

ESPRIT '90

ESPRIT 90

Proceedings of the Annual ESPRIT Conference,
Brussels, November 12—-15, 1990

Edited by

COMMISSION OF THE EUROPEAN COMMUNITIES
Directorate-General TELECOMMUNICATIONS,
INFORMATION INDUSTRIES and INNOVATION

PARL. EUROP. Biblioth.
N.C. E

v EuZ A0y R
5 [

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

Q Ca. ~nA

ISBN 0-7923-1039-X

Publication arrangements by

Commission of the European Communities

Directorate-General Telecommunications, Information Industries and Innovation,
Scientific and Technical Communications Service, Luxembourg

EUR 13148
© 1990 ECSC, EEC, EAEC, Brussels and Luxembourg

LEGAL NOTICE
Neither the Commission of the European Communities nor any person acting on behalf of the
Commission is responsible for the use which might be made of the following information.

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Kiuwer Academic Publishers incorporates the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

‘In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

No part of the material protected by this copyright notice may be reproduced or

utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and N}

refrieval system, without written permission from the copyright owner

Printed in the Netherlands

Foreword

The 1990 ESPRIT Conferene is being held in Brussels from the 12th November to the
15th November. Well over 1700 participants from all over Europe and overseas are
expected to attend the various events. The Conference will offer the opportunity to be
updated on the results of the ESPRIT projects and Basic Research actions and to develop
international contacts with colleagues, both within a specific branch of Information
Technology and across different branches.

The first three days of the Conference are devoted to presentations of Esprit projects
and Basic Research actions structured into plenary and parallel sessions; the scope of
the Conference has been broadened this year by the inclusion of several well-known
international speakers. All areas of Esprit work are covered: Microelectronics, information
Processing Systems, Office and Business Systems, Computer Integrated Manutacturing,
Basic Research and aspects of the Information Exchange System.

During the IT Forum on Thursday November 15th, major European industrial and
political decision-makers will address the audience in the morning. In the afternoon, a
Round Table will discuss the impact of Information Technology on society.

More than 100 projects and actions will display their major innovations and achieve-
ments at the Esprit Exhibition which will be, for the first time, open to the general public.
The exhibition offers a unique opportunity to acquire in a short time first hand, complete
and comprehensive knowledge about the results obtained in all areas of the Esprit
programme. These exhibits also show the pervasive role of IT and the contribution it makes
to the economic and social life of everyone in the Community.

Iwould like to congratulate and thank everyone who has contributed to the Conference:
the authors and reviewers of papers and reports; the chairmen, the speakers, the panelists
and workshop participants at the Conference; the project teams which set up the
demonstrations. The success of this Conference is due to all their efforts.

J.M. Cadiou
Director
Information Technologies - ESPRIT

CONTENTS

Foreword

Table of contents
Plenary Session

Assassment, Methodology and Standardisation in Multilingual Speech
Technology (Project 2589)
SAM

Manufacturing Systems Planning and Programming in a CIM Environment
(Project 2202)
Bernhardt R.

The ITHACA Technology - A Landscape for Object-Oriented Application
Development (Project 2705)
Ader M., Nierstrasz O., McMahon S., Miller G., Pr&frock A-K.

Default Reasoning and Dynamic Interpretation of Natural Language
(Action 3175)
Veltman F., Klein E., Moens M.

Microelectronics and Peripheral Technologies

Compact Modelling for Analoge Circult Design (Project 2016)
De Graaf H.C., Kloosterman W.J., Versleyen M.

Internal Gettering as a Function of the Wafer Position in the Original Crystal
Rod (Project 2016)
Graff K.

Preamorphization Techniques for Shallow Junctions in Si (Project 2016)
Imschweiler J., Hefner H.A.

Very High Speed Bipolar Technology and Circuits Tipbase Bipolar Advanced
Silicon for Europe (Project 2016)
Linssen A.J., Treitinger L., Ward P., Kaiser R., Smith J.

Low Temperature lon-Assisted Epitaxy of Deposited Silicon Layers
(Project 2016)
Priolo F., Spinella C., Rimini E.

TIPBASE 2016 Bipolar Advanced Silicon for Europe Advanced Bipolar
Processes for High-Performance Analog Applications (Project 2016)
Van der Velden J.W.A.

vii

15

31

52

105

17

viii

Combined Analog Digital Integration: CANDI (Profect 2268)
Mallardeau C., Duflos Y., Marin J.C., Roche M., Troster G., Arndt J.

BICMOS: From Dream to Reality (Project 2430)
Josquin W.J.M.J., Klose H.

Information Processing Systems

Terminological Information Management in ADKMS (Project 311)
Damiani M., Bottarelli S., Migliorati M., Peltason C.

Cooperative Distributed Problem Solving in EPSILON (Project 530)
Kniesel G., Cremers A.B.

Producing Process Plans out of CAD Files through Al Techniques (Project 865)
ludica N., Tranchero B., Ansaldi S., Boato L.

Formal Description of Digital and Analog Systems by Means of Functional
Languages (Profect 881)
Boute R.

Parallel Associative Development Machine as a Vehicle for Artificial Intelligence
(Project 1219(967))
Guichard-Jary P.

ATES: An Integrated System for Software Development and Verification
(Project 1158)
Couturier P., Puccetti A.

SAMSON: An Expert System Devoted to the Help of Software Assessment
(Project 1257)
Sirvent O., Dupont C.

EDS - Collaborating for a High Performance Parallel Relational Database
(Project 2025)
Andres F., Bergsten B., Borla-Salamet P., Broughton P., Chachaty C.,
Couprie M., Finance B., Gardarin G., Glynn K., Hart B., Kellett S., Leunig S.,
Lopez M., Ward M., Valduriez P., Ziane M.

The MERMAID Approach to Software Cost Estimation (Profect 2046)
Kok P.A.M,, Kitchenham B.A., Kirakowski J.

Neural Network Programming & Applications (Profect 2059)
Angéniol B.

131

145

163

177

194

212

227

242

264

274

296

315

A Comparative Study of the Representation Languages Used in the Machine
Learning Toolbox (Project 2154)
Causse K., Morlk K., Sims P., Rouveiral C.

Computerised Simulation Tools for the Design of an Oral Dialogue System
(Project 2218)
Andry F., Bilange E., Charpentier F., Choukrl K., Ponamale M.,
Soudoplatoft S.

Intrusion-Tolerant Security Servers for DELTA-4 (Project 2252)
Blaln L, Deswarte Y.

Overview of the LOTOSPHERE Design Methodology (Project 2304)
Ferreira Pires L., Vissers C.A.

TEMPORA - Integrating Database Technology, Rule Based Systems and
Temporal Reasoning for Effective Software (Project 2469)
Loucopoulos P., McBrlen P., Persson U., Schumacker F., Vasey P.

Architecture of a Multimodal Dialogue Interface for Knowledge-Based Systems
(Project 2474)

Binot J-L., Falzon P., Perez R., Peroche B., Sheehy N., Rouault J., Wilson M.

Information Pool for Knowledge Engineering Support - The Common
Information Repository (Project 2576)
Nordbe I., Eggen J.

Two Demonstrators as a Test-Bed for the Construction of Intelligent Training
Systems in Industrial Environments (Project 2615)
Bertin A, Burguera E., Scott D.M.

Computer integrated Manufacturing

EP 932 Final Results: CIM/Al Value Analysis (Project 932)
Meyer W., Walters H.M.J.

ACCORD: Developing Concepts Towards Integration of Analysis and Design -
The Role of ASSET in the Design Assurance Process (Project 1062)
Parker R.G., Denniss S.J., Stobbs N.H.W., Humphrey A.T., Pearce M.A.,
Patureau J.P., Azarian A., Carette P., Excoffier P., Vandenberghe O.

SACODY Results and Achievements (Project 1561)
Faillot J-L.

Towards an Integrated Environment for the Early Stages of Process Design
(Project 2090)
Karcanias N., Chamilothoris G.

326

342

an

388

412

447

457

477

508

X

IMPPACT - Improvements in Integration by a Feature Approach. Product and
Process Modelling Move Closer Together (Project 2165)
Meier A.

Modelling Fluid Flow and Heat Transfer in an Industrial Glass Furnace
(Project 2192)
Carvalho M.G., Nogueira M.

Integrating Operational Research and Artificial Intelligence in a Distributed
Approach to Dynamic Scheduling: The B.1.S. Project (Project 2434)
Guida M., Basaglia G.

Neutral Interfaces for Robotics. Goals and First Results of ESPRIT Project
2614/5109: "NIRO" (Project 2614/5109)
Bey |.

OSl-Based Network Management for Industrial Networks (Project 2617)
Kiesel W., Deiretsbacher K.H.

Office and Business Systems

Should We Say Goodbye to the Office? - The Role of Telework Today and in
the Future
Gordon G.E.

Application Tools and End-User Applications: The Object Management
Architecture
Soley R.M.

User Centred Design, Prototyping, and Cognitive Modelling with the Sane
Toolkit (Project 385)
Bosser T., Melchior E-M.

Versioned Documents in a Technical Document Management System (Project

2007)
Hederman L., Weigand H.

The Application of Morpho-Syntactic Language Processing to Effective Text
Retrieval (Project 2083)
Smeaton A.F., Voutilainen A., Sheridan P.

The MAX Project Approach to Multiservice Business Communications
(Project 2100)
Luvison A.

MULTIWORKS - MULTimedia Integrated Workstation (Project 2105)
Del Moretto R.

516

530

559

568

581

588

589

607

619

636

654

The European Project for the Development of a Standard, Open Architecture
for Hospital Information Systems (Project 2221)
Ferrara F.M.

Progress in Distributed Systems - an Overview of the ISA Project (Project 2267)
Eyre D.M., Igguiden D.A.

Managing Management - The TOBIAS Approach (Profect 2294)
Kollas V., Lefebvre |., Mackenzie R., Marshall L.F., Moukas P.

Primary Rate ISDN OS| Office Facilities (Profect 2404)
Patel B., et al.

The EuroWorkStation Project and Its Future Extensions (Project 2569)
Miller-Schioer Ch., Geiger M.

Information Exchange System

High Speed Networking in Europe and the EBIT Project
Van Binst P.

The COSINE Project
Davies H.E.

Provision of an International X.25 Infrastructure (IXI)
Devoll J.

Basic Research

Perspectives in Supramolecular Chemistry Towards Molecular Devices
Lehn J-M.

Perspectives of Local Probe Methods
Rohrer

Emerging Relationship batween Optics and Electronics
Huang A.

Vision
Brady J.M.

Computational Logic
Kowalski R.

Computer Sclence - The Past and the Future
Hopcroft J.E.

705

718

735

740

750

757

760

761

767

768

774

xii

Recent Development in Database Systems
Bancilhon F.

Some Reflections on Software Research
Hoare C.AR.

Hardware- and Software-Fault Tolerance
Laprie J.C., Arat J., Beounes C., Kanoun K.

Structure and Behaviour of Concurrent Systems: Selected Results of the Esprit
Basic Research Action (Action 3148)
Best E.

An Algebraic Approach to Verifiable Compiling Specification and Prototyping
of the Process Level 0 Programming Language (Action 3104)

Hoare C.A.R., Jifeng H., Bowen J., Pandya P.
Characterising Structural and Dynamic Aspects of the Interpretation of Visual
Interface Objects (Action 3066)

May J., Bocker M., Barnard P.J., Green A.J.K.

Speech Recognition using Connectionist Approaches (Action 3228)
Choukrl K.

Performance and Physical Limits of Heterostructure Field Effect Transistors
(Action 3042)
Allee D.R., Broers A.N., Van Rossum M., Borghs S., De Raedt W., Launois
H., Etienne B., Jin Y., Adde R., Castagne R., Antonetti A., Hulin D.
Growth and Characterization of Ultrathin SimGen Strained Layer Superiattices

(Action 3174)
Presting H., Kibbel H., Kasper E., Jaros M., Abstreiter G.

Indexes

Index of Authors
" Index of Project Numbers
Index of Acronyms

Index of Keywords

784

785

786

791

804

819

835

851

885

888

889

PLENARY SESSION

Project No. 2589

Assessment, Methodology and Standardisation in Multilingual
Speech Technology

sam!
INTRODUCTION

The necessary use within the European Community of the languages of the
member states has important implications for the development and use of speech
information systems. All widely used technology has to be produced with reference
to accepted standards concerning its manufacture and its assessment. Speech
technology similarly requires standards to be developed and specified and these
must be applicable across languages within the context of the European Com-
munity.

The SAM [‘Speech Assessment Methods’] Project (2589) is dedicated to the
definition and application of these multi-lingual EC standards. At present the project
is based on the collaboration of twenty-eight laboratories in eight countries, six
within the EC and two from EFTA. The SAM project is now at the half-way stage of
its three-year ESPRIT Il Main Phase. This follows a preliminary ‘Definition Phase’
(ESPRIT 1541) in which the state of the art, and the requirements in Europe and the
rest of the world were investigated, and a ‘bridging’ ‘Extension Phase’, in which
preparatory work for the Main Phase was undertaken. Current work is in progress
in three inter-connected working areas:

1 Speech Recognition Assessment (Input)
n Speech Synthesis Assessment (Output)
in Enabling Technology and Research (ETR)

At the very beginning of the SAM Project, the need to ensure a practical basis
for ready collaboration between so many different laboratories in different countries
was met by the definition of a reference, standard, workstation - SESAM. The
minimum hardware requirements for SESAM are an IBM pc-at or compatible
computer, an analogue interface board, OROS-AU21 or AU22, 1 Mbyte of extended
memory, and means for accessing speech data eg CD-ROM reader. C is used as
the common programming language. Each one of the three workgroups, above,
has made use of this simple reference standard so that software, data and
assessment results can be interchanged. This has proved to be very successful
both between project members and in the provision of data and support for other
laboratories across Europe - all the work of the SAM Project is designed to be readily

1 prepared for the SAM project by Adrian Fourcin & colleagues at UCL and across Europe
3

available within the European Community.
I. Input Assessment

In recognition assessment, the simple reference standard workstation has been
implemented and tested in multi-lingual, multi-laboratory trials. It comprises a DBMS
interface, for automatically feeding the recognition items to a recogniser; a recog-
niser assessment control module with standard recogniser-to-workstation interface
which is structured to minimise the amount of work needed to develop recogniser-
specific drivers; a scoring module for scoring and statistically processing the
recogniser response,(including a software module which has been developed to
include NIST scoring criteria, providing a degree of compatibility with DARPA
assessment work).

