COMMISSION OF THE EUROPEAN COMMUNITIES

Brussels, 6.09.1995 COM(95)392 final

REPORT FROM THE COMMISSION

CO-OPERATION AND CO-ORDINATION OF THE USE OF HEAVY EQUIPMENT FOR FISHERIES RESEARCH

1. Introduction

Fisheries research requires the collection of large amounts of data, for the implementation of the Common Fisheries Policy (CFP), but also to address more fundamental scientific questions, especially ecological ones. A great deal of information can be obtained from commercial fisheries, but there is also a need for supplementary information. This includes fishery independent information on the state of fish stocks, information on the environmental impact of fishing, information on the selectivity of fishing gear, information on non exploited species and the physical and chemical environment.

Obtaining this information often requires large scale equipment, such as research vessels equipped with laboratory facilities. This infrastructure exists in all Member states, but there are differences in their size, age, supporting facilities and level of utilization.

The aim of this document is to describe the existing facilities, namely research vessels, and to analyse the large scale equipment requirements for the purposes of the CFP. Moreover, the need of further cooperation and coordination will be considered.

A full description of the data requirements in each region of the Community and an analysis of the resources needed to meet these requirements are clearly beyond the scope of this document. However, such a study is needed so that any deficiencies can be identified and remedied.

Other equipment such a flume tanks with supporting facilities or fine isotope analysis facilities are less extended among the different Member states and its field of operation is more specific . In annex I a description of the main flume tanks operating in Europe is given together with some considerations on their utility. Concerning isotope techniques there are not for instance enough elements to establish a basis for discussion.

2. Research Vessels in Europe.

2.1. The need for research vessels

Stock assessment

Although a great deal of information used in fisheries research is obtained from monitoring and sampling commercial landings, there will always be a need for fisheries independent information.Diagnostics on the state of resources and their level of exploitation demand an accurate knowledge of the commercial catches, in particular their age or length composition as these are essential elements for applying the Virtual Population Analysis (VPA) technique, which is the key assessment method used by scientists. Experience has demonstrated the additional need for direct estimates of the abundance of fish stocks Fisheries management by means of Total Allowable Catches (TAC's) need estimates of the stock size in real time and predictions of the further development of the stock in terms of catch forecasts. The reliability of these catch forecasts depends directly on the quality of the estimates of the number of fish which will enter in the exploited phase (pre-recruits). The independent estimates used for stock assessment are obtained from acoustic surveys, egg or larvae surveys, trawl surveys, using research vessels (Table I).

Fisheries management by means of Total Allowable Effort (TAE) does not have the same data requirement since annual revisions of stock estimates are not necessary. However, proper diagnostics on the level of exploitation of resources and its further evolution are needed for adjusting, when necessary, the fishing effort.

When designing a survey to obtain these independent estimates, one of the main elements to consider is the type of vessel to be used. A choice has to be made between the use of a research or commercial vessel, the characteristics of which can influence their suitability for a particular type of survey (Table II).

The use of research vessels makes it much easier to standardise the gear and procedures used. This is important since the abundance indices obtained from year to year must be comparable.

Another important factor is the cost of the vessel. For a research institute running costs are in general higher for a research vessel than for the periodic rent of a commercial vessel, since the latter does not have to be paid for year round.

In order to obtain a good level of accuracy a minimum level of sampling in terms of number of hauls is needed, and a proper sampling strategy which takes into consideration the distribution in space and time of the resource.

Schematically in the classical trade off between biases and variances, research vessels offer a better answer to the bias quiestion due to their standardisation facilities, while in terms of variances it can be more cost-efficient to rely on commercial vessels because of their lower costs.

Other issues

On board commercial vessels, facilities are generally lacking, therefore samples have to be stored and extra work in the laboratory has to be carried out after the surveys. In experiments for which requirements for laboratory facilities are limited, chartered commercial vessels may be suitable. This is the case of experiments in the field of gear technology, tagging or tests of on-board facilities for upgrading of fish products (e.g. cold chain, packaging, conservation, etc.). Analysing fisheries in the long term is a more difficult task, requiring an understanding of multi-species interactions, the influences of environmental factors on recruitment and survival, and so on. Special attention should be paid to the influence of the environmental factors on the distribution, abundance and migration of fish and on changes in parameters as natural mortality, growth, maturation and fecundity. Ecological research programmes involving the use of research vessels are needed to investigate these relationships. Fisheries research itself can contribute to improvements in the knowledge of the marine ecosystem. In fact the some time, there is considerable information from exploited species which play a key role among top predators in the marine food webs. One of the main difficulties when studying marine ecosystems compared with terrestrial ones, is the necessity of heavy equipment, as the marine environment is hostile.

The environmental implications of fishing will become an increasingly important consideration in the future. The institutes operating the research vessels often also have responsibilities for environmental or other research programmes apart from fisheries. The basic research needed to address these questions will clearly require a significant amount of research vessel time.

Another use of vessels which deserves mention is for gear research, for example assessing the effects of changes in mesh size or gear configurations on selectivity. This can have important conservation implications, for example by reducing discard rates. However this is an area of research which could often be carried out more efficiently using chartered commercial vessels.

2.2. Current availability and use of research vessels

Most of the Research Centres in the European Union have big Research Vessels (about 60 m. long), but these vessels are not necessarily the most suited for all research tasks (Table II). Big vessels may be needed for their performance in bad weather but may be unsuitable for working in coastal areas. Vessels smaller than 30 m. may have the disadvantage of being too noisy and could so affect fish behaviour.

In the areas covered by the International Council for the Exploration of the Sea (ICES) there is already considerable International co-operation to undertake major surveys. Table III lists the most important co-operative survey programmes coordinated by ICES since 1975. There has also been considerable support for internationally coordinated surveys under the European Programmes FAR (Fisheries and Aquaculture Research), MAST (Marine Science and Technology) and AIR (Agriculture and Agroindustry including Fisheries).

