitudinally or transversely in a slope of up to 2 per thousand.
6.2.4. Other factors of influence

The machines shall be protected as far as necessary in order to satisfy the provisions of Section 5, if, in nomal conditions of use, they are affected by other factors of influence such as magnetic fiela, electrostatio foroe, vibrations, atmospheric conditions, restraints and mechanical stresses.

CHAPTHR III

PROVISIOHS CONGERNTNG THE CONSTRUUCTION OF MAGHINES
7.1. Suitability for use

Machines shall be so designed that they meet the purpose for which they are intended and shall be of careful and robust construction.
7.2. Reliability

Machines shall be so constructed that a maladjustment or operational failure cannot normally occur without the effect of the maladjustment or failure being clearly perceptible,

7.3. Oscillation demper

If the effectiveness of the oscillation dampers depends on temperature they shall be fittod with an automatic regulating device. "If this device draws upon a source of power the using of such power must be olearly signalled. The damper regulating device must not be directly accassible to the user.
7.4. Conveyor

If the conveyor comprises a belt, tapes or chains intended to pass the loads on to the load receptor and if the tension of these belts, tapes or chains can affect the weight information received by the weigh cell it must not be possible for the user direotly to operate the device for regulating the tension.
7.5. Levelling devica level indioator

Nachines to which item 6.2.3. applies shall have a levelling device and a level indicator fastened to the machine in such a way that they cannot be removed.
7.6. Operation of the load-balancer and presettine device

It must be possible to manipulate the control devices both of the load-balancer and of the presetting device, unladen or laden according to the type of machine, to within at least a quarter of the nominal zone of indecision.

7.7.

7.8. Detachable weights and "Balanoing weights"

The detachable weights used with the check grading machines must be in conformity with the EBEC Directives N°. $71 / 317$ and N°. 74/148, their accuracy class being that appropriate to the class of the grading machine.

When, from a technical point of view, it is absolutely necessary, these weights may be replaced by "balancing weights" which meet the followwing requirements:

- the shape must be different from that of the detachable weights ;
- they must bear the following indications : number af the grading machine and conventional identification of the weight.
7.9. Identification

Machines must bear the following data, in the order given :
7.9.1. Data expressed in plain language :
-. identification of the manufacturer ; if applicable; identification of the importer ;

- year and number of manufacture ;
- identification mark on each component of machines comprising separate commented components.
7.9.2. Data expressed in code :
- HiC pattern approval mark ;
- accuracy class in the following form:
- maximum capacity, in the followinc form : Max
- nominal zone of indecision, in the following form :
- response time, in the following :

- where appropriate, accuracy class and scale interval of the weigh cell, in the form provided for in Directive $N^{\circ}: 73 / 360$ FFC ;
- if necessary, an indication of the temperature range, as laid down in item 6.2 .2, in the following form : ... ${ }^{\circ} \mathrm{C} / \mathrm{C} . \mathrm{A}^{\circ} \mathrm{C}$;
- voltage and frequency of the electricity supply cirouit, in the following form : V

7.9.3. Other data

Data other than those laid down in this Annex may be required or authorized by HFC pattern approval.
7.9.4. Appearance of identification data

Identification data must be indelible and be of such size, shape and clerity as to be easily legible.

They must be arranged on an identification plate fixed in a olearly visible manner close to the adjustment controls.

It must be possible to seal the mounting for the data except if it is such that it would be destroyed by removal.

CHAPTITR IV

EEEC PATTEERN APPROVAL

EFF pattern approval of check grading machines shall be carried out in accordance with the requirements of Council Directive $\mathrm{N}^{\star}, 72 / 316 / \mathrm{EFC}$ of 26 July 1971 on the approximation of the laws of the Member States relating to common provisions for both measuring instruments and methods of metrological control. "Certain of these requirements are specified in this Chapter.