In order to provide a flexible tool for recogniser assessment, the component
software packages are designed as separate modules which can be independently
developed by different laboratory groupings within the project. The first package,
PAOSAM, is designed to be capable of managing the information associated with
the standard SAM format speech databases. The second package, EURPAC,
primarily controls the interaction between the assessment system and the recog-
niser itself and the third package. This last package, SAM_SCOR, provides a series
of performance measures. All three software modules are interconnected via ASCIl
files, and all programs are in C using the microsoft 5.1 compiler, and executable on
the SESAM workstation running MS-DOS as the operating system (Version 3 or
later).

Database Management

The PAOSAM program has been developed to cater for the major needs of data
retrieval and data archiving for all languages and all speakers in the SAM project.
A commercially available DataBase Management System (ORACLE) is used as the
basic building block. The management structure has been designed to allow the
integration of all of the characteristics of both present and future SAM speech
databases. Effectively, PAOSAM enables the user to specify the characteristic
-assessment aspects to be targetted in terms, for example, of language, speaker
and speech types, and for an automatic procedure to be utilised for the composition
of training and tesffiles in the assessment of a defined recogniser.

Control Module

The EURPAC program is designed to operate from this basis in controlling the
assessment of isolated or connected word recognisers. The assessment session
can be controlled by information given in a separate control file, defined by the user,
and giving details of the unique serial number of the test run, the identification of
the recogniser, and the names of the configuration-, training-, test- and response-
files. An important aspect of the design of this particular software module is that it

uses resident drivers to control individual recognisers. In this way, the greater part
of the software is quite independent of the analogue interface board which is utilised,
and it is easier to develop new recogniser drivers which can have separate
communication protocols.

Scoring

The SAM_SCOR program provides a range of recognition performance
measures - hit; miss; substitution; correct rejection; false alarm. In addition, at the
isolated word level, confusion matrices, confidence analyses, and the application
of the McNemar test are standard facilities. For connected word and continuous
speech recognisers string matching at the orthographic level is available employing
NIST scoring routines which have been made executable on the SESAM worksta-
tion. The output of this scoring software is designed to provide uniform presenta-
tions of the assessment results that are easy to understand and cross compare.
SAM_SCOR generates a file which can subsequently be fed back into the DBMS to
make it possible to relate speech material characteristics to recogniser performance
measures.

Applications

More than 10 EC laboratories in the Project have been involved in the application
of recogniser assessments so far for six commercially-available or in-house recog-
nisers. Considerable use has been made of the first SAM CD-ROM speech database
- EUROM 0 - which gives 5 hours from 20 speakers in five languages. This cross
laboratory single and multi-language testing of equivalent recognisers has provided
the foundation for the setting up of a basic calibration procedure for the SESAM
input assessment workstation. Work is currently in progress to define a common
method for standard reference calibration and hardware setting up protocols.

In collaboration with the ETR Group, a new multi-lingual speech database has
been designed and is in the process of being recorded. The contents of the
database have been defined to meet the present and near future need for the
development of diagnostic and predictive assessment methodologies. The data-
base is divided into two sets: a ‘Many Speaker set’ and a ‘Few Speaker set’. The
vocabulary of the 'Many Speaker set’ contains a list of selected numbers between
zero to nine thousand nine hundred and ninety nine covering all the phonotactic
possibilities of the languages’ number systems, and blocks of five sentences giving
continuous speech with paragraph prosody rather than individual sentences. The
vocabulary of the ‘Few Speaker set' is expanded with a CVC list and more repetitions
per item.

LR L
< LQ,,“\
1§ %

] o
\ &= ;
oM

Future Input Assessment Activities

The present availability of this suite of software packages operating together with
standard data bases and a set of common hardware facilities has provided an
essential set of practical tools which we have shown to be usable in many different
laboratory settings in Europe. We are faced, however, with the need to develop a
more fundamental and comprehensive approach towards the investigation and the
evaluation of input assessment methodologies when the needs have to be met not
only of operating with a range of speakers, accents and dialects, but also languages.
A main prospective area of our future work is directed towards the development of
reliable language-independent predictive assessment methods. For this purpose
several analytic approaches are under consideration:

RAMOS (Recogniser Assessment by means of Manipulation Of Speech) an
approach developed at TNO, Netherlands. This is a diagnostic method based
on a test vocabulary of CVC-words and resynthesis. The CVC-list of the new
database is designed to be used with this method.

RSA (Recogniser Sensitivity Analysis) investigated in the UK for English in the
Alvey STA-project. This is potentially complementary to RAMOS and can also be
based on the "Few Speaker set" of the new database, since the speakers of the
"Few Speaker set" are carefully selected from the "Many Speaker set" providing
a controlled variability of performance related factors.

EVC (Effective Vocabulary Capacity method) could also be of interest, since the
method has shown evidence that it produces estimates, which are relatively
independent of the size and composition of the test vocabulary, with only one to
two hundred utterances.

A complementary aspect of this analytic approach towards recogniser assess-
ment involves the determination of the speech production factors applicable in our
present eight European languages. This then can be correlated with their influence
on the performance of individual recognisers. For this purpose a speech parameter
extractor has been developed from work in the UK STA project using a software
package, SAM-SPEX produced in Denmark. Currently six speaker-dependent
parameters are measured: speaking rate; energy; larynx frequency; ‘voice quality’;
vocal tract area estimate; and finally, (temporal) pattern congruence. The aim is to
make it possible for speech databases eventually to be calibrated in terms of factors
which show a sensitivity in respect of recogniser performance.

Finally, we have arranged our data collection so that post-production factors can
be incorporated by simulation into the (originally anechoically recorded) speech
data, and this also has been the object of concerted activity within the project.

data base management

PAOSAM |,

|R I assessment control

]! le——] EURPAC | o
V1

analogue EI ,”ponaimlysb
|R

SAM_SCOR | o

{Floppy disk/
Hard copy)

- € v - € O

IML—zZOO0OMI

SESAM WORKSTATION FOR RECOGNISER ASSESSMENT
Il. Output Assessment

Standard word-level and sentence-level segmental multi-lingual intelligibility tests
have already been defined. They can be automatically generated on the SESAM
workstation in the languages of the project using phonotactic and word frequency
constraints. Compatible software provides for response collection, collation and
scoring.

Segmental Structures

The SAM segmental test contains guidelines for the automatic generation of
nonsense-word lists for all eight partner languages, using a set of fixed word
structures and phoneme lists. The test material is language specific in that phoneme
combinations respect phonotactic constraints for the languages in which they are
prepared. The SAM group has chosen to use nonsense words in its definition of
this standard with an open response set in order to get an intelligibility score which
is not influenced by contextual information or semantically restricted answer
choices. This type of material is the most relevant when an analysis of phoneme
confusions is required, and in application, for instance, to synthesis material where
error patterns may be quite device-specific. The SAM Segmental test consists of
two parts: a first "core test® containing structures common to all languages of the
consortium, and which cover consonants in initial, medial and final positions: VCV,
VC (+ fixed final V for Italian) and CV. In all cases, the full inventory of consonants
is used with only a sub-set of vowels. This sub-test cannot be considered as a full
diagnostic test, but it is substantially diagnostic for consonants. The *full test* will
include more extensive language-specific and even synthesiser-specific sub-tests
with complex structures such as CVC, CVWC, VCCV and possibly CnVC, CVCn.
Phonemes are presented in equal numbers per list so that an equal probability score

will be obtained. This score can then be weighted according to phoneme-frequency-
of-occurrence counts to obtain scores which reflect phonemic balance.

Segmental Assessment

A system to support the automatic segmental assessment of synthesisers has
been implemented on the SESAM workstation. The present form of this system,
called SOAS, consists of three modules: the test module, the pre-processing
modulse, and the scoring module. The test software controls the playing of sampled
synthetic speech tokens in a sequence determined by a definable test file. The
subject responds using the keyboard (a mouse-driven subject interface will soon
be also available) and these responses are stored together with details describing
the test. The pre-processing module applies a SAM-defined protocol to interpret
these responses and produces a file containing the subject’s responses converted
to an unambiguous SAMPA form which is listener independent. These results are
then automatically scored, using the third module, to produce percentage scores,
confusion matrices, analysis in terms of certain types of phonetic feature (eg place
of articulation and voicing), and the effect of vowel environment together with other
statistics all in a form suitable for hard copy output. Further developments to this
system will include a test manager to control all modules in a user-friendly environ-
ment and a test file generator for automatically producing randomised test sequen-
ces.

Assessment of words in context

A test of word intelligibility in sentence context has also been developed for
SESAM, using semantically unpredictable sentences (SUS). Grammatical struc-
tures and word lists are defined for all the languages of the consortium to permit
the generation of an unlimited number of test sentences. The SUS test material has
already found wide acceptance outside ESPRIT, and has been recommended to
the CCITT. The standard form of the SUS test is to be finalised by the end of 1990.
The importance of word-intelligibility at this sentence level is in regard to the fuller
information it provides on the quality of distributional and contextual variants. These
are key factors in overall intelligibility, and deficiencies in this area of synthesis
probably contribute to the reduced comprehension of synthesised messages in
noise.

Prosody and Quality

Work on prosodic assessment is now under way. Pilot tests have been devised
and are in progress to examine the acceptability of:

a) intonational structure
b) intonational function

All tests are designed for use with linguistically naive subjects, an important factor
if they are to be generally applicable.

Multi-lingual application has required the definition of structural tests which are
formulated in general terms, independent of language-specific intonation. The
functional tests are specified in terms of pragmatic speech-act categories, which
also guarantees comparability across the languages.

In addition to intelligibility tests at word- and sentence-level, there is a need for
tests which provide a global comparison between systems. A number of psycho-
physical scaling procedures have been used for this purpose in the estimation of
speech quality; these include categorical scaling, and magnitude estimation. Within
the SAM Output group, various methodological parameters have been systemati-
cally estimated to establish how best to reduce the context effects (range of
systems) and subject effects which might affect the rating of a system. It is being
investigated whether the introduction of a reference system (natural undistorted
speech) common to all experiments could help reduce these context/group effects.
The two techniques - magnitude estimation (ME) and categorical estimations (CE)
are being compared in terms of their ‘resistance’ to these effects and a major study
has been completed [***].

lll. Enabling Technology and Research

The core SAM workstation, SESAM, has been specified and implemented for
data collection, following standard protocols, database management, and speech
signal labelling. A phonemic notational system for all European languages, SAMPA,
has been developed and is in use both for manual labelling and, currently, for
semi-automatic label alignment. Phonemic level structural constraints across the
languages of the project have been compiled and are used in corpus definition.
Broader descriptors are being investigated for muilti-ingual application. Other,
physical, levels of description are being quantified as a contribution to analytic
methods of assessment. Information on cross-language lexica is being compiled.

SESAM

Hardware (see the INTRODUCTION above) and software specifications are now
well established and widely applied in regard, for example, to: the structure and
code normalisation of software; the formatting of data and organisation of data-
bases; and the provision of interfaces.

Two, key, software packages are central to the use of the workstation within the
project. The first is EUROPEC, which is designed to provide for the realisation of
large speech databases. Two-channel acquisition (eg for microphone and laryngo-
graph signals) and monitoring is now possible with visual prompting for the speaker
which may be manually controlled or automatically triggered as a function of signal
level. Automatic end-point detection facilitates the handling and recording of large
organised corpora. This is also substantially assisted by the automatic inclusion in

10

Test File Speech Files

. Listener keys In
Test Programme | 4 responses, or uses mouse

Response
File

Pre-processing A fTranscription Files)
Program A\

Scoring Documentation

Scoring Program File

' Scoring Control
File

Speech Output Assessment System

the database of description text files in standard form with header and body, so that
the orthographic prompt can be routinely incorporated together with complete
sessional and recording item and condition information.

A complementary package, VERIPEC, is designed to give ready access to these
standard data and text files, making it possible to display the orthographic prompts,
access and monitor recorded items and show the label files.

The second important package, PTS, is designed fo operate from the data
acquired via EUROPEC. Its primary function is to enable the labelling of speech
data files with either SAMPA (see below) or IPA notations, using window based
displays of waveform and spectrograms of the signal. A range of manipulation
functions has been incorporated for viewing and editing (eg cut, paste, copy, save),
measurement, monitoring and saving signal and label files.

SESAM was originally conceived as a common tool giving test-bed facilities and
acting as interface in networking with more practical, more powerful, mainframes.
it has emerged, however, both as a means of fulfilling these reference facilities and
as a workstation in its own right. It is being adopted as a common tool not only
within the SAM laboratories and in other ESPRIT projects but also as a bridge
between US and EC speech standards. SAM software CONVERT") is incorporated
into DARPA CD-ROMs so that American speech material can be used on SESAM
in the same way as SAM-standard files.

Data

The first SAM database, EUROM 0, was distributed on a single CD-ROM and
contained five hours of speech material recorded using a condenser microphone
in anechoic rooms from four single accent speakers in each of five languages (with
16 kHz sampling). NATO single and triple digit sequences were obtained with only
the speech signal, and a continuous speech passage, with a common numeric
theme across languages, was recorded using two channels - with both speech and
laryngographic inputs.

A new database is now in preparation using the same standard format with sixty
speakers in each of eight languages. Nonsense words, number sequences up to
9999, (both phonotactically balanced) and situationally linked sentence blocks are
being recorded. Anechoic condenser microphone recordings will permit the sub-
sequent imposition of post-production effects. A small subset of data will have two
channel representation, as above. Two CD-ROMs are planned for each language
- using 20 kHz sampling.

