Cluster diameter measurements using an electric mobility spectrometer
Cluster diameter measurements using an electric mobility spectrometer

E. ZAMORANI and G. OTTOBRINI

Joint Nuclear Research Center
Ispra Establishment - Italy
LEGAL NOTICE

Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.
ABSTRACT

The geometric standard deviation, σ_g, of monodispersed polystyrene particles employed in the calibration of aerosol counters can be affected by the fraction of clusters generated by liquid atomization.

Graphical analysis of the continuous particle size distribution obtained by the light-scattering method, revealed the peaks corresponding to the different cluster multiplicities.

The cluster diameter values have been confirmed by an electric mobility analyzer.

Aerodynamic diameters, calculated from the relationship $X_k = \frac{1}{K}$ in terms of the relative diameter $f_N = \frac{D_N}{D_1}$ and f_n, introducing the Stöber correction factor, are given.

The resolution of peaks calculated from the particle size distribution, obtained by light or laser scattering instruments, must account for the formation of clusters depending on the aqueous concentration and the water drop diameter.
INTRODUCTION

Errors in aerosol size distribution measurements can arise from agglomerated particles forming clusters which increase the geometric standard deviation of the distribution.

Liquid atomization is a standard way of generating suspended particles in air which are employed in problems involving aerosols. At high liquid concentrations, the fraction of agglomerated particles becomes important and the standard deviation of the aerosol distribution increases correspondingly.

Monodispersed polystyrene latex particles have been used in the calibration of the Climet C 201 counter (from Technworld Inc., Sunnyvale, California, USA)\(^{(1)}\). The instrument employs a light-scattering method to reveal the concentration and particles distribution between 0.3 and 10 \(\mu\)m. Light, scattered by a particle, is focused on a photomultiplier. The pulse height, proportional to the particle size, enters a multichannel analyzer. The counting system was calibrated using polystyrene particles suspended in air to determine the performances of the instrument, the peak resolution and the calibration curve: particle diameter/channel number.

During the calibration procedure, the peaks corresponding to 0.807 and 1.1 \(\mu\)m diameter monodispersed particles, were found to be associated with continuous distribution arising from agglomerated particles (Fig. 1). After graphical analysis the diameters corresponding to the different multiplicity have been evaluated using the calibration curve.

Previous measurements of the aerodynamic cluster diameter (defined as that of a sphere of the same density and settling velocity
as the cluster) have been carried out using a preliminary particle sampling device such as a centrifuge (2) (3) or electrostatic analyzer (4) (5) (6) and visually in an electron microscope. It was deduced that the diameter D_N of a cluster containing N spheres should be related to the diameter D_1 of a single sphere by the expression:

$$\left(\sqrt[N]{N}\right)D_1 \leq D_N \leq \left(\sqrt[N]{N}\right)D_1$$

[1]

The aim of this report is to calculate the aerodynamic diameter of particle aggregates by analyzing the deposition patterns obtained using a parallel plate mobility analyzer and to confirm the calculated cluster diameters obtained by the light-scattering method.

EXPERIMENTAL PROCEDURE

A high resolution (2.5%) electric mobility spectrometer previously described (9) was employed in the measurements of the electric mobility of particles. Aerosol particles (0.807 μm) purified by repeated centrifugating, were generated by passing pure compressed N$_2$ through a water suspension of monodispersed polystyrene latex particles. The subkinetic, electrically charged, aerosol flow (45-50 ml.min$^{-1}$) enters the center of the spectrometer midway between two electrodes maintained at a potential of 10 kV (\pm 5 kV). The aerosol deposition patterns are analyzed by a photoscanner device. The signal from a photomultiplier enters a fast pen recorder, yielding the diagram shown in Fig. 2. This diagram is a representative deposition of 0.807 μm monodispersed aerosol particles in which the principal peaks correspond to the multicharged single particles.
To eliminate the influence of the experimental conditions on the deposition, the pattern distances on the plates have been normalized with respect to charge one for a singlet considered at 100% of the deposition distance.