8. Applioatión for pettern approval

The application for EEG pattern approval shall comprise the following information and special documents :

8.1. Characteristics

- some of the data specified in iten 7.9. ;
- for continuous grading machines, table showing the maximum operar ting rates in keeping with the conveyor-bolt speed and the load length ;
- electrioal characteristics of the measuring train components.
8.2. Desöriptive documents

These shall include schematio diagrams enabling the working of the machine to be easily understood, diagrams of olectrical cirouits relating to supply, piok-up and measurement; and photographs.
9. Limited FBEC pattern approval

Limited EECC pattern approval decisions may be made, after prior consultation with the other Member States, in order to permit the performance of tests under normal conditions of use.

The validity of these decisions shall be limited to five years at the most and the places of installation of the machines must be notified to the competent authorities.

10. Examination for HEC pattern approval

10.1. Place of testing

Machines being considered for approval may be installed :

- either on the premises of the Metrology Servioe with whioh the application has been lodged ;
- or in any place judged suitable by agreement between the Metrology Service concerned and the applicant.
10.2. Provision of the means of checking

The means of cheoking which the Metrology Service may require from the applicant are the test loads, the means of handling and the qualified staff which the performance of the tests demands and the requisite checking instruments.
10.3. Checking that the construction complies with legal reguirements

Machines shall meet the construction requirements speoified in Chapter III.
10.4. EEC pattern approval tests

Machines which may bear several grading reference settings shall be submitted for testing with at least two grading reference settings. In the utilization zone the machines shall meet the operating requirements specified in Chapter II. The operational tests shall take into account the conditions for use specific to the machines tested.
10.4.1. Static tests
10.4.1.1. Tests with eccentric loads

Under a load equal to one third of the maximum capacity, the extreme difference between the values of the standard weights corresporiding to the equilibrium position when these weights are placed on any different points on the load receptor shall not exceed 0.5 U .
10.4.1.2. Special tests for machines the weigh cell of which is a selfcontained non-automatic weighing machine

The non-automatic weighing machine shall undergo the sensitivity, mobility and accuracy tests specirfied. in Direotive N°. $73 / 360 /$ EFSC of 19 November 1973.

The permissible reading errors shall be the same as those for nonautomatic weighing machines in keeping with their scaie division and accuracy class.
10.4.1.3. Variation of the grading point under the effect: of influence factors

The purpose of these tests is to determine statically the variation of the grading points for different loads not greater than the maximum capacity, under the effect of the various influence factors listed in item 6.2.

The variations obtained under the effect of each influence factor must be compatible with the provisions of item 6.2.
10.4.2. Measurement of response time.

The response time shall be measured under oonditions free of influence factors. The values obtained must be less.than or equal to the value shown on the identification plate.

The data referred to in item 8.1. concerning the maximum operating rates as a function of the belt epeed and the load lengith must be compatible with the values obtained for the response time.
10.4.3. Tests under" normal conditions of use
10.4.3.1. Zone of indecision and grading emror

The tests, under normal conditions of use, shall be carried out in accordance with the method described in item. .22,3.1. (Reference method), with the machine operating elther on a production line or on a load circuit simulating a production Iine, the test loads, of various weights above and below a mean value, being themselves quite numerous.

10.4.3.2. Drift of the grading point

These tests, carried out with loads of the same nominal weight without altering the machine settings and without varying the factors of influence, shall be repeated several times during a period of at least eight hours. The grading errors must conform to the provisions of item 5.1.3. without the difference between the extreme values exceeding 0.5 U .
10.5. IEC pattern approval test report

The EFSC pattern approval test report shall include the results of the tests specified in item 1.0 .4 , and any relevant data arising from the various tests, especially from those on the operating safety devices.

In its conclusion, the report shall contain an opinion for or against EEC pattern approval.
10.6. Special conditions required by EEC pattern approval.

When EAFC pattern approval requires the machines to comply with special conditions, these must be shown on the pattern approval certificate.

CEAP TM V

EEC INITAL VIRTFTGATION

Hed initial verification of weighing and grading machines shall be carried out in acoordanoe with the requirements of Counil Directive N°. $71 / 316 / \mathrm{EPC}$ of 26 July 1971 on the approximation of the laws of ting Hember deates relating to common provisions for both measuring instrumenta and methods of metrological control.