SAMPA

The SAM Phonetic Alphabet (SAMPA), which defines a standard keyboard based
notation (ASCII) corresponding to the relevant International Phonetic Association
symbols for each of the languages represented in the project, was agreed very early
in the project, and has now been extended to cover all the major European

12

languages. It has also been adopted by a number of ESPRIT projects and both the
British and German national speech databases. This consensus for the repre-
sentation of phonemic contrasts in all the languages of the group provides a
common labelling basis for cross-comparison and for a structured multi-lingual
approach to database specification in the development of standard methods of
assessment. The basic SAM transcription system was originally intended to evolve
as a multi-tier labelling tool and work is currently directed towards the introduction
of prosodic and acoustic element levels of description.

Labelling

Multi-lingual labelling, in which phoneme categories are assigned to successive
regions of the speech signal, has always been an important part of the SAM group’s
activity. This is because overall assessment, detailed evaluation and the processes
of training themselves ultimately depend on an accurate definition of speech which
can be given in phonetic and orthographic terms. So, although the precise assign-
ment of discrete categories, for different sound classes, to the continuous speech
signal is an impossible task - since the subjective level of labelling is not compatible
with any physical set of exact temporal stretches of the signal - the consistent
correlation is of real value. The SESAM workstation is designed to support this work,
and manual labelling in all the languages of the project has provided essential
reference material.

A further development of this work currently involves a semi-automatic approach,

‘using label alignment. In this way the larger quantities of speech material generated

by current database gathering, and which are in need of labelling, can be accom-
modated without imposing an impossibly large manual labelling task - simply by
using an ordinary transcription made without reference to signal details. This is
currently being done for texts in Norwegian, French, Danish and English as an
exercise across the whole of the SAM project. Three different methods have been
selected for implementation. The first, from France is based on speech knowledge
rules, the second, from Norway, on Hidden Markov modelling, and the third, from
Denmark, uses neural network techniques in conjunction with phonetic feature
transformations. Automatic scoring software (ELSA) has been written and, although
it is still necessary for an expert labeller to check the setting of the label time
boundaries, this provides a common basis for evaluation.

Speech and Language Material Complexity

The increasing development of databases and of detail in speech technology
processing itself, leads to the need for the specification of speech and language
material along additional dimensions to those discussed above. Work in hand and
planned in the SAM project addresses some of these issues in regard to: the further
collation of phonotactic information; the measurement of basic physical speech
parameters - using SAM_SPEX for example - to tie in with the analytic procedures

orthographic prompting;
acquisition;

formatting;

phonemic tagging

semi-automatic
labelling

manual
labelling/correction

traming & test file management

speech data
acquisition
protocols

EUROPEC

SALA

Danish
Dutch
English
French
German
Itakan
Norwegian
Swedish

SAMPA

PTS

PAOSAM

labelled speech
data files

European phonemic notation

critical parameter analysis

SAMSPEX

SESAM WORKSTATION FOR SPEECH DATA ACQUISITION

13

14

discussed in | above; the use of more representative, mildly pathological, speech;
and the gathering of information on computer compatible lexica.

In Conclusion

The SAM Project (ESPRIT 2589: Multi-lingual Speech Input/Output Assessment,
Methodology and Standardisation) is well placed to promote the aims that have
been identified as central to the ESPRIT initiative:

— to provide the European Information Technology industry with the technologies
it needs to meet the competitive requirements of the 1990s;

- to promote European cooperation in Information Technology;

- to contribute towards the development and implementation of international
standards.

In common with all ESPRIT projects, it is concerned to fulfil the first two aims:

1. Common assessment methods and common tools can give a basis for the valid
cross comparison of recogniser and synthesiser performance.

2. In addressing the problem of speech-technology assessment across 8 lan-
guages, with 8 partner-countries and 28 laboratories the SAM project is able to
put the principle of cooperation into practice more extensively than most projects.
The need for a multi-lingual approach to every aspect of assessment calls for
parallel rather than distributed solutions. SAM cannot be a project based on
division of labour; each partner country has to be actively involved in integrating
the requirements for their language into a common approach.

At another level, too, SAM may go further in collaboration and cooperation, in
that the inclusion of two EFTA countries as fully active, self-financing partners,
points the way to even wider European collaboration.

3. But in regard to the third aim the SAM project has as a main goal to provide, and
to help set, standards within the EC. Its direct objectives are to supply stand-
ardised methods for the assessment of speech recognition and speech synthesis
systems. In doing this within Europe it is already giving a foundation for broader
collaboration internationally.

REFERENCES

The most relevant sources of information on the SAM project come from its
progress reports. The first of these is available in book form from the publishers:

Ellis Horwood Ltd, Chichester, 1989 [ISBN 0-7458-0651-1]) Speech Input and Output
Assessment; Multi-lingual Methods and Standards

Two further progress reports may be obtained directly from:
Kate Jones, Phonetics and Linguistics Department, University College London, UK.

Project No. 2202

MANUFACTURING SYSTEMS PLANNING AND PROGRAMMING
IN A CIM ENVIRONMENT

R. Bernhardt
Fraunhofer-Institute for Production Systems and Design Technology
Head.: o. Prof. Dr.-Ing. Drs. h.c. G. Spur
Main Department of Robot Systems Technology
Director: 0. Prof. Dr.-Ing. G. Duelen
PascalstraBe 8-9, D - 1000 Berlin 10

Abstract

This paper reports on two ESPRIT projects (623 and 2202). The first one (started
in 1985) was finished in 1990. Resuits and benefits of this project therefore can be
presented in detail. Additionalty the application spectrum of the realised systems
and tools is outlined. For the second project which was started im May 1989 the
objectives and the state of affairs after the first project year are described.

1. Introduction

Information techniques have initiated a structural change of the manufacturing
industry. Productivity, flexibility, quality and reliability will a level which cannot be
realized on the basis of conventional production structures. The very differentiated
technological requirements for products lead to an increased product variation and
a quick product substitution. These alterations of the market situation demand
automation of the highest flexibility and productivity. This can be reached by
computer integrated, automated and flexible manufacturing, whereby information
techniques take over a key function.

In production technology it was comprehended at a very early stage that
computers can be important components. Stations of these developments were the
NC technique, CNC controls up to the development of FMS with robots. In this
context it can be stated that robots play an important role as the most flexible
automation components. But their effective use and their integration into a CIM
environment requires the availability of powerful tools for planning and programming
of robotised manufacturing cells. In this area R&D work has been done within the
ESPRIT project 623:

Operational Control for Robot System Integration Into CIM.

Encouraged by the results reached in this project a further ESPRIT project (2202)
has been launched:

15

16

CIM System Planning Toolbox (CIM-PLATO).

While the first project was dedicated specifically to robots the R&D contents of
the latter one addresses manufacturing systems in general. Robots and the tools
for their integration in a CIM environment are regarded as mere components but
nevertheless important ones among many others.

For these tasks computer-aided tools like CAD, data base, expert, simulation,
off-line programming and communication systems are either already available but
still have to be adopted to todays needs of production industries or they are in
development. This shows also that there are many relations between informatics
and production technology. On the one hand, methods and results from informatics
are used and on the other hand the needs from production technology have initiated
research and development in informatics. These interrelations have meanwhile
opened a big market for the information industry.

2. Robot System Integration into CIM

2.1 Objectives and Approaches

Robots are important components for flexible automation. The enlargement of
their application area as well as their integration into CIM requires the availability of
computer-aided planning and off-line programming means. Therefore a project
(ESPRIT 623) was started in 1985 and finished in 1990. The general objective was
"to specify and build means to demonstrate the integration of robots into CIM
systems /1/. This included two closely interrelated fields of research, i.e. computer-
aided planning and an off-line programming system for robots to be integrated into
CIM systems. The project had three branches of work: realisation of an explicit
(motion oriented) programming and simulation system, realisation of an implicit
(task oriented) programming system and realisation of a planning system for
robotised work cells.

Work in these three areas proceeded simultaneously. In all cases, definition and
specification of software modules was followed by their realisation and applica-
tion/demonstration in real or simulated industrial environments.

In April 1988 project groups for realising demonstrator systems were organised
to integrate components and subsystems for planning and programming of robot-
ised work cells. The main objective for realising demonstrator systems by integrating
modules of different partners was to show the increased functionality and efficiency
of an integrated planning and programming procedure.

For the realisation different principles like automatic or interactive planning
functions and explicit or implicit programming procedures were considered. The
integration was achieved primarily through information exchange and management,
performed via a relational data base. Additionally realistic industrial applications or
well-known benchmark tests were selected which covered a broad spectrum of
problems and showed their solution. The realised systems or parts of them were

17

also used by the project partners for a variety of industral projects. In the meantime
products based on the developments of this ESPRIT project have been introduced
on the market by the project partners KUKA and Renault.

2.2 Industrial Applications

The realised planning and off-line programming tools have been used by the
involved partners for a broad spectrum of applications. This is enabled because of
the modular system structure allowing the exchange of user and task specific
modules. Subsequently some examples are presented /2.

2.2.1 Handling of Car Seats

An important area of use for planning systems are robot applications in which
complex operations within restricted spatial conditions have to be performed. An
example concerning the handling of car seats is given by fig. 2.2-1 (simulation) and
fig. 2.2-2 which shows the realized workcell.

19

2.2.2 Laser Cutting
A laser cutting method has been developed which consists of

- a curve definition on the part,

- acurve discretion according to different criteria,

- the laser trajectory definition including the laser torch adjustment and speed
control, particularily in the windings of the laser path,

- the choice and positioning of the robot,

- the simulation and trajectory improvement.

This method is used particularily for sheet metal laser cutting application for the
cutting of holes in pre-production cars where it is difficult to build specific dies. An
example of such an application is given in the figures 2.2.-3 and 2.2.-4 where first a
solid model representation of the simulation is shown and then the realised laser
cutting cell is presented.

Laser cutting is also important outside the automotive industry. In short batch
production there are a lot of products which need various holes differing from one
variant of a part to another. For this reason such holes must be cut in the final step
of the manufacturing process which is generally done manually. A laser is some-
times used but the part must be flat (2D curve) and the shape of the hole simple.

The developed system enables the use of this technology for complex parts and
for complex contours of the hole once the part has been represented in the CAD
system. From the application point of view, two approaches are followed:

- The first consists of a detemination on what kind of product the technology may
be used (e.g. bath tubs, yacht hulls...).

- The second is an extension of this approach to another cutting system: the high
pressure water jet cutting.

2.2.3 Inspection of Underwater Structures

The overall objective of the so-called OSIRIS project is to make available an
underwater working robot in connection with a suitable carrier. The main tasks are
cleaning, measuring and inspection of welding seams at underwaters structures
without diver assistance. This requires the planning and programming of the
submersible vehicles's motion as well as the task execution of the robot itself.
Therefore the existing system has been enlarged by the additional module *Vehi-
cleProgramming”. As the first step of the programming procedure the application
program for the submersible vehicle is generated. The motion execution is tested
viathe simulation system. In the next step the same procedure is applied to generate
and test the robot program. A testbed was built in a laboratory consisting of an
industrial robot, a tube intersection of an off-shore platform and a tool exchange
system including cleaning, measuring and inspection tools. Off-line generated and

21

tested robot programs were transfered to the robot control and executed by the
robot. The project is conducted by the partners Interatom, GKSS and IPK Berlin /3/.

2.2.4 Automation and Robotics in Space

For the German space-lab mission envisaged for 1991 a robot technology
experiment is in development. Thereby a robot in an experiment box has to fulffill
different tasks after a calibration procedure. The required robot programs have to
be planned, generated and tested by simulation in the gound station and transferred
for execution to orbit. The project is financed by the German Ministry of Research
and Techology with Dornier as prime contractor and IPK Berlin as a subcontractor
of Dornier /4/. Futhermore at the IPK Berlin a lab for automation and robotics (A&R)
in space has been built which provides the development environment for automation
procedures and components for space applications. This lab allows the develop-
ment and test of experiments under realistic conditions. The project is partly
supported by the Senate of Berlin. Two research institutions and five Berlin SMEs
participate in it. As a first experiment, a robotised work cell (5 axes robot mounted
on two external linear axes) for the exchange of samples from a melting stove has
been realised. Thereby the task execution is planned and tested by the off-line
programming and simulation system.

.3 Results and Benefit

As the partners who were concerned in the project are not only from the industry
but also a number of academic partners were involved, it must be differentiated
between results and benefits seen mainly from industrial points of view and those
which more concern research institutions /5, 6/.

First the results and benefits of the industrial partners within the project are
presented. Computer aided tools were developed to support the various planning
and programming activities in the companies. These prototype products resulting
from the project work were customised and extended by each partner. They then
were introduced into the planning and programming departments and applied to
many industrial projects. The yield was higher productivity on the suppliers side and
better quality of the delivered manufacturing systems.

Two kinds of products were developed in order to serve the planning and
programming needs. First, there are integrated planning and off-line programming
systems that are used in the office and run on work stations or minicomputers. The
work is done by using simulation models. The second category are application
support systems that run on small, portable computers. They are used for adapting
the off-line created programs to the specific requirements of the real manufacturing
system on the shop floor.

To support planning tasks, robot simulation is the most important method. The
most frequent kinds of application are

- restricted spatial conditions,

22

- tasks with critical time specifications,
— complex robot operations with multi-purpose endeffectors and
- complex kinematic structures with more than six joints involved.

Also for off-line programming industrial applications have been carried out.
Hitherto, three categories have been identified where the use of these techniques
was most advantageous for the industry:

- Programming of regular (e.g. symmetric) workpieces is considerably facilitated
by applying program generation or manipulation functions (e.g. mirror functions).

— High accuracy applications (e.g. laser beam cutting) requiring joint level program
optimisation.

— Transfer and adaptation of existing programs to similar applications (e.g. adap-
tation of a transfer line to a new car model).

To evaluate the results and benefits from an industrial point of view, the most
important qualitative advantages are mentioned:

— Cost reduction:
Personnel costs for design, optimisation and programming are saved and costs
for workshop tests and subsequent alterations of the systems are significantly
reduced.
— Faster results:
At a very early stage in a project, highly accurate information is available, e.qg.
with regard to the configuration of the layout.
— Time saving:
User solutions are developed faster, also within the tender preparation phase.
— Optimal engineering products:
Several alternative solutions can be analysed and compared, resulting in a
decisive improvement of the quality of a solution.