For the purposes of examining the current availability of research vessels it is convenient to consider three distinct geographic regions (Figure 1), namely:

a) North Sea, Skagerrak, Kattegat, Baltic, East English Channel

b) West English Channel, West of Scotland, Rockall, Irish Sea, West and South of Ireland, Bay of Biscay, Atlantic Coast of the Iberian Peninsula.

c) Mediterranean

These are now considered in turn. Research vessels have been allocated to regions based on the location of their home ports. However it should be noted that the activities of the research vessels are not always confined to one specific region.

Region a : North Sea, Skagerrak, Kattegat, Baltic, East English Channel

Catches in this region are estimated at around 3,8 million tonnes which is approximately 53% of the total Community production with a value of 2,5 billions ECU.

Although most of the research surveys in this region are undertaken using research vessels, there is also a widespread use of chartered commercial vessels. The North Sea surveys are often internationally coordinated within the framework of ICES. However a workshop convened to improve data collection for this region (Ijmuiden, the Netherlands, October 1992) concluded that a detailed investigation of the optimal ways to use existing research vessels could lead to financial savings. Despite the presence of the institutional framework of ICES and the potential support of the Baltic Fisheries Commission a major effort is still required in the Baltic area. Coordination of surveys between the different countries needs to be improved in order to ensure a real standardisation of methodology and a more satisfactory coverage of seasonality (autumn surveys)

At present total costs for fishery data collection in this region are estimated at 12.4 million ECU; 65% of this amount (8.1 million ECU) is devoted to research vessels surveys.

Table IV shows the characteristics of the main research vessels operated by the institutes in the region. Most of them are well equipped and capable of undertaking a wide range of work, including trawling, acoustic surveys and oceanographic studies. The average number of days at sea per year of these vessels is 235 and their maximum trip duration varies between 10 and 50 days.

Although well equipped the United Kingdom vessels are now rather old. e.g. RV CIROLANA, RV SCOTIA and RV CLUPEA are now about 25 years old. SCOTIA is due for replacement in 1996 and CLUPEA had a major conversion in 1988.

Region b : West English Channel, West of Scotland, Rockall, Irish Sea, West and South of Ireland, Bay of Biscay, Atlantic Coast of the Iberian Peninsula.

Traditionally co-operation in this area has been less intense than in Region a. However there has been an increase in cooperative research projects especially after the implementation of Community programmes. In most cases these co-operative activities were restricted to bilateral (involving two Member states) research projects focusing on stocks of common interest. This was the case of several FAR projects with the participation of the main institutes in the area, some of which have implemented bilateral co-operation agreements. Within the framework of the AIR programme more ambitious joint projects with the participation of several Member states are at present in progress with a good level of co-operation.

Table V shows the quality of the assessments of the main stocks subject to TAC in both regions a and b. For those stocks for which there is no analytical or similar assessment, TAC's can just be precautionary. By analysing this table we can observe that the quality of assessment decreases from north to south although the situation is improving with time.

Catches in region b are estimated at 2 million tonnes, which constitute 28 % of the total Community production with a value of 1,3 billion ECU. For most of these stocks TAC's are precautionary as information available is not sufficient for reliable diagnostics on their real exploitation level. It is appropriate in this region to implement a management strategy which combines the regulation of catches and effort.

There is a need to increase the number of surveys, to provide the solid database needed to fix TAC's or TAE's (Total allowable effort) based on analytical assessments, even if in the case of recruitment estimates the need for surveys is less obvious due to the fact that fluctuations in recruitment may be smaller than in Region a. The total costs of research vessel surveys in region b is 4.8 million ECU. This figure represents 58% of the total costs of all data collection activities.

In Table VI the technical characteristics of the main research vessels operated by fisheries research institutes in Ireland, France, Portugal and Spain are shown. Those from the UK are included in Table IV. The average age of the vessels operating in region (b) is greater than that of vessels operating in region (a). The situation has recently been improved somewhat by the renewal of the Portuguese RV CAPRICORNIO. It should also be noted that some of these vessels cover both the Atlantic and the Mediterranean, and are also used to participate in co-operative research projects in other areas (e.g. SEFOS Project, NAFO area, etc.).

Region c : Mediterranean

Ten per cent of the total Community catches are produced in the Mediterranean with a total value of 470 million ECU.

Although Mediterranean Member states devote to data collection 4 million ECU (40 % of this figure is expended in research vessel surveys) per year, sampling statistics tend to be incomplete and unreliable partly due to the practical difficulties of monitoring the widely dispersed fleets. Reliable diagnostics on the state of stocks are, consequently, one of the priorities for establishing management strategies, although there is no immediate operational

obligation of obtaining annual estimates of abundance.

Due to the difficulties on obtaining commercial data, fishery independent methods are of essential importance in this region Traditionally, surveys undertaken in the Mediterranean have tended to be fragmented and poorly coordinated. This lack of coordination can be explained by the fact that most of the stocks are not shared between countries and , therefore, the need for scientific structures for international stock assessment is less apparent. Nevertheless improved co-ordination between Mediterranean countries is desirable but the absence of adequate permanent structures for that purpose in the area is a major handicap.

The Commission is at present supporting a large programme called "An International Bottom Trawl Survey in the Mediterranean", which is being carried out during 1994. The motivation for establishing this survey was the lack of comprehensive studies of the biological status of most of the demersal stocks in the Mediterranean. The main objective of this survey is to calculate relative indices of abundance and to provide information on the geographic distribution of the various species. A good programme and coordination of these surveys is needed in the near future to establish a management system based on effort limitation. At this level appropriate databases in a common format allowing common access becomes a necessity.

Table VII shows the characteristics of the research vessels operating in the Mediterranean region. In the cases of Spain and France some of the vessels also operate in region (b).

2.3 Data storage and utilisation

One subject to be considered is the type of data avilable and their level of utilisation. So in Region (a) the existing data is underutilised for purposes other than classical stock assessment conducted by the different ICES Working Groups, despite recent efforts such as the Atlas of North Sea Fishes which is an ICES Cooperative Report based in bottom-trawl survey data for the years 1985-1987, providing important important on spatial distribution of the different species.

