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Abstract 

Pollutant dispersion is brought about primarily by the relative motions 

of individual masses of polluted air migrating along random paths. The 

linear Boltzmann equation represents an adequate description of the pol­

luted eddy transport. The gradient-transfer approach is a first order 

approximation to it. Analytical solutions and a numerical integration 

procedure are presented. 
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Diffusion Models' 
--------------------------------

~or Air Pollutants _ 
================== 

A. Gaussian Models 
==============~=== 

1. Introduction 

An inspection of smoke diffusing near the ground gives the impression 

that the dispersion is brought about primarily by the relative motion 

of individual masses of air, which drift with the wind but otherwise 

seem to move at random. An examination of the record of wind speed 

shows that the oscillations are caused by the passage of whirls and 

vortices which, like molecules, appear to have distinct identities. 

Such an air p~rcel, called eddy, is large compared with a molecule 

but is of an unspecified size. As it moves it carries with it a con­

tent of mass, heat, pollution etc. typical of the locus of its gene­

ration. On reaching a new "level" it may be assumed to mix with the 

surrounding air, and in this way a much-enhanced diffusion process be­

comes possible. 

Turbulence has the effect of hastening the mixing of pollutants with 

ambient air. It is obvious that it is a key factor in air pollution 

meteorology. It is evident that a given volume of suspended mater~al 

will be acted upon by the whole spectrum of turbulent fluctuations. 

Clearly only those fluctuations which are spatially small compared 

with the existing distribution of material can be expected to exert 

an action representable in "mixing length". The fluctuations which are 

on a scale similar to or greater than that of the material distribution 

(puff) itself will exert actions ranging over convolution, systematic 

distortion and bodily movement of the volume. These effects obviously 

cannot be represented as a simple diffusion process except in the most 

superficial and formal way. 
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In view of the lack of a general theory of turbulence that can be ap­

plied to the prediction of the eddy diffusion of atmospheric contami­

nants, it may not be surprising that simple, empirical methods have 

been sought. The idea that molecular formalism can describe in an em­

pirical fashion the transport of pollutants within a turbulent atmo­

sphere is taken for granted by many researchers even though there is 

no proof that this is generally justifiable. Whether this approximation 

is appropriate can be judged only on the basis of the particular appli-

cation. 

The growth of the volume over \Wti.ch a given anount of suspen:led material spi'efds 

has been conventionally regarded as a result of an exchange process ana­

logous to molecular diffusion. In reality, the growth arises from a pro­

cess of distortion, stretching and convolution whereby a compact "puff" 

of material is 'distributed in an irregular way over an increasing volume. 

The probability of encountering material at all will progressively have 

a less concentrated distribution in space and the corresponding average 

concentration over the larger volume containing the distorted puff will 

be less. 

Much information is available from surveys which have been made of the 

actual distribution of effluent concentration, downwind of individual 

stacks. These provide a valuable practical basis in examining the extent 

to which simple models of dispersion provide a satisfactory basis for 

generalization. 

Whatever formal mathematical approach is adopted its ultimate value 

rests on the physical validity of the entire concept of diffusivity. 

Lacking this, any prediction of concentration distributions and gene­

ralizations from observed distributions provided in this way are re­

duced to nothing more than rather arbitrary formula-fitting. 

Theoretical analysis of the diffusion of material in turbulent flow has 

developed along three main lines: the gradient-transfer approach, the 

statistical theory of turbulent velocity fluctuations and similarity 

considerations. In the first a particular physical model of mixing is 

implied. The statistical theory is essentially a kinematic approach in 

which the behaviour of marked elements of the turbulent fluid is de-
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scribed in terms of given statistical properties of the motion. In the 

similarity theory the controlling physical parameters are postulated 

and laws relating the diffusion of these parameters are then derived 

on a dimensional basis. Diffusion models mean application of the gra­

dient-transfer approach. Here, it is assumed that turbulence causes a 

net movement of material down the gradient of material concentration, 

at a rate which is proportional to the magnitude of the gradient. 

Any complete expression for the spatial distribution of airborne mate­

rial released at a point must contain three features: 

(1) The shape of the distributions of concentration at any given time 

or down-wind position; i.e. the manner in which the concentration 

varies across wind, vertically and along wind. 

(2) The dimensions of the diffusing cloud in these directions. 

(3) An expression of the so-called continuity (or conservation) con­

dition which will here be restricted to the case when no material 

is lost by deposition or decomposition. 