To quantify the resuilts and benefits, the industrial partners have carried out
inquiries. To give an example, some results of an inquiry by the project partner KUKA
are presented in the figures 2.3-1 to 2.3-3. It may ailso be mentioned that project
results have been presented on 25 international fairs.

In close cooperation with the industrial partners two approaches were followed
by the academic partners during the course of the project. In the first place, existing
techniques were used for test and integration into prototype systems.

These systems were installed and evaluated together with the industrial partners.
The second approach was aimed at developing new technologies and showing their
usefulness in experiments. In this way a proper input to the development of
prototypes was ensured.

The objective of the research and the development activities was to demonstrate
the applicability of advanced technologies in the area of planning and programming
for operational robot control. Thereby two major areas were addressed. The first

24

concerned the development of an automatic planning and programming system
and the gradual replacement of interactive by automatic systems. Secondly infor-
mation integration aspects were studied in detail. In particular in the later phases of
the project the research efforts were directed to this second area. Throughout the
project close contact with other research groups outside the consortium was kept.

In total 30 projects and services resulted from the academic partners. From these
20 products and services were deliverd to external institutions and industries. In
particular the research experiences were used for other application areas such as
tele-robotics and underwater applications. The academic partners were able to start
14 new industrial cooperations and 26 public projects in national and European
programs.

An important aspect for the academic partners is the dissemination of knowledge
through courses, publications and conferences. New courses were set up in the
areas of CIM systems, robot programming and also in new subjects of sensors and
artificial intelligence. Over a 100 publications were edited by the partners and more
than 50 conferences were attended with a contribution. In particular during the last
period, the established academic and industrial cooperations within the consortium
presented themselves together in special sessions centred around on of the topics
of the project. These research cooperations will also be used to address the new
challenges in robot application.

The basic research efforts of the academic partners are now focussing on the
new technologies emerging. These include the application of expert systems
techniques and advanced programming approaches like object oriented formal-
isms.

3. CIM System Planning Tools

3.1 Project Objectives

Encouraged by the results reached in the ESPRIT 623 project a further ESPRIT
project (2202) has been launched: CIM System Planning Toolbox (CIM-PLATO).
The overall objective of the CIM-PLATO project is the development of an industrial
toolbox prototype of computer-based procedures and tools which support the
design, planning and installation of FMS and FAS systems in a CIM environment
[7/. To reach this goal, three fields of R&D can be stated. These are the manufac-
turing system planning, the process execution planning and the provision of all
necessary information to fulfill these tasks as well as the integration into a factory
information system. In fig. 3-1 a functional reference model is presented which
shows how the manufacturing system design tasks are embedded in a CIM
environment.

The manufacturing system design is part of the a priori planning area. Its output
is the design of the manufacturing system, the control design, the generation of all
required executable programs and strategies for the manufacturing contro! valid for
the class of products envisaged to be produced in the plant. This represents the

26

— manufacturing system planning and
— process execution planning.

Planning of a manufacturing system requires initially a system configuration
which can be subdivided into a selection of components and the planning of layouts.
As a second step of the planning process, a scheduling has to be performed which
is an assignment of resources and times to manufacturing operations. For the
completion of the planning process a verification has to be carried out. The resultant
information is a formal representation of the layout as well as a description of the
production task and this constitutes the input for the following more detailed
planning phase in the overall goal of getting a manufacturing system into operation.

Process execution planning is based on the delivered information produced by
manufacturing system planning. Using additional technological and geometrical
information the process execution planning as well as the exceptional case planning
has to be carried out. Process execution planning contains event and motion
oriented planning, technological process planning as well as application oriented
verification, simulation and test procedures. Furthermore optimization procedures
related to task sequencing and trajectories have to be considered. Another import-
ant item is related to the conversion and transfer of application programs to the real
manufacturing system.

The integration of manufacturing system planning and process execution plan-
ning for manufacturing system design purposes is mainly a problem of information
integration. Therefore the information flow within both systems, information ex-
change between both and their integration into a CIM structure have to be
considered. This requires the elaboration of an information system architecture, the
development of suitable (and possibly general valid) knowledge/information models
as well as the use of standards for modelling and information exchange. This
includes to guarantee a safe data handling and to reach a most flexible system
structure related to the integration and management of the tools as well as to a
quick adaption to user needs.

3.2 Approaches and Intermediate Results

Within the frame of the project tools will be realized or already existing tools will
be adapted and integrated to a toolbox "library". Tools are designed as far as
possible and required to be applicable as "stand-alone units" (single tools) for
specific industrial applications (Fig. 3-2). Additionally specific toolboxes can be
configured from the toolbox library for applications requiring the cooperation of
different tools, e.g. planning and programming of a robotized assembly cell. This
principle approach adopted in the project is outlined in Fig. 3-3.

27

Toolbox "Library”

Single Tools Configured Toolboxes

Industrial Applications

gr/16/cp-gm
Fig. 3-2: Principle Approach

Toolbox Library (Contigured Toolbox 2
(Configured Toolbox 1)

{ Specific Architecture)

O[®
o

Toolbox Manager

@ el | [-GE==
CRC .
. o :
= | |6 9l =
—) "ive
\. J

KIS : Knowledge-based Information Sysem
Fig. 3-3: Basic Project Structure and Principle Tasks

To ensure an effective cooperation between partners, a subgroup structure has
been installed. There are two subgroups for the configuration of examplary tool-
boxes to evaluate and to prove the functionality and effectivity of the tools to be
developed as well as to demonstrate the benefits and advantages reached through

28

integration of tools to a toolbox. Additionally a subgroup has been installed working
in the areas of toolbox management system and information integration.

The first year of this four year project was mainly a definition phase. The tasks to
be done in this phase were the elaboration of a functional description (first report)
and a functional specification of each tool (second report) to be realised in the
project. Additionally the software design for some tools was started already. On the
one hand this concerns already existing tools which have to be adapted . On the
other hand the software design for new tools was started and first prototypes are
now available, e.g. a technology planning tool for seam welding. Further activities
which were addressed in the definition phase concern the specification of demon-
strator systems. It is envisaged to realise four different demonstrator systems via
the integration of tools from various partners. Furthermore it was proposed during
the definition phase to build a toolbox manager which supports a user in selecting
tools to fulfill a specific task concerning planning and programming of manufacturing
systems. As a first step towards realisation a task force was established to define
the user requirements. This task force consists of the industrial project partners to
ensure the consideration of different backgrounds and experiences from various
industries (e.g. computer, car, robot, textile industry, FMS/FAS system builders).

Beside the editing of two interim reports and the elaboration of a variety of working
papers for internal information exchange within the project, also twelve articles were
published by the consortium.

The ongoing work in the project is splitted in two directions: The first one is
dedicated to the realisation of individual tools, the second one to the specification
of demonstrator systems which integrate tools of different project partners.

4. Summary

The article gives a brief survey of the two ESPRIT projects. The project 623
"Operational Control for Robot System Integration Into CIM" was started in1985 and
finished by the end of May 1990. As a final event of this project a workshop organised
by the consortium was held in Berlin to present the project results to persons
involved in the technical and research management from companies, universities
and administrations. The different demonstrations and presentations as well as the
interest of the audience clarly showed the industrial relevance of the work done and
the scientific/technical value.

The project 2202 "CIM System Planning Toolbox" (CIM-PLATO) was started in
1989 and is now in the software design phase. Furthermore first fast prototypes of
some tools have already been realised and demonstrated. Due to the importance
of standardisation to ensure the cooperation of the tools to be realised, a workshop
dealing withthese aspects was held in May 1990. As speakers, experts from industry
and research insitutions working in international standardisation boards were
invited. Due to the broad spectrum of presentations during the workshop reaching
from product modelling (STEP) to robot codes (ICR) the project partners got very
compact information about the activities and state of the art in this area.

29

Due to the fact that speakers invited to the workshop are also involved in other
ESPRIT projects, areas of common interest could be identified. As a result a number
of cooperations have been agreed. Together with the CIM-OSA project a seminar
is planned to discuss topics like integrating infrastructure, information modelling,
engineering tools set and implementation reference models. With the NIRO project
information and experiences will be exchanged concerning the formal description
of manufacturing tasks, the industrial robot language (IRL), and the intermediate
code for robots (ICR). Another cooperation has been launched with the IMPPACT
project in the area of STEP. Of specific interest to the CIM PLATO project is the
standardisation of kinematic and mechanic parameters.

Furthermore the CIM-PLATO consortium is involved in the organisation of a
workshop which mainly aims at intensifying the information exchange among
ESPRIT projects. This CIM Europe supported workshop is being organised by the
consortia of the projects 2165, 2202, 2434 and 2527 and will be held at 3-4
December 19390 in Saarbricken, Germany.

Finally it may be mentioned that all activities for cooperation and information
exchange had not been planned at the beginning of the project. in so far they cause
additional work and costs. On the other hand it is a way to effectively get informed
about methods, approaches and results of other projects working in similar fields
or the state of the art in related standardisation areas. In this sense projects can
benefit from each other even economically provided that the cooperative activities
are thoroughly planned and well prepared.

5. References

1. Spur et. al., Planning and Programming of Robot Integrated Production Cells Proceed-
ings ESPRIT Technical Conference, Sept. 1987, Brussels

2.R. Bernhardt, Integrated Planning and Off-Line Programming System for Robotised Work
Cells, Proceedings ESPRIT Technical Conference, Nov. 1989, Brussels

3. G. Duelen, V. Katschinski, Programmierung und Simulation eines mobilen Inspektions-
systems fur Off-Shore-Anlagen, Vortragsband des 5. Fachgespraches (ber Autonome
Mobile Systeme, November 1989, Minchen, Bayrisches Forschungszentrum fir wissens-
basierte Systeme

4. G. Duelen, Th. Seidl, D-2 Technologieexperiment *ROTEX Ground Programming",
Statusseminar des BMFT zu "Automatisierungstechnologien fir die Raumfahrt* am 13. und
14.2.1990 in Bad Honnef

5. Operational Control for Robot Systems Into CIM, Results and Benefits, 10th Interim
Report of the ESPRIT 623 Project, Nov. 1989

6. Robot System Integration Into CIM, Workshop Proceedings, March 1990, Berlin

7. R. Bernhardt, V. Katschinski, G. Schreck, CIM System Plannibg Toolbox: CIM-PLATO,
Proceedings CIM Europe Conference, May 1990, Lisbon

30

6. Acknowledgements

The following partners were involved in the ESPRIT project 623:
Fraunhofer-Institute for Production Systems and Design Technolgy (IPK), Berlin, Germany
KUKA SchweiBanlagen und Roboter GmbH, Augsburg, Germany
Renault Automation D.T.A.A., Paris, France
University College Galway, Galway, Republic of Ireland
FIAR Spa, Milano, Italy
University of Karlsruhe, Karlsruhe, Germany
Universidade Nova de Lisboa, Lisbon, Portugal
Universidad Politecnica de Madrid, Madrid, Spain
Universiteit Amsterdam, Amsterdam, The Netherlands
Gesellschaft fur ProzeBsteuerungs- und Informationssysteme GmbH
(PSI), Beriin, Germany
Consiglio Nationale delle Richerche (LADSEB-CNR), Padova, Italy
Politecnico di Milano, Milano, ltaly

In the ESPRIT project 2202 the following additional partners are involved:

BULL France, Angers, France
Investronica, Madrid, Spain

The author in his capacity as the project manager of both projects reports about
the work done by the researchers of the companies and institutions mentioned
above.

Project No 2705

The ITHACA Technology
A Landscape for Object-Oriented Application Development
Martin Ader Stephen McMahon
Bull S.A. Gerhard Miller
Anna-Kristin Profrock
Oscar Nierstrasz Siemens Nixdorf Informationssysteme
Université de Genéve AG

Abstract

The ITHACA envlronment' offers an application support system which incorpor-
ates advanced technologies in the fields of object-oriented programming in general
and programming languages, database technologies, user interface systems and
software development tools in particular. THACA provides an integrated and open-
ended toolkit which exploits the benefits of object-oriented technologies for promot-
ing reusability, tailorability and integratability, factors which are crucial for ensuring
software quality and productivity. Industrial applications from the fields of office
automation, public administration, finance/insurance and chemical engineering are
developed in paraliel and used to evaluate the suitability of the system.

1. Introduction

The ITHACA project aims to build a development environment for the construc-
tion of large-scale applications. Compared with the current situation, the applica-
tions are expected to be more reliable and more convenient to handle and to run.
The manner in which they interact will, on the whole, be more integrated. At the
same time, it is necessary to considerably reduce development costs, minimise the
overall development risk and ensure the maintainability of the resulting applications.
Moreover, applications built within the environment must be extensible with only a
moderate amount of effort, thus allowing them to be adapted to meet changing
requirements. This latter point is probably the major drawback of current hardwired
application systems. The application domains we envisage in the ITHACA context

* The ITHACA project is funded as a Technology Integration Project by the Commission of the European
Communtties as part of the ESPRIT Il programme. The partners involved are Siemens Nixdort
Informationssysteme AG (Germany), the prime contractor, with the associated partners Trinity College
Oublin, University of Zurich, Ahtalr (France) and SQL Datenbanksysteme GmbH (Germany); Bull S.A. with
the associated partners Delphi S.p.A. (italy), INRIA (France) and CMSU (Greece); Datamont S.p.A. (italy)
with Poltecnico di Milano and Universha di Milano as subcontractors; TAO (Spain); F.O.R.T.H. (Greece)
and the University of Geneva (Switzerland).

31

32

belong to the domain of information systems, office systems and C* systems (CAD,
CAM, CIM, CASE etc.).

It is widely accepted that the object-oriented paradigm promises best to be a
basis for meeting the above requirements [Tsichritzis and Nierstrasz '88]. In spite
of this, however, object-oriented programming is not yet used for the industrial
development of systems in the foreseen domains. To reason this neglect we may
draw from our experience in putting object-oriented programming environments to
practical use and may identify some major lacks of present-day environments
[Muller and Préfrock '89].