Although in Region (b) national databases are increasing and improving they are still partial and need to be integrated in a common format in order to ensure their availability for all Member states concerned. In the case of Region (c) there are no common databases not even within all Member states.

2.4.Overall view

The table below summarises section 2.2 by pointing out the major shortcomings in the three regions in terms of common work to be developed.

AREA	Region a	Region b	Region c
MANAGEMENT SYSTEM	TAC's: Mainly Analytical Ones Effort control envisaged.	TAC's: Mainly Precautionary Effort control proposed	Effort control envisaged
SAMPLING STRATEGY	to be improved	to be extended	to be consolidated
PLANNING OF COORDINATION	to be improved	to be improved	to be designed
LINKS BETWEEN FISHERY AND ENVIRONMENTAL DATA	insufficient	insufficient	non-existing
COMMON DATABASES	insufficient	limited	non-existing

3. Financial aspects

3.1. Investments.

The price of construction of a research vessel depends on a lot of different factors (size, facilities, technical equipment, power, etc.) but it is above the means of the ordinary budget of a research institute. For example a medium size (+/- 40 m) research vessel with an operation range of 30 days (= 6000 miles) equiped with dry and wet labs , with accomodation for 26 people (crew and scientific staff) costs around 3,5 million ECU without considering costs of scientific and electronic equipment. In the case of a big research vessel (+/- 70 m) costs are, of course, bigger.

This investment is in many cases made by a different Ministry and budget. For that reason it is difficult for a research structure to finance such an equipment as well as to refuse it.

3.2. Running costs

After the acquisition of heavy equipment the maintenance and running costs will be deducted from the research structure budget and , in some cases, research activities are curtailed due

to budgetary constraints.

RESEARCH VESSEL	LENGTH (m)	OPERATING COSTS (ECU/DAY)
SOLEA (DE)	35.4	7100
BELGICA (BE)	51	6250
CORNIDE DE SAAVEDRA (ES)	66.7	9000
LOUGH BELTRA (IR)	21	2000
CAPRICORNIO (PT)	46.55	4000

The table below shows the current costs of some of the research vessels utilised by the European research centres:

3.3. The Community role.

3.3.1. Investments.

There are no specific budgetary provisions which could be used to address the problem of large scale equipment for fisheries research as the existing regulations concerning structural assistance in the fisheries and aquaculture sector do not envisage such investments. However regions targeted by the structural funds could apply for funding through the Community Support Framework. To do this, Member states should schedule such provisions as a specific area of assistance when submitting their sectoral programmes to the Commission. This would open the possibility of financial support through the Regional Development Fund (FEDER).

The Community has already given partial support for the construction of two research vessels, one in the Mediterranean under Council Regulation (EC) No. 3499/91, providing a Community Framework for studies and pilot projects relating to the conservation and management of fishery resources in the Mediterranean and the other in the Azores. In both cases the funds were provided under specific budgetary provisions.

3.3.2.Running costs.

There are no means available to the Commission which allow a direct intervention in the running costs of research vessels. Nevertheless an important number of studies and research projects are being currently supported by the Commission on a shared costs basis. This is an element of support currently given to activities aiming at ensuring appropriate data collection.

A draft proposal for a Council Decision concerning a programme to promote the training and mobility of researchers (within IV RTD Framework Programme), states that in some cases, the additional costs related to the use of external staff of large-scale facilities can be granted on the basis of their quality, the interest shown by potential users, the cost effectiveness of Community support and the potential benefit to the Community in terms of improving the scientific and technical potential of less-favoured regions. This proposal has not yet been discussed by the Council , but, if adopted, could provide the means for a better coordinated use of existing facilities.

4. Conclusions

General

*Research surveys are of paramount importance. They are needed for many essential aspects of fisheries research.

*Due to the cost of research vessels, and to the involvement of several research vessels for most surveys a better planning and coordination at a Community scale is required. Their utilisation in space and time within the European Union can be improved in terms of cost-efficiency and quality of data collection. For that purpose availability of the equipment both geographically and periodically should be disseminated.

* Underutilisation of data must be avoided. For that reason data needs to be stored in common databases which make them available to all concerned Member states.

Short term action

It is recognised that fish stocks in region (a) are more intensively studied and better understood than those in regions (b) or (c). A coordination plan taking into consideration the precedent experiences coordinated by ICES and the North Sea research centres should be adopted with the aim of consolidating existing structures, to fill gaps in less studied regions and to promote the common utilisation of existing data between Member states.

Medium term strategy

There is a necessity to set up appropriate databases covering commercial and survey data

including ecological and technical aspects. Given the common interest of Member States in the resources, it would be entirely appropriate for them to contribute to the management of these databases, whose construction and maintenance can be coordinated between Member States.

Working Groups aiming to elucidate the needs in terms of data collection, to define the best adapted sampling strategies need to be promoted. The application of such strategies could allow for the definition of a relationship between intensity of sampling and accuracy of estimates and to precise cost-efficiency relationships ensuring that the utility of the information is in accordance with the material investment.

Further to the accomplishment of above mentioned tasks, data requirements have to be translated into equipment requirements. This could constitute the basis for discussion between the Commission and Member states in order to plan the likely evolution of heavy equipment, especially vessels, for a period of 10 years. A further task can be devoted to find support mechanisms aiming at improving the present situation.

ANNEX I

FLUME TANKS IN EUROPE

Introduction

A flume tank is essentially the nautical equivalent of a wind tunnel in which a uniform flow of water passes through the working section. Flume tanks allow the effects of changing gear configurations, varying water speeds or changes in otterboard design to be studied in detail. Experiments are observed from a fixed platform above the tanks (Figure 2), and gear parameters such as loads, vertical net dimensions, wing end spread, door spread, etc., can be accurately measured with sophisticated instrumentation and video recording facilities.

The need for flume tanks

The experiments which can be carried out in flume tanks can improve gear design for example by increasing efficiency or selectivity. However, the present state of most stocks within the EU does not justify research on gear efficiency but mainly in gear selectivity. Improvements in gear design can bring about many conservation benefits, for example by reducing by-catch rates or by improving the exploitation pattern on the target species. This is a subject of great importance given the high discard rates and juvenile dominated age structures that are found in certain fisheries.