It is useful to consider certain convenient expressions which may be 

looked upon either as formal solutions or as empirical equations in 

which to substitute features (2) and (3) above, the former of these 

being provided either in a purely empirical way or on the basis of 

statistical treatments. 

It is essential to have a realistic view of the complications arising 

from various features, such as the aerodynamic effects of buildings 

both in an individual sense and collectively in an urban area, the con­

trol exerted by natural topography and the influence of the "heat is­

land" effect created by a modern city. 

Experiences have shown that the diffusion theory runs into difficulties 

under the following circumstances: 

(a) when the airflow is indefinite (calm conditions) 
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(b) when there are marked local disurbances in the airflow, e.g. in 

the immediate vicinity of buildings and obstacles, unless the 

diffusing cloud has already grown to a size considerably greater 

than the disturbances, 

(c) when the airflow is channelled or when it contains circulations 

or drainage set up by the heating or cooling of undulating or 

hilly terrain. 

Even in th~ complex conditions however it may often be possible to 

speculate usefully on the sense and extent of the changes which the com­

plexities are likely to impose on the diffusion, but clearly such cases 

need to be given special consideration. 

In any case, even if the conditions of terrain and weather approach the 

ideal of uniformity and steadiness, the estimates which may be made cor­

respond to an ensemble average, from which there may be appreciable de­

viations on individual occasions. 

Great care must be taken in applying these models to real situations, 

however, because the surface of the earth is very irregular, and further­

more, the weather sometimes changes even from hour to hour. In general, 

reliable predictions of dilution rates cannot be obtained by simply ap­

plying formulas obtained from engineering handbooks. This is not because 

the formulas are wrong but because they cannot be safely extrapolated 

when the experimental situation has not been exactly duplicated. 

2. Eddy diffusion 

Flying balloons or tetroons move along polygonial trajectories, i.e. 

straight paths interrupted by instantaneous deviations. The same trans­

port mechanism is also assumed to be valid for the eddy transport. Be­

cause of this, an adequate description for a diluted eddy gas is given 

by the linear Boltzmann equation+): 

+) ~ denotes a superposition, e.g. a discrete summation~ or a 
continuous integration J 



(1) 

-II-

(J + V.Fd)N­
(j) 

..... 
v 

This is a balance equation. The left-hand side (!) is the substantial 

derivative of N, e.g. the number of eddies per phase-space volume ele­

ment, whereas the right-hand side represents the sum of gains and los­

ses: firstly the loss (g) due to combined scattering and absorption, 

then the gain ~ due to scattering from other velocities, and finally 

the gain or loss (!) due to sources or sinks. c:X is the "total inter­

action coefficient" and ( = 1/t)(' the "mean free path"; (3 is the "dif­

ferential scattering coefficient". For a more detailed explanation see, 

for instance, DAVISON (1957). 

The transport equation may be stated in slightly different forms if the 

" " ,.h - " . eddy distribution is expressed by the flux ~ = V N or by the coll1-

sion density" 4: = e( N. 

The space-time dependent number of eddies, i.e. eddy density 

(2) M -SN(V) 
-+ v 

satisfies the differential equation 

(3) div ( lDf('Od) fv1 

where Ck , the absorption coefficient a, the relaxation time T and 

the eddy diffusion tensor JD depend on d., f, V and space-time (~ t). 

In addition, one can still classify N with regard to eddy size or mass 
- ~ m of pollut~t carried with, e.g. N(m, y). The corresponding transport 

equation thus has the form: 

<4> (ft -1- V. ~d )N ~ -a. N -r ~?. f{'lw;v '_ ltA,V) IJ(~>~; V') 
- ~ v 
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The distribution 

(5) 

satisfies the equation 

To keep the mathematical effort within reasonable bounds, we shall, in 

the first step, confine ourselves to the so-called "hyperbolic approxi­

mation" characterized by 

(7) for . ./e z 3 

Only when it becomes evident that this approximation is not sufficient 

for the interpretation, shall we also take higher time derivatives into 

consideration. 

The hyperbolic approximation leads to classical equations of the mathe­

matical physics. In the past, numerous integration approaches have been 

developed; we can use them (e.g. FRANK-v. MISES (1961)). 

3. Hyperbolic approximation 

Equation (6) degenerates, for n different types of eddies, to the set of 

wave equations 

l._ 
1ft. 

(8) T~ + _{)fvtt· _,_z "·J"Nj V·(lf1 V)M; -
z M2. ~t J-:a-.1 

with a. = b .. and i = 1,2, ••• n. 
1 11 
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Since the solution M~s of the parabolic equation, i.e. the diffusion 
l. 

equation 

(9) 

converges, for increasing t, toM., i.e. 
l. 