The reasons for this are manifold. First, object-oriented programming is not
supported by any adequate life-cycle model. Existing life-cycle models are insuffi-
cient for they do not support any notion of reusability - the core advantage of the
object-oriented paradigm. Second (and most probably due to the missing life cycle
model), tools for supporting the early phases of object-oriented programming are
still in their infancy. Finally, object-oriented programming does not support any
notion of persistence and thus limits the use of object-oriented programming to the
development of system software, tools and user interface systems.

The ITHACA project aims to contribute towards providing solutions for these
problem areas. The first section of this paper gives an integrated overview of the
entire system and the approach adopted. This is followed by a more detailed
description of the persistent programming and storage environment (HooDS).
Subsequently, an appropriate object-oriented development life-cycle is introduced
together with the tools required to support this. A brief description of selected pilot
applications follows, including an explanation of end-user assistance and the
support provided by groupware for cooperative processes. We conclude by
outlining the minimum hardware and software platform on which the system runs
and describe the status of development work so far.

2. The ITHACA Approach

As mentioned above, the objective of ITHACA is to provide an environment for
supporting the development of large-scale application software systems [Profrock
et al. '90]. The general approach to large-scale system design and development is
to move the emphasis towards engineering rather than programming. To do so, we
focus on the reuse of components on a macro-scale, a technique which is
understood well and which is common practice in traditional engineering sectors,
but not in software engineering, despite its name.

Complexity in engineering design is managed by hierarchical decomposition.
This entails the repeated application of the following design cycle: Specifications
are laid down and then, using knowledge of existing lower-level components, their
properties and possible methods of interconnection, a configuration is proposed.
This configuration usually undergoes a number of improvements in order to meet
the specifications and criteria which may have been omitted or unquantified intially.
The initial configuration together with subsequent improvements includes two major

33

steps. First, the choice of component types and their layout and interconnection
(topology of the design). Second, the choice of specific components (in terms of
characteristic parameter values) to meet these specifications. We have assumed
that the design is composed of available components. However, there may be a
need for some new component(s). In this case, a design cycle at a lower level will
be initiated to provide the missing component (or components), configuration of
which again being attempted using existing components at a lower level still. For
any given class of designs, systems and subsystems are constructed using a
defined set of building blocks, the primitive components. The primitive components
are not universal: gates are the basic building blocks for some designs, although
they are themselves configured from more elementary components. At lower design
levels, the primitive components are usually standardised. As a field of application
matures, standardisation propagates upwards until it reaches final products.

it should be noted that the described approach to engineering is quite different
from the stepwise refinement offered by software engineering. Stepwise refinement
leads the software engineer to split a complex problem into less complex subprob-
lems by means of iteration. Reuse of existing components is not considered to be
a goal of the process and, if at all, is achieved by accident. In general, stepwise
refinement results in recoding of similar programs.

Ancther, more intuitive example can be drawn from an architect’s approach to
building a house for a specific client. First of all, the architect draws up details of the
client's requirements and the budget restrictions. Based on those conditions, the
architect decides if he can offer his client a prefab. If not, he has to make a
customised design in the manner described above. The more he cannot use
standard components, the client’s budget is burdened exponentially. He will thus
try to find standard kitchen designs, common bathroom layouts etc. in order to
remain within his budget limitations. Such a "generic kitchen frame* can be spe-
cialised by concrete objects which are differentiated with regard to material, colour,
form and quality.

Object-oriented programming allows this approach to be followed because it
adheres to the philosophy of using prefabricated components. Here, the term
‘component" covers more than just basic code; it also includes the context in which
a piece of software is used. Thus, reuse of components also means the reuse of
designs, models, requirements and even experience.

The following scenario can be used to apply the principles of engineering design
to software engineering. Well-engineered components are described in catalogs
and stored in software information bases in the form of application frames. An
application frame is a prefabricated application and constitutes a network which
links the application’s model, requirements, design, experience, realisation and
documentation. The application developer gathers the client’s requirements. He
navigates through his prefabricated applications with the aim of finding either a
solution which satisfies the demands or pieces which fit into a specific layout. This
cycle is applied recursively until no specific layout is left. In addition to the support
of object-oriented programming and application configuration, the developer is

36

On the highest level of abstraction, the kernel consists of a set of object-oriented
programming languages. In order to realise persistent objects, these languages are
connected to an object storage subsystem, called NooDLE.

To support the practical needs of programmers, a runtime monitoring and
debugging facility, called MaX is supported [Brodde '89], [Brodde '90]. In a world
where the reuse of software components written by other programmers is the
standard, a facility such as this constitutes more than just one of life’s luxuries.

A specialised application builder is under development [Krickstadt '90] in order
to ease the process of building a specific application system by connecting class
declarations, interconnect this application to the appropriate user interface objects
and finally generate the necessary meta-information for the management of persist-
ent objects in NooDLE (i.e. the schema). Due to the internal complexity of object-
oriented application systems (e.g. the resolution of inheritance) the standard
UNIX® make facility is only of limited use in this context. To nevertheless ensure
conformance with the standard, the application builder is built on top of the make
facility and thus generates standard make files.

The design and implementation of appropriate graphical user interfaces is an
expensive task. Based on meta-information kept internally, the dialog management
system DialOOg is able to generate simple form-oriented, graphical user interfaces
on the basis of OSF/Motif for a majority of standard representations.

Finally, in order to retrieve objects interactively the kernel provides a filter/browser
system called FBi which acts on both the storage subsystem to retrieve the data of
an object, as well as on the languages able to execute the methods of an object.

Unlike current approaches to object-oriented database system development,
HooDS focuses on achieving an open, extensible and configurable architecture.

A number of research projects are currently under way which focus on the
development of prototypes for extensible database systems [Batory et al. '86],
[Carey et al. '86], [Thompson et al. '83]. The general idea of extensible database
systems is to modularise the system’s architecture by factoring out functionalities
into modules. This idea is quite simple, but nevertheless contradicts the common
approach to database system design which centres on monolithic systems with a
layered architecture.

We may intuitively draw some clear advantages of extensible architectures. First,
an extensible architecture allows systems to be configured at installation time in
accordance with the needs of different application domains - if a specific functionality
is not needed then it is not configured at all. Thus, HooDS permits any number of
configurations to be installed in a system related to the different needs of application
domains. Nevertheless, HooDS guarantees that applications based on different
configurations may also freely co-operate and exchange information.

Second, extensible architectures are better suited for staying abreast of the
progress of technology and for absorbing improvements more frequently, faster
and mostly without the need to rewrite major portions of the system.

* UNIX is a registered trademark of AT&T

37

Last but not least, extensible architectures provide a better basis for the con-
struction of open systems. The vital case for openness with respect to object-
oriented database systems is the ease with which additional programming
languages can be bound into them. Current object-oriented database systems are
implemented as huge, monolithic systems, which closely combine a specific
programming language with a storage management system for handling persistent
objects. Due to the fact that (object-oriented) languages do not support any notion
of persistence, the favoured language is usually extended by some model of
persistence. The implications of this approach are that the overall conceptual model
of persistence is both language-dependent and model-specific. In practice, this
approach thus implies that it is neither possible to integrate any additional language
into the system nor to introduce any different model of persistence. In fact, current
implementations are noticeably closed solutions and thus resemble database
system developments of the late 1960s.

In order to compensate these drawbacks of current implementations, HooDS
supports a formal data model and a related algebra called NO2. This model serves
as the explicit binding interface between languages and the storage subsystem
NooDLE. The NO2 data model is comparatively general and allows the developer
of a specific language binding to decide more or less freely how to extend his
favoured (object-oriented or imperative) language by concepts of persistence. It
should be noted that the use of a formal data model not only fomalises language
binding, but also ensures that different languages (and language extensions) may
interoperate within the HooDS system.

In order to facilitate implementation of different language bindings and to increase
the flexibility of binding, NooDLE supports different levels of interfaces. At the
highest interface level, NooDLE supports an object-oriented extension of SQL which
allows embedded oSQL approaches to be built as used in the conventional
relational approach. On a medium level, NooDLE provides a converter interface
which permits language binding via a call interface. At the lowest level, NooDLE
maintains a heap interface which corresponds to an abstract low-level heap as used
in most programming languages. Unlike other approaches, this heap is also used
internally by NooDLE as a database buffer, hence constituting some sort of stable
heap [Kolodner et al. '89]. This interface minimises any overhead and is thus
extremely useful when language binders have direct access to the internals of the
language’s compiler.

NO2 Data Model

The NO2 data model [Elsholtz '89] [Dittrich et al. '90] [Geppert et al. '90] is based
conceptually on the O2 data model [Lecluse and Richard '89], but extends this
model by ideas from the ENF2 model [Pistor and Anderson '86). Thus, the NO2
model is equally well suited to serve both object-oriented and imperative programm-
ing languages as a storage medium.

NO2 clearly distinguishes between objects and values. Objects have an identity

38

and exist by themselves independent of their values, while values exist only by
belonging to an object. An object is thus a pair comprising a surrogate and a value.
Objects are always instances of an object type. Complex objects are constructed
by orthogonally including objects in values of objects. As with objects, values are
instances of value sets. Constructors for tuples, arrays, lists and sets are offered in
order to construct structured value sets. To increase the flexibility of data modelling,
NO2 also supports the composition of objects, in addition to aggregation of objects.
Composition models the IS-PART-OF relationship between objects. Subobjects of
a composite object may be owned exclusively on the existence of their parent object.
Composition is first of all a value of its own for application domains which have to
handle hierarchies of objects as a whole. Moreover, composition provides a basis
for the design of specialised (and more efficient) storage and retrieval strategies.

Language Bindings

The initial version of HooDS supports C+ +, CLOS and CooL as programming
languages. Two successive approaches are used for binding C+ +. In a first
attempt, a persistent class library is provided which allows application programmers
to achieve persistence for their actual class by subclassing from persistent classes.
In a second step, which is currently under design, an extension to C+ + in the
direction of O+ + [Agrawal and Gehani '89] is planned. These extensions, which
are few in number, are processed by a preprocessor and translated to calls to the
converter interface. For CLOS (the de-facto standard extension of LISP by object-
oriented concepts [Attardi et al. '89]), persistence is transparent to the programmer
and is achieved through direct binding on the level of the heap interface.

Cool is a newly designed object-oriented programming language which closely
combines the object-oriented approach to programming with current database
technology.

CoolL

CooL [CooL '90] is especially designed with the objective of giving programmers
an adequate language for building large and complex application systems. Large-
scale system building does not usually take place in "splendid isolation”, but has to
consider existing software. Thus, CooL is fully compatible with C and allows any
existing C software to be integrated without additional effort. Despite this compati-
bility, CooL does not inherit the insecurity of C, but rather offers a high level of
reliablity by incorporating strong typing, data encapsulation, controlled inheritance
and exception handling. Of course, CooL is an object-oriented language which
supports the usual features of object-orientation. Nevertheless, the design is not
religious and thus extends the language for the benefit of professional programmers
by a number of concepts which are not necessarily a ‘must’ for object-oriented
language systems. An example of such an extension is that CooL supports a rich
set of type constructors, including sets with a computational complete set algebra.

39

Support for persistent objects is an integral concept of CooL. For programmers,
persistence is transparent and uniform. This implies that they may use any construct
together with any object, regardless of whether its property is persistent or volatile.
Cool provides transactions, read/write locks and elaborated iterators in order to
manage persistent objects. A runtime overhead for persistence only has to be paid
if persistent objects are actually used in an application. Otherwise CoolL is at least
as efficientas C+ +.

Under the present-day practical conditions encountered in industry, object-
oriented database systems only constitute small islands in the world of relational
database systems. To succeed commercially integration to SQL systems is thus
essential. Hence CooL supports a type constructor relation which is mapped directly
onto a SQL system and which allows persistent (complex) objects with tuples from
a SQL system to be merged within a CooL program.

NooDLE

The object storage system NooDLE constitutes the core of HooDS and provides
a so-called structurally object-oriented storage system. NooDLE supports the NO2
data model and implements the IS-A hierachy based on multiple inheritance,
(closed) nested transactions, concurrency control based on read/write locking,
query processing (also on type hierarchies), recovery based on before images and
a n-client/1-server architecture with dedicated cache management. Of course,
NooDLE is in itself again extensible and hence configurable.

The following figure illustrates the architecture.

oSQL
Converter
Low-level heap
Nested [~
trans-
actlon T.y‘pe
manage- check
ment manager
Object || Query |] Type
managsr manager manager
Flat Storage Catalog
transaction
manager manager manager

Fig. 3.2 : General architecture of the storage manager

In the current implementation, the flat transaction manager and the catalog
manager are based on a relational database system. However, dedicated severs
are under evaluation.

MaX

MaX provides comfortable monitoring and debugging facilities to the pro-
grammer of HooDS. In this paper, we restrict ourselves to emphasising the
debugging facility of MaX. The MaX debugger provides multi-language support for
language implementations based on the COFF format. MaX debugs at source code
level, providing all code printouts in the original programming language. As a
debugger suited for object-oriented languages, it also solves inheritance by listing
the inherited code when it is executed. Similarly, MaX is able to cope with exception
handling and displays raised exceptions and the name of the exception to the
programmer. Besides common debugging facilities, the MaX runtime environment
supports conditional and unconditional breakpoints and trace points, full variable
access (persistent and volatile) and all data types. On the basis of standard UNIX(R)
facilities, MaX is able to debug programs written in different languages, thus
providing CooL source code whenever CoolL is used, for example, and switching
to C source code when C code is called.

Filter/Browser

The filter/browser system constitutes an end-user tool which allows the objects
of an application to be retrieved interactively. The retrieval process is carried out in
two steps. The filter provides a query-by-example interface [Zloof '82] to the user
which allows objects to be queried in a natural way by describing patterns for the
results of the query. The evaluation of the query yields a so-called result set. The
user can navigate through this result set by means of the browser. It should be
noted that the filter/browser is a standard tool for which the information is generated
internally by the system. It need not be implemented by the programmer for a
specific application.