These requirements shall be supplemented and rendered specifio by the follom wing special provisions

11. Place of BHC initial verification

KHEC initial verification shall be carried out in two stages :
First stage - at the choice of the Metrolagy Service concerned : at the verification office or
on the premises of the manufaoturer or his agent or at the place of installation.

The seoond stage shall be acoomplished at the place of installation by the oompetent local Metrology Service.

12. Methods of testing

12.1. Provision of means of testing

The material means which the metrology service may demand from the applicant are, in partioular the test loads, the handling equipment and qualified staff required to perform the tests, and the requisite testing instruments.
12.2. Tests during the first stage

These tests are the statio tests specified in item 10.4.1.

12.3. Tests during the seoond stage

These tests may be carried out either by one of the methods hereinafter described or by any other method offoring equivalent security.

M k S.1. Reforence method (see item 14.2.)
In respect of the nominal set point the machine shall be caused to cheok test weights at 7 points spanning the zone of indecision.

Assiming that the approximate values of the set point and of the zone of indecision are already known or are determined by means of preliminary tests; the mass of the test weights to be used is obtained as follows :
$m_{1,7}=A \pm 1.645 \cdot \frac{B}{6} m_{2,6}=A \pm 1.282 \cdot \frac{B}{6}-m_{3.5}=A \pm 0.842 \frac{B}{6}-m_{4}=A$
where :
$A=\frac{H+L}{2} \quad B=H-L$
H and L are the approximate values of the mass at the limits of the zone of indecision.

The test weights shall be similar in shape to the artioles which the machine is desigmed to checkweigh.

Each test weight shall be passed over the machine 50 times, exoept in the case of the two (2) lightest and two heaviest weightss which shall be passed 200 times each.

The test weights shall be passed in random order. However, the test T weights at the opposite extremes of the zone of indeoision should follow each other consecutively, separated by a time interval which corm responds to the maximum rate of checkweighing.

The results logged for the various tests shall be set out in a table as show under item 14.2. From these results it will be possible to calculate the zone of indecision and the set point in the prescribed manner.

12.3.2. Method A

A load is employed the weight of which is equal to the minimum desired load.

Adjust the "minimum" operating referenoe setting so that a "minimum signal always appears during "n" weighings.

Make cortain that when the load in inoreased by a value approximatem ly one tenth of the nominal zone of indecision the "normal" signal appears at least once during "n" weighings.

Continue the test by increasing the test load by low values until the "normal" signal is obtained constantly in the course of " n " weighings.

The difference botween the two extreme values found is an estimate of the zone of indecision, the difference between the grading referenoe setting and the middile of this zone being the estimate of the grading exror.
12.3.3. Method B (seeitem 14.3.s)

If the mechine has. at least two greding referenoe settings both must be adjusted until a load distribution in the three weight oategories is obtained, the grading interval being approximately 1.5. to 3 times the nominal zone of indeoision.

Onoe the maohine is working normally, separate from the other loads the first 200 loads olassed in the abovementioned grading interval. weigh them on a suitable oheoking instrument, eliminate the two extreme values found and note the penultimate values.

The disorepanoy between the difference between the penultimate values and the grading interval is an estimate of the zone of indeciaion; half the sum of the penultimate values minus half the sum of the grading referenoe settings is th e estimate of the grading exror.

If the machine has only one grading reference setting adjust it so as to obtain a virtually equal distribution between the two categories. Weigh the first 200 loads of each oategory, noting the penultimate values, the heaviest of the light category and the lightest of the heavy oategory ; the difference between these two values is the estimate of the zone of indecision, the estimated grading point being equal to half the sum of these two values.

12.3.4. Method C (soe item 14:4.)

This is derived from method A and requires caloulation, but it presupposes that the distributions around a grading point obey the normal 'law.