(10) 
.,.as 
M ~ M 

i i 
for t > T, 

we shall also test the solutions of (9) by experiments, with regard to 

their practical usefulness. 

From it follows that 

(11) 

as and for the asymptote M 

(12) 

There are several justifications for the application of both the wave 

equations (8)(11), and the diffusion equations (9)(12) (e.g. MONIN (1959), 

LAMB-SEINFELD (1973), PASQUILL (1974)). 

In the past, several computer codes for solving the parabolic equations 

(9)(12) have been developed and applied, mainly in the reactor physics. 

In this field, they are known as "multi-group diffusion codes" (e.g. MENE­

LEY ~ ~.(1971)). The expert should be acquainted with the present state 

of the art. 
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We are currently considering several analytical solutions of (8)(11) and 

(9)(12), since such solutions represent the basis of the most widely used 

dispersion models for air pollutants today. Our discussion deals mainly 

with cases (11) and (12). 

4. Green's function 

....... 
For a punctiform "puff", Q ....., d(r) d(t), in an infinite r-space we call 

the Green's function belonging to quation (11) 

M == G(r, t) 

Different weather situations require different dispersion characteristics 

(T,a,H)). One, via a weather index /l , introduces a linear weather clas-

sification, i.e. 

(T, a,JD) __.. G(r, t ,/\ ) , 

and calls the mean 

(13) r; = 5 F(A)G (f; f, A) 
~ 

a "climatological model", where F( A) denotes the frequency distribution 

of the different weather situations which occured during the time period 

under consideration. 

Linear superpositions of the type 

(14) 
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weighted with the space-time dependent source-distribution Q, extend the 

set of solutions of (11). The Green's functions to (11) both for the half-

space and the parallel-layer can be constructed by the classical mirror­

method (e.g. FRANK-v.MISES (1961))0 

The accumulated eddy distribution 

(15) 

-&.'10 

......,. -generated by a puff migrating along the trajectory r = f (t) is called 

a "plume" • 

A puff moving with a velocity rt(t) satisfies the somewhat generalized 

equation 

(16) 

The dispersion characteristic is now (T,a,~,H(). The transformation 

f =-; -J U ('L )dT reduces eq. (16) to an equation of type (11). Wand 

it, resp. H( and JD are coupled by the relations 

All information presented in this chapter is also valid for the puff 

M =Gas corresponding to eq. (12). 

Considerable practical importance has been conceded to the solutions of 

the stationary equation 

(17) 

Here too, one appropriately starts with Green's functions belonging to 
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the source Q ~ d(r) in an infinite 1-space and constructs rather general 

classes of solutions for (17) by linear superpositions. 

The method of mirror-sources can also be applied here. There are clima­

tological models. 

Now that the more formal considerations are done with, we will proceed 

to concrete examples. 

5. Analytical solutions 

A class of solutions for eq. (17) frequently studied in the past is char­

acterized by a = 0; fK =I K .. • d .. l and l l.J l.J j 

(18) { 
u ;::. u ("A)2. 141 

"' () 

Its kernel is the Green Is function M = Gl cr, A) for eq. (18) and an in-
~ 

finite r-space: 

(19) 

X 

"(:i := f -kJ~I?o)ci~ 
0 

(e.g. ROBERTS (1923, BOSANQUET-PEARSON (1936), SUTTON (1943, 1947), CAL­

DER (1949, 1952), DEACON (1949), DAVIES (1950), ROUNDS (1955), SMITH (1957), 

BARAD-HAUGEN (1959)). 

Another class well suited to practical purposes corresponds to the convec­

tive diffusion equation 
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It is characterized by 

(21) 

Its kernel is the Green's function M == G
2

('1, t,). ) for an infinite r-space: 

(22) 
t i 

lCi == J ~Jr,~)dr ~= f U(t;~)tt-r- 1=2-rt 

0 0 

(e.g. FRENKIEL (1952), SUTTON (1953), CSANADY (1973)). 

For the sake of completeness, we mention here the special case of the so­

called "telegraphers equation": 

(23) 

The corresponding Green Is function M ;;::: G3 (r, t' A ) for an infinite r-space 

is 

{ 

tli 'V eK".f' {-t/~r) ·L(cr~). c(~~~~ 
(24) '-

~ l.= kt./T -r- Cf-;,_~ 1/t.;kT -a/K. 

(e.g. GOLDSTEIN (1950), MONIN (1959), PASQUILL (1974)). 