The aerodynamic diameters of multiplets have been calculated from the peaks included between the aerosol entrance slit and the first charge carried by a single particle in the diagram of Fig. 2 and the relationships [2] [3]. For each deposition the plot of Fig. 3 and the cluster diameters, corresponding to the different multiplicity, have been deduced from at least

8 values for doublets carrying 2-3-5-6-7-9-10-11 electric charges
8 values for triplets carrying 3-4-6-7-8-9-12-14 electric charges
5 values for quadruplets carrying 4-5-6-9-11 electric charges

The results are compared in Tables I, II and III.

Microscopic pattern examination has been carried out to ascertain the configuration of the aggregates. The plates were covered with very thin plastic strip. After the deposition of the particles, the strip was cut and placed on glass slides.

DISCUSSION AND CONCLUSIONS

When electric forces are applied to a charged particle entering the spectrometer, the deposition distance, \(X_k \) (cm), from the entrance, is inversely proportional to the electric mobility \(\text{cm.s}^{-1}/\text{V.cm}^{-1} \).
of the particle:

\[X_k = \frac{1}{K} \] \hspace{1cm} [2]

when

\[K = \frac{n}{3\pi \eta D} \frac{e}{300} \] \hspace{1cm} [3]

or

\[X_k = \frac{1}{n} \] \hspace{1cm} [4]

where

\(n \) = elementary charge unit,

\(e \) = elementary electric charge (\(= 4.8 \times 10^{-10} \) e.s.u.),

\(\eta \) = fluid viscosity (\(= 1.75 \times 10^{-4} \) poise),

\(D \) = particle diameter (\(= 8.07 \times 10^{-5} \) cm),

\(C \) = Cunningham slip factor (\(C = 1 + 0.86 \frac{\lambda_2}{D} = 1.198 \)).

The pattern analyzer and the relationship [4] determine the peaks corresponding to the cluster multiplicity carrying \(n \) elementary charges without ambiguity. The diameters, deduced from the calibration curve

\[\log K = f(\log X_k) \]

of Fig. 4, have a deviation from the mean of \(\pm 0.5\% \).

As observed in the plot Fig. 3, microscopic examination confirmed a deposition at the same distance for clusters having an equal mobility. The high relative abundance for 3rd, 6th and 9th charge corresponding to a single particle, has been produced by the simultaneous deposition of clusters having the same mobility.

The diagram of Fig. 2 and the observed particles give no indication of vertical doublets (6).

Three and four particles were closely packed in triangles, tetrahedrons and squares. Few particles presented the \(i \) or \(y \) configura-
tion, showing a general tendency to occupy a minimum volume. The same mobility was observed for the different configurations of agglomerated particles.

The cluster diameter values calculated from the mobility analyzer are close to those of the calculated clusters responsible for the continuous distribution observed during the Climet calibration when 0.807 μm polystyrene latex was generated by atomization.

The diameter values calculated by the two methods of analysis and the relative diameters $f_N = \frac{D_N}{D_I}$ are listed in the Table I.

As previously reported, different values of relative diameter f_N can be obtained when the particle is moving either in a gravitational or an electric field (4). Table II is a comparison of f_N results with others previously obtained.

If the diameters deduced from the electric mobility spectrometer are corrected for the Stober factor (10), then the relative diameters f_n are in good agreement with those measured by a gravitational field (see Table III), which means that the cluster aerodynamic diameter, calculated from the electric mobility, cannot be taken as that of a sphere and a shape factor must be introduced to account for this difference.

The continuous distribution obtained by the light-scattering instrument, appears clearly when the single particle diameter is $> 0.5 \mu m$. At lower diameters the cluster size distribution is masked by the tail of the principal peak, increasing the geometric standard deviation σ_g.