DialOOg

This tool is currently undergoing design and will provide a dialog manager which
generates user interfaces based on meta-information kept internally within the
system. These interfaces will be form-oriented and will incorporate as a default the
entire dialog behaviour to permit object creation, modification, display and method
activation. References to objects will be marked and may be dereferenced by
navigation. This provides an implicit browsing mechanism within the object base
conforming to a hyper-object approach. DialQOg is based on OSF/Motif and can
be tailored at several levels for supporting specific interface layouts.

41

4. Application Development Tools

The goal of the ITHACA Application Development Environment is to reduce the
long-term costs of application development and maintenance for standard applica-
tions in selected application domains. By "standard" applications we mean classes
of similar applications that share concepts, domain knowledge, functionality and
software classes.

The key requirement is that applications developed using the environment be
flexible and open-ended: it should be possible not only to develop applications
quickly and flexibly, but it should be relatively easy to reconfigure applications to
adapt to evolving requirements.

The key assumption of the approach is that one must be able to adequately
characterise the selected application domains in order that individual application
can be constructed largely from standard object-oriented software components.
Achieving reusability of not just software but of previous experience is therefore an
essential activity within the approach. This, in turn, implies the need for a different
kind of software life-cycle in which the long-term development and evolution of
reusable software proceeds in tandem with the short-term development of specific
applications.

The ITHACA approach requires the development of "application workbenches”
consisting of reusable application domain specific software components and soft-
ware information. This information is stored in a Software Information Base (SIB)
and is accessed by an application developer either interactively by a Selection Tool,
orindirectly through the use of the other development tools. We distinguish between
application development, which refers to the development of specific applications
by means of the application workbenches and the ITHACA development tools, and
application engineering, which refers to the activity of preparing the contents of the
SIB, that is, developing the application workbenches themselves.

Application engineering is expected to be anincremental, long-term activity, since
reusable software can only be developed on the basis of experience gained from
the development of specific applications (including existing "precursor* applica-
tions). The benefits are to be realised during application development, since one
can reuse existing requirements models, existing (generic) designs and existing
software. Most of the activity in application development should ideally take place
in the task of matching user requirements to generic designs, and in configuring
running applications from available components. Since mostly tried and tested
software will be used, less time should be spent on detailed debugging, and since
construction of applications from existing parts should rapidly lead to evolutionary
prototypes, more time can be spent ensuring that the client's needs are properly
met. Except for unusual applications, little effort should be spent capturing excep-
tional requirements, re-engineering existing designs or programming new custom
software. Clearly this scenario depends on the extent to which one can capture
application domains, but even non-standard applications can benefit from the
approach if the special requirements can be localised to particular subcomponents

42

or to incremental modifications of existing software objects.

The raw material with which the application developer works is the software
information contained in the SIB. This information is organised into Generic Appli-
cation Frames (GAFs), which describe how specific applications can be constructed
from the available components. In order to ensure that it will be possible to map the
application requirements to a GAF, it is essential that requirements collection and
specification start by using the SIB as a basis for specifying the application.
Matching requirements to existing application domain knowledge starts immedi-
ately as requirements are collected. The Requirements Collection And Specification
Tool (RECAST) effectively provides a "guided tour" of the SIB, attempting to
construct a specific application frame (SAF) on the basis of generic information and
user requirements. Software components selected and identified at this stage are
then tailored and composed to construct the running application by a combination
of programming and scripting. The Visual Scripting Tool (VISTA) supports the
interactive construction of applications by graphically editing and connecting visual
representations of application and user interface objects. The tools are tightly
integrated to permit, for example, simultaneously development of parts of the
application during requirements collection, re-examination and refinement of re-
quirements specifications during development, and access to programming tools
during scripting. We shall briefly present the functionality and current status of each
of these tools. The following diagram provides a simplified view of the tools
interaction.

The SIB provides the underlying mechanisms for storing and representing
descriptions. Descriptions encapsulate properties of software components and
knowledge concerning application domains for use by the other tools. Since
descriptions may refer to one another, the contents of the SIB can be seen as a
semantic network, sharing properties of both object-oriented (design) databases
and of hypertext systems. A prototype of the SIB has been built using the Telos
knowledge representation language [Koubarikis et al. '89]. Descriptions are thus
represented internally as Telos propositions, but externally may appear as, for
example, software templates, requirements collection forms, or application designs.
The uniform internal representation permits advanced queries to be posed to the
SIB and evaluated by the Telos inferencing mechanisms.

The Selection Tool provides the means to retrieve software descriptions from the
SIB and to navigate through GAFs. The Selection Tool may be used either
interactively or indirectly via the other tools. The two modes supported are (1)
querying, in which a thesaurus and a set of filters are used to reduce the focus of
interest, and (2) browsing, in which the client can navigate through the software
information network. A prototype has been built using the Labyrinth system (Laby),
a constraint-oriented graphics engine which runs on top of X. Laby is used to display
various hierarchical views of the SIB during browsing.

4

introduce objects to one another. Both user interface components and interna
application components are visually presented to the user, and graphical editing
facilities are used to link together the components. Scripts encapsulate the bindings
between objects, and so may themselves be reused as components within other
scripts. Furthermore, a script, with the help of the other tools, can viewed as a
generic design: once an application has been built as a script, it is a simple matter
to unpack it and use it as a prototype for a new application, obtaining suggestions
for design alternatives via RECAST and the Selection Tool.

U]
I
l

Browsing:

Navigation +
Views

UM
|

Querying Set Management

Software

Information
Base

Fig. 4.2 : SIB management

Scripting depends heavily on the definition of standard interfaces between
components and on the existence of a rich library of components that conform to
these interfaces. Object-oriented techniques are essential here as they provide the
mechanisms by which subclass hierarchies can share a common abstract interface.
A "scripting model" is a description of these standard interfaces and the allowable
interconnections supported by components for a given application domain. For
example, a scripting model for a user interface kit might specify which methods are
to be used to propagate events between application and user interface objects, and
which events are valid to pass to which classes of objects.

A proof-of-concept prototype based on a UNIX® scripting model has been

45

implemented [Stadelmann et al. '90]. An object-oriented visual scripting tool (VISTA)
based on Laby and the MOTIF toolkit is now under development, and an initial
version is expected to be released within the project by the end of 1390. Work on
scripting models for various application domains is ongoing.

8. The Applications

Demonstrator applications which reflect real-world situations and common prob-
lem areas facing industrial software production are used to test and ensure the
suitability of the environment developed in ITHACA. In addition to specifying their
requirements, these ‘workbenches’ are also developing new domain architectures
and innovative techniques oriented to their respective, non-IT-specific spheres of
activity.

Office applications constitute a real challenge for testing the suitability of ITHACA
technology in the commercial/industrial scenario. Offices in general form an appli-
cation scenario which requires a wide range of different tools and facilities in order
to meet the requirements of the different “styles" of office encountered (size, type
of work etc.). The general nature of these tools allows them to be used in a variety
of other applications to a greater or lesser extent.

Due to the fact that the ITHACA Office Workbench provides a general concept
in terms of a reference office model and several basic technologies, it is described
in some detail here. The components it includes can be applied to the other
workbenches as necessary.

5.1. The Office Workbench

Any office application must (1) deal with a complex environment (distribution,
client/server architecture, large objects), (2) integrate existing pieces of software
(editors, spreadsheet, printing and filing services, electronic mail services), and (3)
provide a very simple interface to non-expert end-users. The major application
target selected is computer-supported cooperative work in all its possible variations:
from rigid to fiexible procedures, from a few instances to hundreds of thousands of
instances, from a few steps to one hundred steps, with atotal duration ranging from
one day to several months, and involving two to dozens of actors.

In order to meet this goal, several interrelated components are provided that can
be used together or separately. A CooL Office Model provides an object repre-
sentation of organisation, information and facilities. A set of CooL Office Operators
enable activation of classical office operations (such as editing, filing, mailing,
printing) on these objects and the definition of more elaborate actions by assembling
them in scripts using the scripting tool. A coordination procedure application
provides the means to express procedures in the form of a network of activities
which encapsulate actions. A desktop application provides the user with a worksta-
tion interface to the overall application. In addition, a Budget Management System
provides a decision-making tool using constraint-based artificial intelligence tech-

46

niques for analysing and optimising budgets in large organisations. This tool will be
able to access information provided by commercial information services with access
to an information services programmatic interface.

The Office Model provides a set of CooL objects representing office concept:
in the fields of organisation, facilities and information [Ang '90]. The organisatior
model includes three main object types: grouping, actor and role. It constitutes the
basis for authorisation and access control. The facilities model represents objects
to organise the user space in the form of folders, repositories, trash-can, in-tray,
out-tray, printer and file servers. The information model represents objects, such
as forms, documents, messages, drawings, spreadsheets etc. The various parts of
the model are interrelated. A folder can contain a letter whose "to" and "copy"
instance variables can have sets of actors or roles as their value. Together, objects
of the office model represent the application domain on which office operators can
be applied and combined into scripts to form actions linked together into proce-
dures by using the COP tool.

Office Operators represent an abstraction of most commonly used actions in
an office environment, such as editing, mailing, filing and printing. They comprise a
combination of objects and methods which encapsulate existing pieces of software
and which take into account the objects of the office model. For example, a print
operation will involve the information object to be printed, a printer server object
representing the available printer server, a trading object able to negotiate the
applicability of the service to print the information object, and a conversion object
which, if required, is able to convert the format of the content portion of the object
to a format acceptable to the printer.

COP (COordination Procedure) is a tool for supporting the application engineer
and the end-user in modelling and executing cooperative task processing [Tueni et
al. '90]. It is designed to support a large scope of applications, from highly repetitive,
highly structured administrative procedures (workflow processing) to highly un-
structured and flexible cooperative sessions between office actors (cooperative
computer-supported work). COP relies on a language providing constructs to
express dynamic behaviour of the coordination procedure, an engine which inter-
prets structures generated by the compiler for supporting the distributed execution
of the procedure, and support tools for graphical programming, scripting actions,
debugging and for using the COP applications. The principal COP elements are
activity, input and output, pre- and post-condition, procedure and object. The
language supports the expression of sequences, alternatives, parallelism, loop and
rendezvous, composition and refinement, aggregation and specialisation, and an
unlimited level of abstractions. The COP engine offers resume, suspension, correc-
tion, cancellation, jumping, exception, help, history, event triggering and explana-
tion.

The general Desktop is configured to present the user with a metaphor of her/his
current working environment that must be easy to use and as flexible as possible
to incorporate all personal applications available to her/him [Brady '90]. In order to
facilitate speedy access, the Desktop presents all documents which have just been

47

created by the user, or which the user wants to edit immediately and which are
therefore available locally on the workstation. The Desktop is used to start all local
applications, such as editors for texts, graphics and images. In addition, the Desktop
application allows the user to access all office services, such as electronic mail,
central filer, printer service etc. Documents no longer required can be stored in a
trash-can which is also a component of the desktop. The Desktop is to be
implemented in C and Cool, with OSF/Moatif for the user interface.

The Budget Management System supports the functions of a company top
management budgeting process, including budget preparation and budget evalu-
ation using financial analysis [Bicard-Mandel et al. ‘89). It incorporates a data model
and appropriate knowledge-based tools. The data model provides the means for
viewing the budget elements at several levels of abstraction and/or factors of
analysis (e.g. company departments, chart of accounts, products, time). The
knowledge-based tools provide constraint formalisms tailored to the budgeting
domain. These formalisms are used for expressing consistency goals for the data
model. Tools are provided for building the semantic network representing a com-
pany's budget, where nodes are budget entities (accounts, products, departments,
production factors) and where links have budget-oriented semantics with associ-
ated methods for regulating information flow through the system.

Access to Information services provides a Cool. programmatic interface for
implementing access to information in a client/server mode. This programmatic
interface acts as a client for the service and as a server for the client application or
user interface. The services integrated in this way could act as sources of up-to-date
information, which could then be transferred to and exploited in local databases,
spreadsheets and word processors. A specific access can be integrated as an
action part in an activity network controlled by the COP engine.

5.2. Financial Workbench

The activities of the Financial Workbench are organised around the development
of both a specific and a generic application for the sale of financial products, in
particular insurance [Bruni et al. '89]. Key marketing issues are the development of
new insurance services and products, as well as the extension and enhancement
of the distribution network. In this context, a sales support tool is being developed
which collects and uses all relevant information related to consultancy on the subject
of insurance products geared specifically to customer needs.

Activities centered on developing the specific insurance application represent a
key step for acquiring the necessary knowledge and expertise concerning the
domain to be abstracted in the application frame.

5.3. Public Administration Workbench

The Public Administration Workbench demonstrates the applicability of the
THACA environment in relation to a real setting within a public administration setup

48

[Garcia et al. '89]. The application is concerned with workflow automation, whert
a citizen’s request must be processed within the administrative setup by differen
services according to precise rules and at different locations.

5.4. Chemistry Workbench

The Chemistry Workbench belongs to the CIM domain and involves the devel
opment of a graphical control desk for controlling plant and machinery in the
chemicals production process. This control system is linked to a planning system
for solving the logistic problems specific to this particular sector.

6. An Industrial Approach

From the very outset, the ITHACA project chose an industrial approach by
selecting standards to be applied for development and by defining a common
hardware platform to ensure full integration [Konstantas '90]. The goals of the
project already correspond to the established main line of activity of the develop-
ment units of the main industrial partners involved.

The standards and de facto standards which have been adopted within the
project include the following:

- UNIX®e, conforming to the X/Open portability guide,

C compiler and GNU C + + compiler,

X/Windows and OSF/Motif toolkits for user interfaces,

TCP/IP and NFS,

SQL for database interface,

ODA, ODIFF, DFR, X.400 and X.500 for office automation.

Besides ensuring compatibility between the various organisations involved in the
project, the consistent use of these standards will also ensure conformance with
the market requirements when finished products are ready to be launched.