In spite of the undoubted didactic interest there are limitations in the utility of the flume tanks. Two main elements can be considered in fishing operations: the first one is the physical component which is well represented in simulations in flume tanks. The second is the biological component which is absent from these experiments because, for example, fish behaviour is not taken into consideration as fish can not be introduced in flume tanks.

Gear designs must ultimately be finalised on the basis of trials at sea under conditions close to those of a commercial fishery, but the initial design stage can be made more efficient if researchers have access to flume tanks. At present advances in computer simulation of gear behaviour are being achieved, which represents the behaviour of the gear under different hydrodynamic conditions. This could limit the need for flume tanks in the future.

Current availability and use of flume tanks.

There are currently only four operational flume tanks, on the North Sea coast (Hirtshals in Denmark, Hull in the UK and Boulogne sur Mer and Lorient in France). The technical characteristics of these tanks are shown in Table VIII.

Flume tanks are extremely expensive to maintain and must be used continually if they are to be profitable. Two of the four flume tanks belong to institutions (DIFTA and SFIA) which are involved in an important number of FAR an AIR projects. The flume tank in Lorient is managed

by the Regional Chamber of Commerce with the scientific and technical support of IFREMER. Some support is also given by several local, regional and national institutions. Their level of utilisation is rather low (about 200 hours / year in Hirtshals and 310 hours/year in Hull).

A flume tank was recently built in Vigo (Spain) by the Regional Government but, probably due to its high running costs and the low development in Spain of the research on fishing gear technology, it has never been operational and, therefore, it is not included in Table VII.

Prospects in the use of flume tanks in Europe

Despite the geographical imbalance in the availability of flume tanks, additional flume tanks in Europe do not seem justified given that the four currently available appear to be under-utilised. It would be more appropriate to promote the utilisation of the existing flume tanks by all Member States and to make the Spanish one available to the research institutes in southern Europe in order to establish stable teams working in gear technology research.

Furthermore considerable progress in computer simulation programmes has been made. Assuming that the accuracy in the prediction of the expected reaction of gear to hydrodynamic changes of these programmes will reach acceptable levels, the future utility of flume tanks could be questioned.

Figure 1.- The three regions of the study

5. Motors for impellers

SURVEY	TARGETED STOCKS OR FRACTIONS	WORK AT SEA	WORK AT LAB	MAIN RESULTS AND APPLICABILITY
PRE-RECRUITMENT	JUVENILES/DEMERSAL	SYSTEMATIC TRAWL SAMPLING (length/weigth) BIOLOGICAL SAMPLING	SURVEY AND HISTORIC DATA ANALYSIS BIOLOGICAL PARAMETERS (age) EGGS AND LARVAE DATA	RECRUITMENT ESTIMATES FOR ANALYTICAL METHODS AND PREDICTIONS
STOCK ASSESSMENT	ADULTS/DEMERSAL	SYSTEMATIC TRAWL SAMPLING (length/weigth) BIOLOGICAL SAMPLING	SURVEY AND HISTORIC DATA ANALYSIS BIOLOGICAL PARAMETERS (mortality, growth,reproduction) EGGS AND LARVAE DATA MARKET SAMPLING COMMERCIAL DATA ANALYSIS (catch/effort)	CATCH AT AGE / LENGTH ABUNDANCE ESTIMATES ANALYTICAL METHODS CARTOGRAPHY PREDICTIONS AND SCIENTIFIC ADVICE
ACOUSTICS	SMALL AND MIDDLE SIZED PELAGIC STOCKS	ACOUSTICS SURVEY MIDWATER TRAWL CATCH SAMPLING QUANTIFICATION AND IDENTIFICATION OF ECHOES	SURVEY AND HISTORIC DATA ANALYSIS BIOLOGICAL PARAMETERS (mortality, growth,reproduction) EGGS AND LARVAE DATA MARKET SAMPLING COMMERCIAL DATA ANALYSIS (catch/effort)	CATCH AT AGE / LENGTH ABUNDANCE ESTIMATES CARTOGRAPHY ANALYTICAL METHODS PREDICTIONS AND SCIENTIFIC ADVICE
ICHTHYO PLANKTON	SPAWNING STOCK BIOMASS	SAMPLING OF THE EGGS DISTRIBUTION AREA ENVIRONMENTAL PARAMETERS	SAMPLING DATA ANALYSIS ENVIRONMENTAL DATA ANALYSIS NUTRIENTS ADULTS FECUNDITY DATA HISTOLOGICAL STUDIES RECRUITMENT DATA ANALYSIS (time series)	SPAWNING AREAS/PERIODS SPAWNING STOCK BIOMASS RECRUITMENT/ ENVIRONMENT RELATIONSHIP STOCK/RECRUITMENT RELATIONSHIP
ECOLOGY	ECOSYSTEMS	HYDROCLYMATIC AND ENVIRONMENTAL DATA COLLECTION STOMACH SAMPLING TAGGING	SAMPLING DATA ANALYSIS ENVIRONMENTAL DATA ANALYSIS NUTRIENTS OTHER SURVEY DATA ANALYSIS	NATURAL MORTALITY STOCKS DISTRIBUTION/ABUNDANCE RELATED TO ENVIRONMENT TROPHIC RELATIONSHIPS AND MIGRATIONS POLLUTION
UPGRADING	EXPLOITED AND/OR UNDERUTILISED RESOURCES	MACHINERY EXPERIENCES FREEZE/ PROCESSING, STORAGE., TRANSPORT	TECHNICAL IMPROVEMENTS ON MACHINERY SAFETY, QUALITY, MICROBIOLOGY	BETTER UTILISATION OF RESOURCES DIVERSIFICATION OF PRODUCTS QUALITY/SAFETY IMPROVEMENTS, ETC
FISHING TECHNOLOGY	EXPLOITED AND UNEXPLOITED FRACTIONS	GEAR SELECTIVITY EXPERIENCES GEAR PERFORMANCE ENVIRONMENTAL IMPACT SURVIVAL AFTER ESCAPING DISCARD SAMPLING	FISH BEHAVIOUR (captivity) FLUME TANK STUDIES COMPUTER SIMULATION GEAR DESIGN SELECTIVITY DATA ANALYSIS	FISHING MORTALITY/GEAR DISCARDS ESTIMATES FOR STOCK ASSESSMENT PURPOSES IMPROVED EXPLOITATION SCHEMES RECOMMENDATIONS FOR TECHNICAL MEASURES

 $\bar{\psi}$

Table I.- The most usual types of survey for fisheries research: objectives, type of work at sea , complementary work at the lab and expected results.