Aljust the test load to a value x_{1} such that a minimun" signal appears almost constantly and the "normal" signal appears only k_{1} times; K_{1} being very small compared with the nimber "N" of times this load passes among the others of the batoh to be checked.

The test load shall then be adjusted to a value x_{2} suoh that k_{2}, the number of times when the "normal" signal appears; approximates very closely, to "N", the number of times the load passes.

As the ratios $\frac{k_{1}}{N}$ and $\frac{k_{2}}{N}$ are respectively equal to $P_{1} \%$ and $\mathrm{P}_{2} \%$, the tables of the normal law make the reduced normal variables u_{1} and u_{2} correspond, to P_{1} and P_{2}

Now $u=\frac{x-m}{\sigma}$ and knowledge of the values x_{1}, x_{2}, u_{1} and u_{2} gives the values for m (grading point) and σ (standard deviation of the zone of indecision): Where $N=100$ and m can be satisfactorily determined.

CHAPIERR VI

TA-SMRUICE VFRTFICATION

13. In-Service tests

In-servioe checks shall be made under the same conditions as the secondstage tests of the initial verifioation and carried out under normal conditions of use, the maximum permissible errors provided for in item 5.2. being applied.

CHAPTER VII

24.1. 7OME OF TNOECISIOK

As the loads are distributed in a random fashion around a grading point, experience shows that the zone of indecision does not have precise boundories and it is thus necessary to take as a value for this zone the difference between the two loads, the smallest ratio of distribution of which in each of the subgroups is lower than a determined paroontage which is the same for each of the loads.

Therefore the zone of indecision could be defined as follows:

The zone of indecision is the zone in which the smallest ratio of distribution of a given load in two consecutive subgroups is gream ter than or equal $\div \frac{0,002}{2}$
14.2. RETHRTNCE METHOD

Procedure in logging_tho test results and oaloulating the zone of indegision_and_the_set_point.
M_{0} is the mass of the test weight to which incremental masses x_{i} are added. If a particular test mass ($M_{0}+x_{i}$) is passed over the machine n_{i} times and is accepted r_{i} times $\}$ then r_{i} / n_{i} will vary from 0 to I as i varies from 1 to k. k is thus the number of different test massee which are used to span the zone of indecision (ie from $i=$ 2 to $i=k-1,0<r_{i} / n_{i}<1$).

The test result values of x_{i}, r_{i} and n_{i} are entered into the table below The values for nw and nay are found from tables 2 and 3 for $n=50$ and $\mathrm{n}=200$ respectively.

The values of $n_{i} w_{i} x_{i}, n_{i} w_{i} x_{i}{ }^{2}$ and $n_{i} w_{i} x_{i} y_{i}$ are then calculated and column $5,6,7,8$ and 9 are summed to give respectively

$\therefore \therefore-\quad$,

PARE 1

The following quantities are calculated from the summations given in Table 1 :

$$
\begin{aligned}
& \overline{\mathrm{x}}=\frac{\sum \sum_{i} w_{i} x_{i}}{\sum n_{i} w_{i}} \\
& \therefore \overline{\sum_{n} n_{i} w_{i} y_{i}} \\
& \bar{y} n_{i} w_{i}
\end{aligned}
$$

and

$$
b=-\frac{S\left(n_{w x y}\right)}{S\left(n_{w} x x\right)}
$$

Then the estimate \hat{M} of the set point M is given by

$$
\hat{M}=M_{0}+\hat{m} \text { where } \hat{m}=\bar{x}-\frac{1}{b} \bar{y}
$$

The estimate $\hat{\nabla}(\hat{m})$ of the variance of \hat{i} is given by

$$
\hat{v}(\hat{m})=\frac{1}{b^{2}}\left[\frac{1}{\sum^{n_{i} w_{i}}}+\frac{\bar{y}^{2}}{b^{2} s(n w x x)}\right]
$$