Using linear superpositions of solutions such as (19)(22)(24), in the 

sense of (13)(14)(15), one constructs rather flexible classes of solutions 

for (23). Thus, for instance, the classical mirror method generates the 

Green's functions for the half-space corresponding to G
1

, G
2 

and G3 : 

I
1 

== Bessel fnnction, £::! step fnnction 
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which satisfy the boundary condition 

-0 for 1 

The Green's functions corresponding to the parallel layer with similar 

boundary conditions can be found by a superposition of an infinite set 

of linearly arranged discrete mirror sources. 

For purposes of illustration, we select from the different possibilities 

of a continuous superposition only some typical solutions constructed from 

(25) -~a ( h Y~ G - X exto - ·- --
t y.f 

which is obviously a subset of (19). (see fig. 1) 

Source type distribution 
! 

density 

line -ex>z~£: X x/y,l)= r(ap1) p-yby,_+ct}- 1 

line -{)<)~~ f-J xJx 1 ~).= ~ X-A .exp(- ~~) 

-~<.~~X 
( 1[ f1 r( f)(c2 r/1 area xj~)=fr 

~£>0/..~ t::y 
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A study of the current literature shows that the diffusion models most 

widely used today are special cases of the classes listed above (e.g. 

LUCAS (1958), TURNER (1964), MILLER-HOLZWORTH (1967), KOGLER et al. (1967), 

MARSH-WITHERS (1969), ROBERTS et a1. (1969), JOHNSON et al. (1969), FOR­

TAK (1970), GIFFORD-HANNA (1971)). 

A description of pollutant dispersion, by far more flexible and better 

adapted to real problems than the analytical solutions mentioned, is 

given by the so-called Galerkin method. 

With this one reduces the initial equation 

(26) ;J}M=Q 
where i} denotes a linear differential-operator, to a system of equations 

acting on a space of lower dimension. The particle number M is exactly ex­

pressible as an expansion 

J( 

(27) M = Z cpk 'f,_ 
-h=1 

into a complete system of functions ~~ of one or more of the basic var-

iables, e.g. 'lfk(x,y) or more briefly lf k(~). The remaining variables, 

here (z,t), are represented by the symbol ; • While the l.J)k are well­

known functions, the <fk< -f-> are still to be determined. Inserting the 

representation (27) into the starting equation (26), ~ becomes a free para­

meter with a continuous range of values. The resulting equation, can via 

, ~(Ly. 

(28) J ( $rvt-Q) tt~ dl-1 - o ~ = 1,2, ••• K 

~m~ 
be gradually replaced by an equivalent set of equations governing the co-

efficients tfk· These sets will be referred to as the "reduced dispersion 

equations". Their mathematical structure is uniquely and completely fixed 

by the distribution of the variables between ~ and ~ • 



-20-

Example: 

m n x 'tp k = x y complete on (- ~< y ( ~oo ) redudes eq. (20) via (28) to the 

system 

(29) 

(e.g. SAFFMAN (1962), SMITH (1965), MULLER (1974)). 

B. Trajectory Models 
==================== 

l. Puffs 

They attach their coordinate system to an air volume which moves with 

the advective wind. The model of ESCHENROEDER-MARTINEZ (1972) is based 

on the concept of a fictitious vertical air column that must maintain its 

integrity as it moves through the atmosphere. Due to the fact that in 

the planetary boundary layer, both the magnitude and the direction of 

wind vary with height, it is impossible for an air column to remain ver­

tical as it is being advected by the wind over time periods commonly of 

interest. One, therefore, will study the advection of an expanding "puff" 

instead of a vertical column. 

Suppose we have a puff of pollutant of known concentration distribution 

)CCr,t
0

) at time t
0

• In absence of chemical reactions and other sources, 

and if we assume molecular diffusion to be negligible, the concentration 

distribution j(Cr,t) at some later time t > t
0 

is described by the so­

called advective equation 
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(30) 

If we solve this equation with u =u , and compare the solution with mean 
observations we would find in reality that the material spreads out more 

than predicted. The extra spreading is, in fact, what is referred to as 

"turbulent diffusion" and results from the influence of the stochastic 

component u' which we have ignored. Implying that we knew the velocity 

field u = u + u' precisely at all locations and times, there would 
mean 

be no such phenomenon as turbulent diffusion. 

Thus, turbulent diffusion is an artifact of our lack of knowledge of the 

true velocity field. Conseqpently, one of the fundamental tasks in tur­

bulent diffusion theory is to define the deterministic component u 
mean 

and the stochastic component u'· of the velocity field u. 
Knowing finally.this field one could try to construct the trajectory fol­

lowed by the moving puff. But there are other difficulties. 