It follows that for instruments employing the light or laser-scattering method, the resolution deduced from the size distribution
of particles in range 0.3 - 0.5 \(\mu \) in diameter, must account for the cluster fraction from atomization, proportional to the aqueous concentration and to the water drop diameter.
TABLE I - Comparison of Cluster Diameters and f_N values evaluated by 1) = light-scattering and 2) = electric mobility distribution

<table>
<thead>
<tr>
<th>No. of spheres in clusters</th>
<th>(1) $\phi(\mu)$</th>
<th>f_N</th>
<th>(2) $\phi(\mu)$</th>
<th>f_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.069</td>
<td>1.32</td>
<td>1.054</td>
<td>1.31</td>
</tr>
<tr>
<td>3</td>
<td>1.328</td>
<td>1.64</td>
<td>1.315</td>
<td>1.63</td>
</tr>
<tr>
<td>4</td>
<td>1.508</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE II - Comparison of f_N Values

<table>
<thead>
<tr>
<th>No. of spheres in cl.</th>
<th>1</th>
<th>2</th>
<th>aver.</th>
<th>3</th>
<th>max.</th>
<th>4</th>
<th>5</th>
<th>this investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.41</td>
<td>1.31</td>
<td>1.27</td>
<td>1.37</td>
<td>1.43</td>
<td>1.30</td>
<td>1.263</td>
<td>1.31</td>
</tr>
<tr>
<td>2</td>
<td>1.67</td>
<td>1.55</td>
<td>1.47</td>
<td>1.70</td>
<td>1.58</td>
<td>1.454</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.85</td>
<td>1.80</td>
<td>1.61</td>
<td>1.84</td>
<td>1.79</td>
<td>1.593</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.03</td>
<td>2.00</td>
<td>1.93</td>
<td></td>
<td></td>
<td>1.93</td>
<td>1.710</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>2.07</td>
<td></td>
<td></td>
<td></td>
<td>1.836</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>2.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>2.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>2.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 = Stöber et al. (1970)
2 = Megaw-Wells, (1970)
3 = Wajsfelner et al. (1970)
4 = Giacomelli Maltoni et al. (1973)
5 = Heyder-Porstendörfer (1974)
<table>
<thead>
<tr>
<th>Diam. of unit sphere (cm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.12</td>
<td>0.159</td>
<td>8.5 x 10^{-6}</td>
<td>0.1 to 0.213</td>
<td>5.4 x 10^{-5}</td>
<td>10^{-5} to 7.9 x 10^{-5}</td>
<td>1.15 x 10^{-4}</td>
<td>3 to 5 x 10^{-5}</td>
<td>0.234 x 10^{-4}</td>
<td>0.5 to 0.658 x 10^{-4}</td>
<td>0.807 x 10^{-4}</td>
</tr>
<tr>
<td>No. of spheres in cluster</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

1 = Kunkel (1949): fluid phase clusters falling in oil;
2 = Megaw (1954): magnetized steel clusters falling in glycerol;
3 = Megaw and Giffen (1966): polystyrene clusters diffusing in air;
4 = Stöber (1969): magnetized steel clusters falling in syrup;
5 = Stöber (1969): polystyrene clusters centrifuged from air;
6 = Megaw and Wells (1970): singly charged clusters in an electric field;
7 = Stöber et al. (1970): polystyrene clusters centrifuged from air;
8 = Wajsfelner et al. (1970): multiply charged clusters in an electric field;
9 = Giacomelli and coworkers (1973): singly charged clusters in an electric field;
10 = Heyder-Forstendörfer: polystyrene clusters centrifuged from air;
11 = this investigation: multiply charged clusters in an electric field.
REFERENCES

(1) E. ZAMORANI, G. OTTOBRINI; EUR-5400 e MF
(3) W. STÖBER, H. FLACHSBART; J. Aerosol Sci., 2 (1971) 103
(4) W.J. MEGAW, A.C. WELLS; J. Aerosol Sci., 2 (1971) 161
(7) W. STÖBER et al.; J. Colloid. Interface Sci., 29 (1969) 710
(9) E. ZAMORANI, G. OTTOBRINI; EUR-report in press
(10) W. STÖBER; J. Aerosol Sci., 2 (1971) 453
LIST OF FIGURE CAPTIONS