In addition, both Siemens Nixdorf Informationssysteme AG and Bull S.A. partici-
pate actively in the same worldwide organisations for the main elements of the
architecture: X/Open for UNIX(R) portability, the Open Software Foundation for
UNiXe extensions, and the Object Management Group for future object-oriented
standards.

The ITHACA common hardware platform is an Intel 80386-based workstation
delivered either by Bull S.A. or Siemens Nixdorf Informationssysteme AG. The
workstations run the UNIX(R) operating system and conform to the 386 application
binary interface. The workstation provides full support of a selection of components,
including C, GNU C+ +, X/Windows System, OSF/Motif, TCP/IP, NFS, INET and
ORACLE. All software components produced in ITHACA are qualified on this
platform and have to run there before they are classified as accepted and able to
be officially delivered to each partner.

49

7. Conclusions

In order to gain as much exposure to the market as possible, the ITHACA
environment will be provided to external companies and universities for evaluation
purposes on the basis of evaluation licence contracts as soon as individual
components are available. For example, the first version of the Cool. compiler has
been available since June 1990 and the first version of the NooDLE/CoolL integrated
environment will be available in October 1990. An office application prototype written
in CooL will be on show at the exhibition accompanying the ESPRIT Conference
1990.

Prototypes of each of the application development tools were produced during
the first year of the project. Redesign and reimplementation of the tools is now under
way. A C+ +/X version of Labyrinth has been made available to partners and is
now being used as a graphical front-end to VISTA. A first version of VISTA is being
made available to the partners as of October 1990.

Reterences

{1] R. Agrawal and N.H. Gehani, “Rationale for the Design of Persistence and Query
Processing Facilities in the Database Programming Language O+ +", Proceedings of the
Second International Workshop on Database Programming Languages, Morgan Kauf-
mann Publishers, Inc., San Mateo, California, 1989.

[2] J. Ang, "A Comprehensive Office Modeling Framework for Ithaca®, Technical Report,
Bull S.A., Paris, 1989, ITHACA.BULL.89.D8.1a.

(3] G. Attardi, C. Bonini, M.R. Boscotrecase, T. Flagella and M. Gaspari, "Metalevel
Programming in CLOS", in Proceedings ECOOP '88, ed. S. Cook, British Computer Society
Workshop Series, 1989.

[4] D.S. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell and T. Wise, "Genesis:
A configur- able database management system", Technical Report TR- 86-07, Department
of Computer Science, University of Texas at Austin, 1986.

[5] J. Bicard-Mandel (Ed.), C. Chen, G. Viodakis and M. Androulakis, *User Requirements
and Architecture Specifications for the Budget Management System", Technical Report,
Bull & NTUA-CMSU, 1989, ITHACA.BULL.89.D10.1.

(6] M. Brady, S. Kienapfel and G. Zschoche, "An Office Desktop Approach®, Technical
Report, Nixdorf Micropro- cessor Engineering GmbH, Berlin, 1989, I[THACA.NIX-
DORF.89.D3#1.

(7] E.Brodde, "MaX - Monitoring and X-Ray Tool for [THACA®, Technical Report, Nixdort
Microprocessor Engineering GmbH, Berlin, July 1989, ITHACA.NIXDORF.89.E4.#1.

(8] E.Brodde, "MaX User Handbook®, User Handbook, Nixdorf Microprocessor Engineer-
ing GmbH, Berlin, August 1990, ITHACA.NIXDORF.90.E4.4.1#1.

(9] G. Bruni, C. Cardigno, M. Damiani and G. Seminati, *Final Report on Insurance Domain

Requirement Analysis®, Technical Report, DATAMONT R&D, Milano, 1989, [THACA.DATA-
MONT.89.D.7.#3.

[10] M. Carey, D. DeWitt, D. Frank, G. Graefe, M. Muralikr- ishna, J. Richardson and E.

50

Shekita, "The Architecture of the EXODUS extensible DBMS", Proceedings of Object-
Oriented Database Workshop, 1986.

[11] CooL Development Team, "Cool/0 Language Description", Reference Manual, Nixdori
Microprocessor Engineering GmbH, Berlin, May 1990, ITHACA .NIXDORF.90.L2.#2.

[12] K.R. Dittrich, A. Geppert and V. Goebel, "The Data Definition Language of NOZ2",
Technical Report, Univer- sity of Zdrich, March 1990, [ITHACA.ZUERICH.90.X.4#2.

[13] A.Elsholtz, "NooDLE, a New Object-Oriented Database System for Advanced Pro-
gramming Language Environments", Technical Report, Nixdorf Microprocessor Engineer-
ing GmbH, Berlin, November 1989, ITHACA.NIXDORF.89.X.4#1.

[14] J. Garcia, J. Lopez, J. Mongiou and R. Sole, "Design Description of the Administration
Workbench. First Draft.", Technical Report, TAO, Barcelona, 1989, [THACA.TAO.89.D.6.#8.

[15] A. Geppert, K.R. Dittrich and V. Goebel, "An Algebra for the NO2 Data Model",
Technical Report, University of Zdrich, July 1990, [THACA.ZUERICH.90.X.4#4.

[16] Brian W. Kernighan and Dennis Ritchie, The C Program- ming Language, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey 07632, 1978.

[17] E. Kolodner, B. Liskov and W, Wheil, "Atomic Garbage Collection: Managing a Stable
Heap", in Proceedings of the ACM SIGMOD International Conference on the Manage- ment
of Data, 1989.

[18] D. Konstantas, "The Ithaca UNIX Development Platform", Technical Report, D-Tech,
1990, [THACA.D-TECH.90.X.#4.

[19] M. Koubarikis, J. Mylopoulos, M. Stanley and A. Bor- gida, "Telos: Features and
Formalization", Technical Report CSI 1989/018, FORTH, Herklion, Crete, 1989.

[20] T. Krickstadt, CAKE: Towards an Object-Oriented Appli- cation Builder, Nixdorf
Microprocessor Engineering GmbH, Berlin, September 1990, ITHACA.NIXDORF.90.E1.#1.

[21] C. Lecluse and P. Richard, "'The O2 Data Model", Techni- cal Report, pp. 39-89, Altair,
Le Chesnaey Cedex, 1989,

[22] G. Miiller and A.-K. Profrock, "Four Steps and a Rest in Putting an Object-Oriented
Programming Environment to Practical Use", in Proceedings ECOOP '89, ed. S. Cook,
British Computer Society Workshop Series, 1989.

[23] O.M. Nierstrasz, L. Dami, V. de Mey, M. Stadelmann, D.C. Tsichritzis and J. Vitek,
"Visual Scripting - Towards Interactive Construction of Object-Oriented Applications®, in
Object Management, ed. D.C. Tsi- chritzis, pp. 315-331, Centre Universitaire d’Infor-
matique, University of Geneva, July 1990.

[24] B. Pernici, "Objects with Roles", Proceedings ACM-IEEE Conference of Office Infor-
mation Systems (COIS), Bos- ton, April 1990.

[25] P. Pistor and F. Andersen, "Designing a Generalized NF2 Model with a SQL-Type
Language Interface”, Proceedings of the Tweilfth International Conference on Very Large
Data Bases, |BM Wissenschattliches Zentrum, Kyoto, August 1986.

[26] A.-K. Préfrock, M. Ader, G. Mdller and D. Tsichritzis, "ITHACA: An Overview", Proceed-
ings of the Spring 1990 EUUG Conference, pp. 99-105, 1990.

[27] M. Stadelmann, G. Kappel and J. Vitek, "VST: A Script- ing Tool Based on the UNIX
Shell", in Object Manage- ment, ed. D.C. Tsichritzis, pp. 333-344, Centre Universitaire
d'Informatique, University of Geneva, July 1990.

51

(28] B. Stroustrup, The C++ Programming Language, Addison- Wesley, Reading, Mass.,
1986.

[29] C. Thompson et al., "Open Architecture for Object- Oriented Database Systems®,
Technical Report 89-12-01, Texas Instruments, 1986.

[30) D.C. Tsichritzis and O.M. Nierstrasz, "Application Development Using Objects",
Proceedings of the First European Conference on Information Technology for Organisa-
tional Systems, pp. 15-232, North Holland, Athens, May 1988.

(31] M. Tueni (Ed.), J. Alsina, A. Graffigna, J. Li, G. de Michelis, J. Monnguio and H.
Wiegmann, “Towards a Com- mon Activity Coordination System*, Technical Report, Bull
S.A., Nixdorf Computer AG, TAO, University of Milano, 1989, THACA.BULL.89.U2.#1.

[32] M.M. Zloof, “Office-By-Example: a business language that unifies data and word
processing and electronic mail®, IBM Syst. Journal, vol. 21, no. 3, pp. 272 - 304, 1982,

Action. No. BR 3175
DEFAULT REASONING
AND DYNAMIC INTERPRETATION OF NATURAL LANGUAGE

FRANK VELTMAN
Department of Philosophy
University of Amsterdam

15 Nieuwe Doelenstraat
Amsterdam, The Netherlands

EWAN KLEIN & MARC MOENS
Centre for Cognitive Science

2 Buccleuch Place

University of Edinburgh

Edinburgh EH8 9LW, Scotland, UK

Abstract: We present a proposal for treating default reasoning from the perspective of a dynamic
approach to semantics, where meaning is a mapping between information states. Information
states are identified with sets of possible worlds—the epistemic possibilities which those states
admit. Generic rules, like On weekdays, Giles normally geis up at 8.00 are then taken to induce
a pre-order on possible worlds, where worlds complying with the rules are less exceptional than
those which go against the rules. Thus, a particular weekday on which Giles gets up at 8.00 is
less exceptional than one on which he stays in bed till noon. Unlike many other approaches to
nonmonotonicity, we draw a distinction at the level of the object language between defeasible and
indefeasible conclusions.

1 Introduction

The ESPRIT Basic Research Action DYANA —Dynamic Inierpretation of Natural Language—is
concerned with developing a formal theory of language interpretation and processing which models
human cognitive abilities but is at the same time mathematically precise and admits computational
interpretation. An important goal of DYANA is to go beyond particular, isolated problems occurring
at individual levels of interpretation and to study the way these levels of interpretation interact
in an integrated theory. The work programme is divided into three interdependent components:

e grammar development, speech and prosody
e meaning, discourse and reasoning

e logic and computation

For a more detailed discussion of the work in each of these areas, and for a general overview of the
project, the reader is referred to Klein and Moens [9). In this paper we will describe recent DYANA
work on default reasoning. In § 2, we will sketch why this work is relevant to natural language
understanding and show how it fits into the DYANA project. In § 3, we discuss some basic notions
of update semantics, while § 4 presents a key distinction between stable and non-stable sentences.
§ 5 sketches the mechanisms by which default rules induce a preference order on epistemic states.
Finally, in § 6, we briefly discuss relations between our approach and that of semantic networks,
and point to some directions for future research.

52

53

2 Partiality, Dynamics and Nonmonotonicity

DYANA focuses on two important themes, namely the dynamics of natural language interpretation,
and theories of partial information. The two themes are connected: interpretation is dynamic since
it involves the constant manipulation of information which is extracted, transduced and modified
at all levels of representation—phonological, syntactic, semantic, and pragmatic. Meaning thus
becomes a dynamic notion: at all levels of representation, it can be defined as a function from
information states to information states.! Both the domain and the range of this function will
be states of partial information, since complete information states hardly need an update. But
partiality also arises as a result of the dynamics of the interpretation process itself: ambiguities
and other indeterminacies will be encountered at each stage of the interpretation process. The
result is that it is not always possible to pass complete and reliable information between levels of
representation in a predefined way.

Defeasibility plays a pervasive role in natural language understanding. At the most global
level, understanding a discourse involves the integration of new incoming information into an
existing body of beliefs, assumptions and commitments. It is hardly surprising that information
states evolve in a nonmonotonic fashion—assumptions which are plausible at one stage become
rendered untenable later on, and even deeply-held commitments may have to be abandoned in
the face of new, conflicting facts. However, defeasibility infuses the very texture of the human
processing mechanisms which map linguistic input (whether speech or written text) into some kind
of discourse representation. We briefly list below just a few examples where defeasible inferences
are drawn on the basis of partial information:

Semantics:

o Generic sentences: Tigers have four legs. Shere Khan is a tiger... Shere Khan has lost
a leg.

e Quantifier scope preferences: Every studen? Aere speaks a foreign language...lt is
French.

e Tense and aspect: Lee was crossing the streel... Unfortunately, she was hit by a truck
defore she reached the other side.

e Lexical semantics: This is @ flower...In fact, it’s a plastic flower.
Morphology:
1. English verbs take a past tense by suffixing -d (e.g. dake ~ baked).
2. Verbs with roots of the form Xing (e.g. sing) take a past tense by changing to Xang
(e.g. sang)
3. bring is a verb of the form Xing and takes a past tense brought
Morphophonology:
1. The masculine singular form of the French lexeme BEAU is \bo\.
2. The masculine singular form of the lexeme BEAU is \bel\ if the following word starts
with a vowel.
Notice that our morphology example is analogous to the following set of statements:

1. Birds (normally) fly.
2. Penguins (which are birds) waddle (but don’t fly).
J. Max is penguin which hops (but doesn’t waddle).

!For a synoptic discussion of the dynamic perspective to logic, see van Benthem [1).

54

Formulated in terms of rule application within the framework of generative grammar, we would
say that more specific rules (like rule (3) for bring) are deemed to take precedence over less specific
ones (such as rule (2) for verbs of the form Xing, or rule (1) for verbs in general). The most general
rule is said to be the ‘elsewhere’ case.

The problem of formalizing nonmonotonic inference is an active research topic in the area of
Artificial Intelligence. Reasoning devices are supposed to derive conclusions that follow logically
from the facts and rules stored in their databases. However, it has often been noted that reasoning
devices are sometimes expected to draw conclusions that are not necessarily true but nevertheless
seem reasonable given the circumstances. The Artificial Intelligence literature contains many
examples of this type of default reasoning in domains other than natural language, and offers a
plethora of techniques for the formalisation of the nonmonotonic behaviour of reasoning systems
(see, e.g., Reiter [12]; Shoham [13]).