SUITABILITY OF VESSELS

RESEARC	CH REQUIREME	INTS	RESKARCII VESSEI,	COMMERCIAL VESSEL WITH OBSERVER	COMMERCIAL VESSEI,
EXPLOITED STOCKS	STANDARDISED ABUNDANCE INDICES		+++		
	PRE-RECRUITMENT DATA		+++		
	STOMACH SAMPLING		+ ++	++	+
	DISCARDS		+	+++	+
	DIRECT ABUNDANCE	- acoustics	***		
		-eggs/larvae	+++		
ENVIRONMENT	HYDROCLIMATIC AND ENVIRONMENTAL (salinity, temperature, density,) DATA		+++	++	+
UNEXPLOITED	- ABUNDANCE		+++	+	
STOCKS	-DISTRIBUTION		+++	+	
OTHER	-GEAR TECHNO	DLOGY	+-+	++	+
EXPERIENCES AT	-TAGGING		++(*)	++	+
	-UPGRADING		++(*)	++	+

Table II.- Suitability of the different types of vessel which can be used for research purposes depending on the type of survey. f(1) low; (1+1) medium; (1+1) high; (*) depending of specific issues f(1)

TABLE III.- INTERNATIONAL COOPERATIVE SURVEYS PROGRAMMES COORDINATED BY ICES SINCE 1975

PROGRAMME	AREA	PERIOD	MEMBER STATES INVOLVED
STOMACH SAMPLING PROJECT 1991	NORTH SEA	1991	BE,DK,NL,UK
RECRUIT INDICES FOR SOUTHERN HAKE	ICES subareas VIII and IX	1989/1990	SP,PT
ACOUSTIC SURVEYS IN ICES SUBAREAS VIII AND IX	ICES subareas VIII and IX	continuously since 1986	SP,PT
NORTH SEA AND EASTERN ENGLISH CHANNEL SOLE EGG SURVEY	NORTH SEA / ENGLISH CHANNEL	1984/1985	BE,GE,NL,UK
ACOUSTIC SURVEYS OF BLUE WHITING	NORTH SEA	continuously since 1983	DK,GE(ex-DDR),UK
HYDROACOUSTIC SURVEYS IN THE BALTIC	BALTIC SEA	continuously since 1982	DK,GE
STOMACH SAMPLING PROJECT 1981	NORTH SEA	1981	DK,FR,NL,UK
ACOUSTIC SURVEYS IN ICES SUBAREA IV AND DIVISION IIIa	ICES IV AND IIIa	continuously since 1979	DK,UK
YOUNG FISH SURVEYS IN THE BALTIC	BALTIC SEA	continuously since 1978	DK,GE
COD STOMACH DATA FOR THE BALTIC	BALTIC SEA	continuously since 1977	DK,GE(ex-DDR)
MACKEREL/HORSE MACKEREL EGG PRODUCTION SURVEYS	NORTH SEA AND WEST OF BRITISH ISI	continuously since 1977	GE,FR,IR,NL,SP,UK
BEAMTRAWL SURVEYS IN THE NORTH SEA AND ENGLISH CHANNEL	NORTH SEA / ENGLISH CHANNEL	continuously since 1976	BE,GE,FR,NL,UK
INTERNATIONAL BOTTOM TRAWL SURVEY (*)	NORTH SEA ·	continuously since 1975	DK,GE,FR,NL,UK

(*) Up to 1991 International Young Fish Survey

61

TABLE IV.- TECHNICAL CHARACTERISTICS OF THE MAIN RESEARCH VESSELS OPERATING IN REGION (a)

	NL	······································	DK	GE	······································
		1			
NAME	TRIDENS	ISIS	DANA	WALTER HERWIG III	SOLEA
BASED PORT	THE HAGUE/IJMUIDEN	THE HAGUE/IJMUIDEN	HIRTSHALS	BREMERHAVEN	BUSUM
ORGANISATION	MINISTRY	MINISTRY	DIFMAR	BFAFI	BFAFI
CT 400					
	T2 54	70	79.43	FISHERIES R/V	PISHERIES RESEARCH CUTTER
	/3.54	28	/8.43	64.3/34.3	
MEAN DRAUGHT	4.0	2.4	5.93	5.9 m	5.0 M
ENG. POWER	1600/3200 kw	540 KW	2 x 2320 hp	2900 kw	640KW
TONNAGE(grt/net)	2200m3 660 ton	250 M3	2483 t	2485	337.4
BREADTH	13.86	7.6	14.7	15.2	9
YEAR	1990	1983	1980	1993	1974
SCIENTISTS/TECHNICIAN	12	3	16-25	12	5
CREW(n°)	20	6	12-21	21	12
Со Со —————————————————————————————————					
WORKING AREA	NORTH SEA/ IRELAND	NORTH SEA	WORLD WIDE	WORLDWIDE	NORTH SEA/BALTIC
TRIP DURATION	WEEKS	<10 days	50 DAYS		16 DAYS
DAYS AT SEA/YEAR	200	200	200	304	272
OPERATIONAL 24 H/DAY	NO	NO	YES	NO	NO
OPERATIVE NIGHT	YES	YES	YES	YES	YES
OCEANOGRAPHY	YES	NO	YES	YES	YES
ENVIRONMENT	YES	YES	YES	YES	YES
DEMERSAL RESOURCES	YES	YES	YES	YES	YES
PELAGIC RESOURCES	YES	YES	YES	YES	YES
EGGS/LARVAE	YES	YES	YES	YES	YES
ACOUSTICS	YES	NO	YES	YES	YES
FISHING GEAR	BEAMTRAWL/OTTERTRAWL	BEAMTRAWI./OTTERTRAWL	GRANTON/STAR/KALUT/FLADEN/SCOTISH.	BOTTOM/PELAGIC TRAWL	BEAMTRAWL
OTHER	UNDERWATER CAMERA ON A VEHICLE		GOLF/BONGO/BIONESS	PLANKTON NET/RMT	DREDGE
DRY LAB	YES	NO	YES	YES	YES
WET LAB	YES	YES	YES	YES	
COMPUTER FACILITIES	YES		YES	YES	NO
OTHER			14C/SPECTROPHOTOMETER/AUTOANALYSER	FISHERIES/CHEMICAL RESEARCH	