Fig. 1: Size Distribution by Light-Scattering
 a) 0.807 \mu m
 b) 1.1 \mu m

--- : room temperature
------- : heated stream

Fig. 2: Relative Deposition Distances of 0.807 \mu m Polystyrene Particles - Particles Multiplicity and Elementary Charge of Clusters are Indicated

Fig. 3: Plot of 1/n versus Relative Distance \(X_{k, \text{rel}} \) for Particles Multiplicity

Fig. 4: Plot of log \(K \) (electric mobility) versus log \(X_{k, \text{rel}} \)
SALES OFFICES

BELGIQUE - BELGIÉ

LGIQUE

Moniteur beige – Belgisch Staatsblad
Rue de Louvain 40-42 – Leuvenseweg 40-42
1000 Bruxelles – 1000 Brussel – Tél: 512 00 26
CCP 000-2005502-27 – Postrekening 000-2005502-27

Sous-dépôt – Agentschap
Librairie europeene – Europese Boekhandel
Rue de la Loi 244 – Wevelstraat 244
1040 Bruxelles – 1040 Brussel
Te: 512 00 26

NMARK

J.H. Schultz – Boghandel
Mantergade 19
1116 København K – Tel 14 11 95
Girokonto 834 00 København

: DEUTSCHLAND

Verlag Bundesanzeiger
Breite Straße
Postfach 108 006
5000 Köln 1 – Tel (0221) 21 03 48
(Fernschreiber Anzeiger Bonn 08 882 595)
Postscheckkonto 834 00 Köln

ANCE

Service de vente en France des publications des Communautés européennes – Journal officiel
26, rue Desaix – 75 732 Paris - Cedex 15
Tel (1) 578 61 39 – CCP Paris 23-96

.EELAND

Stationery Office – The Controller
Beggar’s Bush – Dublin 4
Tel 76 54 01

ITALIA

Libreria dello Stato
Piazza G. Verdi 10
00198 Roma – Tel (6) 85 08
CCP 1/2640

Agenzia di Roma
0187 Roma – Via XX Settembre
(Palazzo Ministero delle tesoro)

GRAND-DUCHÉ DE LUXEMBOURG

Office des publications officielles des Communautés européennes
5, rue du Commerce
Bolte postale 1003 – Luxembourg
Tél 49 00 81 – CCP 191-90
Compte courant bancaire Bil 8-109/6003/300

NEDERLAND

Staatsdrukkerij- en uitgeverijbedrijf
Christoffel Plantijnstraat, 5 Gravenhage
Tel (070) 81 45 11 – Postgiro 42 53 00

UNITED KINGDOM

H M Stationery Office
P.O. Box 569
London SE1 9NH – Tel. 01 - 928 6977 ext. 365
National Giro Account 582-1002

UNITED STATES OF AMERICA

European Community Information Service
2100 M Street. N. W. – Suite 707
Washington, D.C. 20 037 – Tel. (202) 872 8350

SCHWEIZ—SUISSE—SVIZZERA

Librairie Payot
6, rue Grenus – 1211 Genève
CCP 12-236 Geneve – Tel 31 89 50

SVIERGE

Librairie C.E. Fritz
2, Fredsgatan – Stockholm 16
Post Giro 193. Bank Giro 73/4015

ESPÀNA

Libreria Mundi-Prensa
Castelló 37 – Madrid 1
Tel 275 46 55

OTHER COUNTRIES

Office for Official publications of the European Communities
5, rue du Commerce
Bolte postale 1003 – Luxembourg
Tél 49 00 81 – CCP 191-90
Compte courant bancaire Bil 8-109/6003/300
NOTICE TO THE READER

All scientific reports published by the Commission of the European Communities are announced in the monthly periodical *euro-abstracts*. For subscription (1 year: FB 1 025.--) please write to the address below.