The estimate \dot{Z} of the zane of indecterion Z is given by

$$
\hat{z}=\frac{6}{\hat{b}} .
$$

The estimate $\hat{\nabla}(\hat{z})$ of the variance of \hat{Z} is given by

$$
\hat{v}(\hat{z})=\frac{36}{b^{4} s(n w x x)}
$$

The interval of confidence at $100\left(1-\frac{1}{2}\right) \%$ which straddles the true value of the characteristic, in other words the interval for which the probability that it atradilos the true value is at least ($1-\frac{1}{C 2}$), is obtained by applying Tchebyoheff's inequality which states that

Where C is chosen to give the required minimum probability
E is the estimate of the value of the characteristic obtained from the is test data
T is the true value of the characteristic
V is the variance of the estimate \mathbb{E} obtained from the teat data
Using this formula the limits to a doublemsided 95% confidence interval on the set point M are \%

$$
\hat{M}-\sqrt{20} \hat{\mathrm{~V}}(\hat{m}) \text { and } \hat{M}+\sqrt{20 \hat{V}(\hat{m})}
$$

and the limits to a deuble-sided 95% confidence interval on the zone of indecision Z are

$$
\hat{z}-\sqrt{20} \hat{v}(\hat{z}) \text { and }: \hat{z}+\sqrt{20} \hat{v}(\hat{z})
$$

The values for $n w$, and nay are shown in tables 2 and 3 for $n=50$ and $n=200$ respective ${ }^{3}$

r	nw	nry	r	n.	nur
0^{*}	3.588	- 8.3A5	35	28.781	15.094
1	5.981	- 12.28?	36	28.104	16.380
2	9.669	- 16.928	37	27.312	17.591
3	12.580	- 19.559	38	25.492	18.711
4	15.015	- 21.097	39	25.546	19.726
5	17.111	- 21.929	40	21.194	20.614
6	18.947	- 22.263	41	23.325	21.351
7	20.574	- 22.226	42	22.024	21.902
8	22.024	- 21.902	43	20.574	22.226
9	23.325	- 21.351	44	18.947	22.263
10	24.494	- 20.614	45	17.119	21.929
11	25.546	- 19.726	46	15.015	21.097
12:	26.492	- 18.711	47	12.580	19.559
13	27.342	- 17.591	48	9.669	16.928
14	28.104	- 16.380	49	5.981	12.282
15	28.784	- 15.094	50^{*}	3.588	8.346
16	29.386	- 13.714			
17	29.915	- 12.339			
18	30.374	- 10.888		,	
19	30.767	- 9.399		.	
20	31.096	- 7.878			
21	31.363	- 6.332			
22	31.569	- 0.766			
23	31.715	- 3.185			\cdots
24	31.802	- 1.595			
25	31.831	0	-		
26	31.802	1.595			
27.	31.715	3.185			
28	31.569	4.766			
29	31.363	6.332			
30	31.096	7.878			
39	30.757	9.399			
32	30.374	10.888			
33	29.915	12.339			
34	29.386	13.744			