OPERATING COSTS/DAY		25200 ECU/DAY	7100 ECU/DAY
CHARTER COSTS/DAY	4000/6500 ECU/DAY		

TABLE IV.(cont) :TECHNICAL CHARACTERISTICS OF THE MAIN RESEARCH VESSELS IN REGION (a)

	UK (SCOTLAND)		UK (ENGLAND)]	BE
······································			······		
NAME	SCOTIA	CLUPEA	CIROLANA	CORYSTES	BELGICA
BASED PORT	ABERDEEN	FRASERBURGH			ZEEBRUGE
ORGANISATION	SOAFD MARINE LAB	SOAFD MARINE LAB	MAFF- Dept Fisheries Research	MAFF- Dept Fisheries Research	MINISTRY
CLASS	Dept. transport VII	Dept. transport VII	DTp X Fishing Vessel	DTp X Fishing Vessel	R/V
LENGTH	68.25 m/60.96 m	32.1 m/ 27.43 m	72.5 m	52.5 m	50.90/44.95 m
MEAN DRAUGHT(kW)	4.6 m	3.5 m			4 / 4.35
ENG. POWER	2250	492	2500	2000	1154
TONNAGE(grt/net)	1521/376	176/85	2400/1759	1550/1280	1192/765
BREADTH	13.41 m	7.93 m			10
YEAR	1971	1968(large conversion 1988)	1970	1988	1984
SCIENTISTS/TECHNICIANS	12	6	10/16	6/8	12
CREW(n°)	20	12	20	19	15
WORKING AREA	NORTH ATLANTIC/NORTH SEA	NORTH SEA/ WEST SCOTLAND	NORTH ATLANTIC/NORTH SEA	NORTH ATLANTIC/NORTH SEA	NORTH SEA/IRISH SEA/ENGLISH CHANNEL
MAX TRIP DURATION	22 days	10 days	42 days	42 days	21 DAYS
DAYS AT SEA/YEAR	255 days	230 days '			215
OPERATIONAL 24 H/DAY	YES	YES	YES	YES	YES
OPERATIVE NIGHT	YES	YES	YES	YES	YES
OCEANOGRAPHY	YES	YES	YES	YES	YES
ENVIRONMENT	YES	YES	YES	YES	YES
DEMERSAL RESOURCES	YES	YES	YES	YES	YES
PELAGIC RESOURCES	YES	YES	YES	YES	NO
EGGS/LARVAE	YES	YES	YES	YES	YES
ACOUSTICS	YES	YES	YES	YES	NO
		·			
FISHING GEAR	TRAWLS	TRAWLS			BEAMTRAWL/OTTERTRAWL
OTHER	HYDRAULIC	HYDRAULIC			
	······································			<u> </u>	······································
DRY LAB	YES	YES	YES	YES	YES
WET LAB	YES	YES	YES	YES	YES
COMPUTER FACILITIES	YES	YES	YES	YES	YES
OTHER					FISHERIES/CHEMICAL RESEARCH
	<u>, dene nego, con con con con con con con con con con</u>				<u> </u>
OPERATING COSTS/DAY	1		1		6250
CHARTER COSTS/DAY					6250

•

SPECTES	stork	ASSESSMENT
Herring	IIIa, Baltic 22 - 24	1
Herring	IIa, IV	1
Harring	VIa North	1
Herring	VIa Clyde	1
Harring	VIa South, Vllb.c	2
Herring	VIIa (Irish Sea)	1
Herring	Celtic Sea, VIIj	2
Sprat	IIIa	2
Sprat	Baltic 22-32	2
Sprat	IIa,IV	2
Sprat	VIId, e	3
Anchovy	VIII	2
Anchovy	IX	3
Atl.Salmon	Baltic 24-31	2
Capelin	I,IIb	1
Cod	I,Ilb	1
Cod	IIIa Skagerrak	1
Cod	IIIa Kettegat	Ĩ
Cod	Baltic 22-24	1
Cod	IIa, IV	1
Cod	Vb, VI	1
Cod	VIIa	1
Cod	VII except VIIa	3/2
Haddock	IIIa	<i>(</i> 1)
Haddock	IIa, IV	1
Haddock	Vb, VI	1
Haddock	VII, VIII	3
Saithe	IIa, III, IV	1
Saithe	Vb, VI	1
Salthe	VII,VIII	З
Pollack	Vb, VI	· 3
Pollack	VII	3
Pollack	VIIIa, b	3
Norway pout	Ila, IIIa, IV	2
Blue Whiting	IIa, IIIa, IV, Vb, VI, VII	1
Blue Whiting	VIII, IXa	2
Whiting	IIIa	3
Whiting	IIa, IV	1
Whiting	Vb, VI	1

Table V.-Quality of the assessment for the main stocks subject to TAC's in European Atlantic waters.(From Commission's Report 1991 on the CFP) 1.Good analytical assessment 2.Medium quality information 3.little or nothing known