A first-order approach would be, to assume the puff is Gaussian puff, 

expanding with time. 

To take care of 11• one could interpret the puff as a realization of an 

ensemble of identically expanding puffs moving along stochastic trajec-

tories. 

In the case of a significantly varying wind shear, the lower parts of 

the puff will be slower than the upper ones. One could pay regard to 

that, at least partially, assuming each puff to be composed of horizon­

tal layers, each of them following its own dispersion characteristics, 

A(z). The corresponding formalism is given by 

(31) 

i/- t I. t~.1 X ( F, f) z 5 X .. (P, lJ k'(f-f/-l. .AkJ) 
l1t1 -

f 
where z = h is the emission height and ~ = ( ~, ~ , ( ) • The X 's measure 
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the pollutant concentrations in consecutive time intervals. The super­

positions can properly be performed by the so-called stochastic integra­

tion approach 

2. Plumes 

The continuous stream or "plume" of effluent gas stretching from an in­

dustrial chimney may be thought of as a succession of elementary sections 

which behave somewhat like individual puffs. The trajectories of these 

sections ar~ not identical, but are irregularly displaced by the larger 

scale fluctuations in the flow. The result is a progressive broadening 

of the cross-wind front over which material is spread at a given distance 

downwind of the source, and the same process is also effective in the 

vertical. Thus, the average concentration produced downwind of a point 

source not only diminuishes with distance from the source but also with 

the time of exposure. It is important to realize that this property of 

time mean concentration is a consequence of the existence of dispersive 

motions on a scale larger than the plume cross section itself. 

3. Stochastic integration 

We now present another stochastic approach in order to describe the pol­

lution dispersion during stagnant weather situations as well. 

The linear Boltzmann equation 

(32) - - «f -+ f.. ff (f, v: t) ctii: 
'+1: 

is the Eulerian description of particle transport in a homogeneous iso­

tropic material, taking acconnt of the "free path" (SODAK, 1962) and so 

it is the corresponding modification of the Liouville-equation. The term 
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(- o(f) measures the absorption and the so-called "collision integral" on 

the right-hand side of (32) describes the interaction mechanism. The in­

tegra-differential eq. (32) can be solved by a random walk approach 

(__,_Monte Carlo technique, e.g. SODAK, 1962). The "flux" caused by a 

point source isotropically emitting into an infinite extended space sa­

tisfies the Peierls equation 

-IX lf'-rt 
e X(r:t') 
[f'-fl' (33) 

t' = t- lr'-rl /v 
A Laplace transformation X(;, t)··~<f.><"i,p) with respect to time t and 

a subsequent Taylor expansion of the integrand leads to the equation 

r= <X+__r_ v 

the differential operator of which degenerates to a Helmholtz-operator 

( f;J 
2 + a

2
), if the cross-sections o( and r are coupled by 

(34) 

In this case, the transformed flux qb, obviously, satisfies the second 

order differential equation 

(35) 

and, because of this, the flux )( satisfies a differential equation of 

the type 
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The so-called "hyperbolic approximation" to it is given by the "tele­

grapher's equation" 

(36) + + 

the coefficients of which are approximately connected with those of the 

transport equation via 

(37) v c= b= 
:)(2~ -~) 

It should be mentioned here that the parabolic equation 

(38) 

Vc.i (d.·-~) 
2cx·-(3 

corresponds to the asymptotic case r 2/c
2
t--fPO. All this, demonstrated 

above, appears very useful, since one can now also solve both the tele­

grapher's equation (36) and the diffusion equation (38) by a random walk 

approach (e.g. MOLLER, 1976). 

The convection by air flow requires nothing but an addition of the local 

wind vector to the actual eddy velocity. 

4. Conclusion 

At this point it must be admitted that, due to purely mathematical diffi­

culties during the determination of suitable classes of solutions of the 

above equations, some people occupied in air quality management simply 
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take available solutions, which are sometimes less than adequate for the 

physical-chemical problem to be treated. Obviously, one is always able 

to gain a certain adaption to the reality by a fitting, i.e. a suitable 

'choice of the free parameters, which leads finally to a more or less 

suitable description of the dispersion behaviour of a pollutant. This 

fact makes the transferability of a dispersion model, up to now success­

ful in a certain region and with certain weather conditions, to another 

region and situation somewhat doubtful. Success is not necessarily simul­

taneously transferable - a fact that a models user must never forget. 
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