r	nw	nw,	r	${ }^{n} \times$	nwy
0^{*}	4.831	- 13.560	40	97.974	-82.456
1	8.406	- 21.650	41	99.086	- 81.520
2	14.350	- 33.384	12	100.132	-80.750 l
3	19.414	- 42.128	43	101.170	- 79.842
4	23.922	-49.128	14	102.182	- 78.904
5	28.028	- 54,932	45	103.166	- 77.932
6	31.820	- 59.846	46	104.124	- 76.932
7	35.356	- 64.062	47	105.058	-75.902
8	38.676	- 67.710	48	105.968	- 74.884
9	41.812	- 70.890	49	106.852	- 73.762
10	44.788	- 73.658	50	107.714	- 72.652
11	47.618	- 76.102	51	108.552	- 71.518
12	50.320	- 78.236	52	109.368	-70.362
13	52.906	-80.104	53	110.162	- 69.182
14	55.386	-81.736	54	110.935	- 67.982
15	57.768	-83. 158	55	111.686	- 66.762
16	60.058	-84,386	56	112.416	- 65.520
17	62.268	-85.444	57	113.126	- 64.262
18	64.398	- 86.342	58	113.814	- 62.984
19	66.454	-87.094	59	114.484	- 61.688
20	69.444	-87.711	60	115.134	- 60.376
21	70.368	-88.212	61	115.764	~ 59.048
$2{ }^{2}$	72.232	- 88.594	62	116.376	- 57.704
23	74.038	- 88.872	63	111.968	- 56.346
24	75.788	-89.050	64	117.512	- 54.97a
25	77.186	-89. 138	65	118.098	- 53.588
26	79.136	-89.138	66	188.636	- 52.190
27	80.739	-89.058	67	119.156	- 50.779
28	82.294	-88،902	68	19.658	- 49.354
29	83.806	- 88.676	69	120.144	- 47.920
30	85.275	-88.382	70	120.612	- 46.474
31	85.706	-88.024	71	121.062	- 45.018
32	88.096	-87.608	72	121.196	- 43.552
33	89.450.	-87.134	73	121.914	-42.075
34	90.765	-86.606	74	122.316	-40.590
35	92.050	- 86.028	75	122.700	- 39.098
36	93.298	-85.402	76	123.068	- 37.596
37	94.514	-84.728	77	123.422	- 36.086
38	95.698	- 84.012	78	123.758	- 34.568
39	96.850	-83.254	79	924.078	- 33.044

r	nw	nw	r	nw	nw\%
80	124.384	- 31.512	120	124.384	31.512
81	124.674	- 29.974	121	124.078	33.044
81	124.948	- 28.132	122	123.758	34.568
83	125. 206	- 26.882	123	123.422	36.085
84	125.450	- 25.328	124	123.068	37.596
85	125.678	- 23.768	125	122.700	39.098
86	125.892	- 22.040	126	122.316	40.590
87	126.090	- 20.636	127	121.914	42.076
88	126.274	- 19.064	128	121.495	43.552
89	126.442	. 17.488	129	121.062	45.018
90	126.596	- 15.908	130	120.612	46.474
91	126.734	- 14.326	131	120.1/4	47.920
92	126.858	- 12.740	132	119.658	49.354
93	126.968	- 11.154	133	119.156	50.778
94	127.062	- 9.564	134	118.636	52.190
95	127.142	- 7.972	135	118.098	53.588
96	127.208	- 6.380	136	117.542	54.974
97	127.258	- 4.786	137	116.968	56.346
98	127.294	- 3.192	138	116.376	57.704
99	127.316	- 1.596	139	115.764	59.048
100	127.324	- 0	140	115.135	60.376
101	127.316	1.596	141	114.484	61.688
102	127.294	3.192	112	113.814	62.984
103	127.258	4.786	113	113.126	64.262
104	127.208	6.380	114	112.416	65.520
105	127.142	7.972	145	111.686	6 6. 762
106	127.052	9.564	146	110.936	67.982
107	126.968	11.154	147	110.162	69.182
108	126.858	12.740	148	109.368	70.382
109	126.734	14.326	119	108.552	71.518
110	126.596	15.908	150	107.714	72.652
111	125.442	17.488	151	105.852	73.762
112	126.274.	19.064	152	105.968	74.844
113	126.090	20.636	153	105.058	75.902
114	125.892	22.040	154	104.124	75.932
115	125.678	23.768	155	103.156	77.932
116	125.A50	25.328	156	102.182	78.904
117	125.206	26.882	157	101.170	79.812
118	124.948	28.432	158	100.132	80.750
119	124.674	29.974	159	99.086	81.620