SPECIES	STOCK	ASS
Whiting	VIIa	1
Whiting	VII except VIIa	3/2
Whiting	VIII	3
Whiting	IX	3
Hake	IIa, IIIa, IV, Vb, VI, VII, VIIIab	2
Hake	VIIIc, IXa	2
Horse Mackerel	IIa, IIIa, IV, Vb, VI, VII, VIIIab	1/2
Horse Mackerel	VIIIc, IXa	2
Mackerel	IIa, IIIa, IV, Vb, VI, VII, VIIIab	1
Mackerel	VIIIc, IXa	3
Plaice	IIla Skagerrak	2
Plaice	IIIa Kattegat	1
Plaice	IIa, IV	1
Plaice	Vb, V1	3
Plaice	VIIa	1
Plaice	VIId, e	1/2
Plaice	VIIf, g	1
Plaice	VIIh, j,k	3
Common sole	IIIa	2
Common sole	IIa, IV	1
Common sole	VIIa	1
Common sole	VIId	1
Common sole	VIIe	1
Common sole	VIIf, g	1
Common sole	VIIh, j, k	3
Common sole	VIIIa, b	2
Common scle	VIIIc, IXa	3
Megrim	Vb, VI	2
Megrim	VII, VIIIa,b	2
Megrim	VIIIc, IXa	2
Anglerfish	Vb, VI	2
Anglerfish	VII, VIIIa,b	2
Anglerfish	VJIIc, IXa	2
Pandalus	IIIa Skagerrek	1
Nephrops	Vb, VI	2
Nephrops	VII	2
Nephrops	VIIIa,b	2
Nephrops	IXa	2

Table V(cont.).-Quality of the assessment for the main stocks subject to TAC's in European Atlantic waters. (From Commission's Report 1991 on the CFP) 1.Good analytical assessment 2.Medium quality information 3.little or nothing known

,

	SP		IR	PT	
NAME	CORNIDE DE SAAVEDRA	FCO DE PAULA NAVARRO	LOUGH BELTRA	CAPRICÓRNIO	NORUEGA
BASED PORT	VIGO	LA CORUÑA	HOWTH	LISBON	LISBON
ORGANISATION	SECRETARIA DE PESCA	I.E.O.	FISHERIES RESEARCH CENTRE	IPIMAR	IPIMAR
		,			
CLASS	RESEARCH VESSEL	RESEARCH VESSEL	RESEARCH VESSEL	DEEP-SEA FISHING VESSEL	DEEP-SEA FISHING VESSEL
LENGTH	66.7 m	30.46 m	21.1 m	46.55 m	47.5 m
MEAN DRAUGHT	4.3 m	4.36 m	3.3 m	4.40 m	5.18 m
ENG. POWER (kw)	1125	562.5	317.05	2 x 600hp	1500 hp
TONNAGE(grt/net)	1542	178	115	467/ 122 t	495 t
BREADTH	11.25	7.4	6.1	9.30 m	10.3 m
YEAR	1970	1983	1972	1969 (renewed 1993)	1978
SCIENTISTS/TECHNICIANS	15/16	8	7	20	18
CREW(n°)	27	10	5	18	14
WORKING AREA	ATLANTIC/MEDITERRANEAN	ATLANTIC/MEDITERRANEAN	IRISH COASTAL WATERS	PORTUGUESE EEZ	PORTUGUESE EEZ
MAX TRIP DURATION	60 days	6 days	7 days	30 days	35 days
DAYS AT SEA/YEAR	212 days	180 days	200-240 days	300 days	300 days
OPERATIONAL 24 H/DAY	YES	YES	NO	YES	YES
OPERATIVE NIGHT	YES	YES	YES	YES	YES
OCEANOGRAPHY	YES	YES	YES	YES	YES
ENVIRONMENT	YES	YES	YES	YES	YES
DEMERSAL RESOURCES	YES	YES	NO	YES	YES
PELAGIC RESOURCES	YES	NO	NO	YES'	YES
EGGS/LARVAE	YES	YES	YES	YES	YES
ACOUSTICS	YES	YES	YES	YES	YES
FISHING GEAR	BOTTOM AND PELAGIC TRAWL	BOTTOM TRAWL		LINE,NETS ,TRAPS	LINE, NETS , TRAPS
OTHER				POTS	POTS
DRYLAB	YES	YES	YES	YES	YES
WET LAB	YES	YES	YES	YES	YES
COMPUTER FACILITIES	YES	YES	YES	YES	YES
OTHER					
OPERATING COSTS/DAY	9000 ECU/DAY	1300 ECU/DAY	2000 ECU/DAY	4000 ECU/ DAY	4000 ECU/ DAY
CHARTER COSTS/DAY	18000 ECU/DAY	2600 ECU/DAY	1500- 2500 ECU/DAY	4000 ECU/ DAY	4000 ECU/ DAY

ς.

TABLE VI.- TECHNICAL CHARACTERISTICS OF THE MAIN RESEARCH VESSELS IN REGION (b)

24

TABLE VI (cont).- TECHNICAL CHARACTERISTICS OF THE MAIN RESEARCH VESSELS IN REGION (b)

11247 ECU/DAY

GWEN DREZ BREST GENAVIR BUREAU VERITAS 25.5 m	THALIA BREST GENAVIR	NOUVELLE THALASSA' BREST GENAVIP
BREST GENAVIR BUREAU VERITAS 25.5 m	BREST GENAVIR	BREST
GENAVIR BUREAU VERITAS 25.5 m	GENAVIR	GENIAVIP
BUREAU VERITAS 25.5 m		<u> </u>
25.5 m	BUREAU VERITAS	BUREAU VERITAS
	24.5 m	74 50 m
35m	35m	51m
441	2 x 265	2200
106 31 / 32	135 4/33 84	
7.4	7.4	14.9
1976	1978	end 1995 expected
5	6	25
7	6	25
N BAY OF BISCAY/CHANNEL	BAY OF BISCAY/CHANNEL	ATLANTIC/MEDITERRANE
5 days	5days	45 days
189 days	250 days	250/300 days
NO	NO	NO
YES	YES	YES
NO	YES	YES
YES	YES	YES
YES	YES	YES
YES	NO	YES
YES	YES	YES
YES	YES	YES
AWL BOTTOM AND PELAGIC TRAWL	BOTTOM AND PELAGIC TRAV	BOTTOM AND PELAGIC TI
	NO	VEC
VES		VEC
YES		VES
YES YES VES	1 1 1 20	NETWORK
-	YES YES	YES YES YES