r	nv	nry
150	97.974	82.456
161	96.850	83. ? 54
162	95.698	8 h .012
163	94. 514	88.728
151	93.298	85.102
155	92.050	86.028
966	90.766	85.606
167	39.450	87.134
168	88.095	87.608
169	86.706	88.024
170	85.276	88.382
171	83.805	88.676
172	82.294	88.902
173	80.738	89.058
174	79.136	89.138
175	77.486	89.138
176	75.788	89.050
177	74.038	88.872
178	72.232	88.594
179	70.368	88.212
180	. 68.444	87.714
181	65.454	87.094
182	64.398	86.342
183	62.268	85.414
184	60.058	84.386
185	57.768	83.158
186	55.386	81.736
187	52.906	80.104
188	50.320	78.236
189	47.618	76.102
190	44.788	73.668
191	41.812	70.890
192	38.676	67.710
193	35.356	64.062
194	31.820	59.846
195	28.028	54.93?
196	23.922	49.128
197	19.414	42.128
198	1.4 .350	33.38\%
199	8.406	21.560
200*	4.839	13.560

FThe values of nw and nwy in this line should
Only be used for the highest value of x
when $r=0$ or the lowest value of x when r

Let it be assumed, therefore, that a percentage q_{1} of loads outside the limits of the zone of indecision which it is desired to determine can be placed within this zone, and let $\left(1-x^{\prime}\right)$ be the probability that this hypothesis can be accepted without there being a probability B that a certain percentage $q_{2}\left(q_{2}>q_{1}\right)$ will be exceeded. From these values ($X, q_{1}-\mathcal{X}, q_{2}$) it is possible to determine the size n of the sample to be achieved and the acceptable number c of loads which may be eliminated in order to determine the value of the zone of indecision.
n and o having been fixed, the mean peroentage $q=\frac{c}{n}$ is determined with a oonfidence interval equal to $1-(\alpha+\beta)$. It should be observed that, as c and n must be whole numbers, those which are calculated are to be considered as approximate values.

Assuming that the percentage of the loads abnormally placed in the zone of indecision is q_{1}, elimination of " c " extreme loads, corresponding to the mean percentage q, q_{1}, only leads to a result with negative deviation, i.e. at the most equal to the true value of the zone of indecision and therefore to the nominal zone of indecision with which it is desired to compare it.

Moreover, $2 s$ the grading point is defined as the value of the loads likely to be placed, with a probability of 0.5 , in one or other of the sub-groups which it separates, the half sum of the extreme values selected constitutes an estimate whioh will be proportionately better where the grading referenoe setting or setting are closer to the mean value of the population to be graded and the size of the sample is larger.

If one selects; $q_{1}=0.002$ and $q_{2}=0.05$ in respect of $n=200$ and $c=$ 2 the zone of indecision is determined with a confidence interval practically equal to 0.99 (see table 4).

It should be observed that this method appears to be more particulam ly applicable when the initial and periodical verifications are oarried out, i.e. when it is a question of ensuring that the nominal zone of indecision is not smaller than the experimental zone of indecisiot. the value of which is only a result with negative deviation.

\mathbf{q}	0,001	0,002	0,005	0,0083	0,01	0,0133	0,02	0,05
	0,9825	0,9386	0,7358	0,5	0,4044		0,0908	0,0004
	0,9988	0,9921	0,9202		0,6766	0,5	0,2357	0,0023

Probability of finding in a sample of size " n " a number at most equal to "o" defective loads where the percentage of defective loads in the batch is " q ".

14.4. METHOD C

This method appears to be better suited for determining the zone of indecision since it produces the standard deviation of the distribution.

What is more, it may be accepted where N is large, that the experimental standard deviation "s" approximately obeys a normal law with mean 6° and standard deviation $\frac{\sigma}{\sqrt{2 \sharp}}$, which when a specific confidence interval is adopted enables the uncertainty of the measurement to be found.'.

This, in the case of a confidence interval approximating to 0.99 the limits of O are $\pm 2.5 \frac{8}{\sqrt{2 N}}$, roughly therefore, where $N=100$,

$$
\frac{7}{6} \geqslant 6 \geqslant \frac{5}{6}
$$

The position of the grading point is determined, in the case of the same confidence interval, with a similar uncertainty.

$$
i
$$

$$
\begin{gathered}
x \\
5
\end{gathered}
$$