2584 ECU/DAY

2280 ECU/DAY

CHARTER COSTS/DAY

	GR		SP	FR*	П		
	172120	NY 11			1	A 1 A DY 199	
NAME	AEGAIO	PHILIA	ODON DE BUEN	EUROPE	+ HI00 AI	S. LO BLANCO	TECNOPESCA II
BASED PORT	PIRAEUS	IRAKLION	PALMA DE MALLORCA	SETE	NAPLES	ANCONA	ANCONA
ORGANISATION	N.C.M.R.	I.M.B.C.	<u> </u>	GENAVIR	SO.PRO.MAR. SpA	C.N.R.	C.N.R.
CLASS	+ H100 A1	+ H100 A1	RESEARCH VESSEL	BUREAU VERITAS	RESEARCH VESSEL	+ H100 A1	+ H100 A1
LENGTH	51 11 m/ 45 55 m	26.2 m	24 m	29.6 m/24.3 m	31.56 m	30 7/ 25 m	16 25 m /13 50 m
MEAN DRAUGHT	3 22 m	26m	27m	3.45 m	365 m	3m	0.80 m
ENG POWER (kw)	2 x 700	330	378.7	2 x 346	1000	660 hp	2 x 170
TONNAGE(entinet)	597/179	200/140	64	259 69/ 55 82	199	129.84	24.5
BREADTH	96m	715	<u>6</u> m	10.6 m	2 m	69m	47 m
YEAR	1985	1986	1973	1993	1986	1967	1989
SCIENTISTS/TECHNICIANS	16	8	4/3	8	10	8	6
CREW(n°)		7	5	8	7	6	2
			L	L	J	J	
WORKING AREA	MEDITERRANEAN	AEGEAN/IONIAN SEA	MEDITERRANEAN	MEDITERRANEAN	MEDITERRANEAN	MEDITERRANEAN	MEDITERRANEAN
TRIP DURATION	15 davs		4 days	7 days	10 days	10 days	2 days
DAYS AT SEA/YEAR	180 davs	220	180 davs	200-300 davs	200 days	200 days	180 days
OPERATIONAL 24 H/DAY		YES	NO	YES	YES	YES	YES
OPERATIVE NIGHT		YES	YES	YES	YES	YES	
-							
OCEANOGRAPHY	YES	YES	YES	YES	YES	YES	YES
ENVIRONMENT	YES	YES	YES	YES	YES	YES	YES
DEMERSAL RESOURCES	YES	YES	YES	YES	YES	YES	NO
PELAGIC RESOURCES	YES	YES	YES	YES	YES	YES	YES
EGGS/LARVAE	YES	YES	YES	YES	YES	YES	YES
ACOUSTICS	YES	YES	YES	YE3	YES	YES	NO
			r				
FISHING GEAR		BOTTOM/PELAGIC TRAWL	STATIC				
OTHER					<u> </u>		
DRVIAR	VES	VES	VES	VES	VES	VES	NO
WETLAR	VES	VES	VES	VES	VES	VES	
COMPLITED FACILITIES	VES	VES	VES	VES	VES	VES	VES
OTHER	160	1123	1125	125	123	123	
OTHER			1		1	<u>.</u>	
OPERATING COSTS/DAY		2000 ECU/DAY	1000 ECU/DAY		1350 ECU/DAY		200 ECU/DAY
CHARTER COSTS/DAY		2700 ECU/DAY	2000 ECU/DAY	3496 ECU/DAY	2800-3000 ECU/DAY		300 ECU/DAY

-

TABLE VIL- TECHNICAL CHARACTERISTICS OF THE MAIN RESEARCH VESSELS IN REGION (c)

.

TABLE VIII.- TECHNICAL CHARACTERISTICS OF THR FLUME TANKS OPERATING IN MEMBER STATES

		DIFTA (DK)	SEAFISH (UK)	IFREMER LORIENT	IFREMER BOULOGNE
DIMENSIONS	Overall (L x H x W)	30 x 6 x 8 m	31 x 5 x 5 m	24.5 x 3.3 x 7.5 m	34 x 5 x 9 m
	Measuring section	21.3, 2.7 and 8 m.	11 x 2.5 x 5 m	12 x 1.5 x 2.6 m	18 x 2 x 4 m
L. L	Volume of water	1200 m3	700 m3	150 m3	700 m3
-	Windows	20 m x 3 m	11 x 1.5 m 2 4.4	4.51 x 1.2 m	9 x 2 m

.

VELOCITY	Water speed max	1 m/s	1.2 m/s	1.10 m/s	2 m/s
	Max simulated towing speed (scale 1:5)	4.3 knots	5.2 knots	4.8 knots	8.7 knots
	Max simulated towing speed (scale 1:20)	8.6 knots	10.4 knots	9.6 knots	17.4 knots

EQUIPMENT	Measuring	object measuring/ resistance and drag	Warp loads, water speed, coordinates in vertical plane	yes	Laser tomography
Γ	Lights	18*400 W	12 fixed overhead, 4 movable overhead	yes	2 x 3000 W
	Video	movable cameras for horizontal and vertical views	3 x CCD, 2 x portable cameras, VHS, S-VHS and U-Matic forma	yes	VHS, Hi 8
	Other	metal workshop/material testing lab/ computer center	Observation trolley	-	Observation trolley

ACTIVITIES	Testing Fishing Gear	yes	yes	yes	yes
	Training and courses	yes	yes	yes	yes
	Research projects	yes	yes	yes	yes

COST OF HIRING ECU/DAY	3600	1600	750	2000

.

ISSN 0254-1475

COM(95) 392 final

DOCUMENTS

EN

03 15

Catalogue number : CB-CO-95-416-EN-C

ISBN 92-77-92382-2

Office for Official Publications of the European Communities

L-2985 Luxembourg