One branch of DYANA work on nonmonotonicity, carried out by Morreau [11], studies the
dynamics of information states which support or contain, in the form of conditional sentences,
meta-information about their own response to revision. In a second branch of research, Veltman
[14] develops a modal semantics for default reasoning and, to the extent that these express default
rules, for generic sentences. As such it moves on territory which is familiar from the Artificial
Intelligence literature on the subject, while importing into it techniques which originated in philo-
sophical logic. Given limitations of space, we will not try to discuss Morreau’s work further here,
but instead give a brief overview of Veltman’s results. Before entering into more details, it is worth
drawing attention right away to a central feature of our approach: the notion of default reasoning
is captured by drawing a distinction between defeasible and non-defeasible conclusions at the level
of the object language. As a result, our task is provide an adequate semantics for special kinds
of sentences, namely those which express default rules and defeasible conclusions.

3 Dynamic Interpretation

According to the standard explication of logical validity, an argument is valid if its premises cannot

all be true without its conclusion being true as well. Crucial to this approach is the specification

of truth conditions. The heart of the theory presented below consists instead in a specification of

update conditions. That is, you know the meaning [¢] of a sentence ¢ if you know the change

that it brings about in the information state of anyone who accepts the news conveyed by ¢. Thus,

as we suggested above, [¢] is an operation for updating the information states of an idealised agent.
Let o be an information state and ¢ a sentence with meaning [¢]. Then we write

o[¢]

for the information state that results when & is updated with [¢]. In most cases o[¢] will be
different from o, but it is possible that the information conveyed by ¢ is already subsumed by o;
thus, updating o by [¢] will simply result in ¢. In such a case, i.e. when

o[¢] =0,

we say that ¢ is accepted in o, and write this as

o |i-¢.

It may be helpful to the reader if we give a preliminary example to show what updating rules
look like. To begin with, let us be more specific about how to characterise an information state.
For the sake of simplicity, an information state ¢ can be identified with a subset of the set W
of possible worlds. Intuitively, o represents everything that an agent takes to be true at a given
time, and thus contains those worlds which may yet turn out to be the real one. If the agent

55

happens to know nothing at all, then any world may be the actual one, and o is just W. We
shall use ‘1’ to represent this minimal information state. As the agent’s information increases, o
shrinks, until—in the limit—it just consists of a single world. Thus, the growth of information
is understood as the elimination of poesibilities. Moreover, we also admit an absurd information
state ‘0’, identified with the empty set. Thus, we will have ¢[¢] = O when ¢ is inconsistent
with . We can now introduce some additional terminology. If o[¢] # O, then we say that ¢ is
acceptable in g, whereas if (@] = 0, then ¢ is not acceptable in o.

Notice finally that we do not assume information states to be ‘veridical’, in the sense that they
must contain the actual world. We admit o[¢) = 0 when in fact ¢ is true, and equally we allow
ol¢] = o when in fact ¢ is false. Suppose however that ¢[¢] = 0, for a true sentence ¢. In this
case, an agent cannot refuse to accept ¢ when confronted with the facts; rather, she should revise
her information state in such a manner that ¢ becomes acceptable. However, we shall not attempt
to say anything here about how such a revision is carried out.

Let us take as given a finite set A of atomic sentences, and let L(A) be a propositional
language based on A, whose sentences are built in the usual way. We can think of such sentences
as expressing the kind of descriptive content which constitutes an information state. In addition,
we add to the language a one-place sentential operator might. This can be prefixed to any sentence
¢ which does not already contain occurrences of might. Might ¢ sentences should not be thought
of as expressing descriptive propositions. Rather, they have a meta-semantic character which tells
us something about our current information state, namely whether ¢ is acceptable given what we
already take to be true.

As pointed out by van Benthem [1], a dynamic approach to semantics makes it natural to
postulate various modes of operating on an information state o. For example:

Update: make a transition from o to a new state ¢’ which extends the information in .

Downdate: revise an unsatisfactory information & to produce a new state o’ which eliminates
certain (mis)information in o.

Test: check whether a given proposition is accepted in o, and leave ¢ unchanged.

In terms of this taxonomy, descriptive sentences will perform updates, whereas sentences such
asmight ¢ carry out tests. In a fuller treatment, we would also need to allow an information state
to be revised by a downdate statement—however, we will not consider problems of revision here.

Before turning to some explicit clauses to illustrate the dynamic approach, it is a useful techni-
cal detail to identify a possible world w with the set of atomic sentences from A which are true in
w; hence W is the powerset of A. With this clarification, the evaluation clauses for our language
can now be stated as follows:

1) olp)=cn{we W |p€ w}, for any atomp € A

o[~¢] = o\ ol¢]
o(¢ A¥] = o[¢| No(¥]
ol¢ v ¥] = o[¢) Uo(¥]
o[might g = if o[p) £ 0
o[might §) = 0 if o[¢) = O

o Qo TP

The analysis of might is motivated by the following considerations: an agent will accept might ¢
just in case ¢ is consistent with what she takes to be true. As pointed out above, clause (1e) tests
o rather than updated it; if ¢ is acceptable in o, then you have to accept might ¢, while remaining
in information state ¢.

Although other notions of logical validity are possible in this context (cf. [14] for discussion),
the one we shall employ here goes as follows: Let 1 be the minimal information state, where
all epistemic possibilities are open. Then an argument is valid iff updating 1 with the premises

56

¥1 ... Yy, in that order, yields an information state & in which ¢ is accepted. Formally:

'pl .. -'ﬁn '=¢ iff 1[¢l] s [¢n] "_¢

4 Stability

An important motivation of classical logic has been to abstract away from the context-dependence
of ordinary discourse, with the goal of formalising arguments whose validity does not shift ac-
cording to their position in a discourse. In particular, conclusions should be stable in the sense
that if they are true at one stage, then they remain true regardless of what ensues subsequently.
Equally, much attention has been paid within the framework of logic programming to find declar-
ative formulations of data operations which abstract away from details of implementation, such as
the order in which operations are carried out. Yet given that one of our goals is to formally model
the context-dependence of natural language discourse, we wish to find ways of explicitly capturing
the procedural aspects of informal argumentation. In pursuit of this, we will indeed allow into
our formal system non-stable information—information which may become obsolete when more
facts are acquired.

The distinction between stability and non-stability is one that we shall draw at the level of the
object language. Thus, we say that some sentences ¢ are not stable, in the following sense:

Definition 1 (Stability) A sentence ¢ is stable just in case for any o and ¢, ...y,
if o |F¢ then o[y]...[¥n] 4. 2

Sentences involving might provide a simple example of non-stability. In the minimal infor-
mation state 1, it might de raining is accepted, since it is raining is certainly acceptable in 1.
Suppose we now learn that it isn’t raining, and update our information state accordingly. Then
It might be raining becomes unacceptable. Reading p as it is raining, we have 1 || might p by (1e),
since 1[p] # 0, but we do not have 1[~p] |might p, since 1[-p][p] = 0.

There are other important epistemic operators which create non-stability. The one we wish to
look at is presumably. Thus consider the following argument:

(2) Adults are normally employed
Wim is an adult
Presumably Wim is employed

According to the semantics developed in [14], this argument is valid, in the sense defined above.
Notice that we do not conclude that Wim is employed—only that he presumably is. This qualifi-
cation makes explicit that an unstable, and therefore defeasible, conclusion has been drawn.

The argument (2) can remain valid as one learns more about Wim, so long as there is no
evidence that the new information is relevant to the conclusion:

(3) 1: Adults are normally employed
2: Wim is an adult and a student
Presumably Wim is employed

However, if we now adopt the default rule Students nbrmally aren’l employed, the argument is no
longer valid. Thus, we can draw no conclusions about whether or not Wim is employed from the
following premises:

(4) 1: Students normally aren’t employed
2: Adults are normally employed
3: Wim is an adult and a student

2Notice that we are assuming that ¢ ... ¥n onlyh express updates or tests on o; if we were to admit downdates
as well, then a different definition would be required.

57

Adding a fourth premise may make the balance tip. Thus, in (5), we draw a conclusion that
is the opposite of what we previously inferred:

(5) 1: Students are normally adults
2: Students normally aren’t employed
3: Adults are normally employed
4: Wim is an adult and a student
Presumably Wim isn’t employed

In the presence of premise 1, the apparent incommensurability between Wim’s being a student
and his being an adult is lost, and premise 2 takes precedence over 3.

It should now be evident what we meant by our claim that defeasibility is made explicit at
the level of the object language. In other theories, one may well infer from the premises in (2)
that Wim is employed, only this time it is a different kind of inference (i.e. an nonmonotonic one).
Default reasoning, we claim, is not a special kind of reasoning with ordinary sentences, but rather
ordinary reasoning with a special kind of sentence.

5 Rules with Exceptions

Although there is no space to give an elaborated presentation of the intended semantics for sen-
tences like those discussed in the preceding section, we shall attempt to sketch the basic mechanism
by which default sentences are interpreted. The theory arose out of an attempt to give a dynamic
twist to the theory developed by Delgrande (3], who in turn took Lewis’s [10] study of counterfac-
tuals as his starting point.

When an agent adopts a sentence of the form nermally ¢, she adopts certain expectations:
wotlds where ¢ holds are less surprising than those where it doesn’t. To capture this idea, we
need to give more structure to an information state. It must not only contain encode the set of
epistemic alternatives, as before, but also an expectation pattern which makes explicit what an
agent would expect to happen in the absence of complete information. Of course, the dynamics
of interpretation now includes two kinds of change on an information state o:

¢ modifying o’s descriptive content
¢ modifying o’s expectation pattern

Operations available in the language can avail themselves of just one of these options, or both.

We formalise the notion of expectation pattern in terms of a pre-order < (i.e. a reflexive,
transitive relation of ‘preference’), where w < w/ just in case w is at least as normal as w/. When
an agent updates her information state o with a default statement such as

(6) On weekdays, Giles normally gets up at 8.00,

her expectation pattern, encoded as the pre-order, will be modified in such a way that worlds in
which the sentence holds are considered more normal than those in which it fails. Thus, given (6),
a Monday on which Giles gets up at 8.00 is less exceptional than one on which he stays in bed till
noon.

We increment our language with two new unary operators, normally and presumably. Again,
we forbid iteration: sentences of the form normally ¢ and presumably ¢ are not allowed to contain
further occurences of any of the epistemic operators. Presumably ¢ performs a simple test on an
information state o to determine whether ¢ can be (defeasibly) concluded. Normally ¢, which
expresses a default rule, effects a subtle change on ¢’s expectation pattern.

An information state now involves a pair (<,s), where s is again a subset of I¥ and < is a
pre-order on W. We will call < an expectation pattern on W. If w < v’ and v’ < w, we write

w=v

58

(.41 o2
i/{p.a} {P} \i normallyp i P
: P : >
Nl 0 /i s :
normallyq
o3

Figure 1: Expectation Patterns

precccaccscsscescmnany
beccescesrvasanoccoand

Clearly, = is an equivalence relation.
Definition 2 Let < be an expectation patiern on W. Then

1. w is a normal world if w < w' for every w' in W,
2. < is coherent iff there exist some normal worlds.
3. NORMc is the set of all normal worlds relative to <.

That is, a pattern is considered to be coherent if there is at least one possible world in which every
proposition that expresses how things should normally be does in fact hold. This does not mean,
however, that the real world must satisfy all the default rules accepted by an agent—by definition,
default rules allow for exceptions.

Definition 3 Let W be as before. Then o is an information state iff ¢ = (<,8) and one of the
following conditions is satisfied:

1. < is a coherent patlern on W and 8 is a nonemply subset of W, or
2. <={{w,w)|weW}ands=0.

We now have:
1= (W x W,W) is the minimal information stale,
0 = {{{w,w) | w € W},0) is the absurd information state.

In order to grasp the semantic treatment we are proposing, it is helpful to consider illustrations
like those in Figure 1. We assume in Figure 1 that W = {wq,w;, ws, w3} where wy = 0,w; =
{p}, w2 = {q}, and w3 = {p,q}. If two worlds belong to the same = equivalence class, they are
placed within the same oval, and if w < w', then w is pictured to the left of w'. Finally, the worlds
belonging to s are drawn within a dashed rectangle.

The information state oy = (<;,8;) on the left is the minimal state, 1: the expectation
pattern treats all worlds as equally normal. When o, is updated to a new state o3 with the
sentence normally p, the expectation pattern is refined, with the result that worlds where p does
not hold are judged to be more exceptional than those where it does. In particular, the worlds w,
and wg no longer stand in the ‘as normal as’ relation to w3 and w;, and hence the corresponding
pairs are removed from the new expectation pattern <, which arises after the update. A similar
refinement occurs when o is updated by normally ¢. Now the most normal world in o3 is ws,
where both p and ¢ hold.

59

As mentioned above, the dashed rectangles in Figure 1 demarcate the sets of worlds which are
held to be true by the agent. It will be observed that default sentences only affect the expectation
pattern in the information state; thus s3 = s3 = s, = W. However, when the information state
03 is updated with a descriptive sentence g, the s is reduced accordingly, so that worlds w, and
wy are excluded from the resulting set s4.

We now define the notion of refinement.

Definition 4 (Refinement) Let <g, <, bde expectation paiterns on W and let X C W.

1. <, is a refinement of <y iff <,C<o.
2 <oX={(uw,v')E<|wE X orv/ ¢ X}

As we already observed, refinement is brought into play when a new default rule is acquired.
Suppose that we are currently in an information state o where w is at least as normal as w/. That
means that w satisfies at least as many default rules as /. What happens when ¢ is updated
with a new default rule normally ¢? Let us define

lall

to be the set of ¢-worlds; i.e. worlds in which ¢ holds. Then only worlds within ||¢|] can satisfy
all the default rules. Assume that ¢ is compatible with all the preceding rules, and thus that
NORM¢([¢]) # 9. Then we have to refine < to the new pattern < o||¢|| by excluding from <
any pairs which render a non ¢-world at least as normal as a ¢-world; i.e. any pairs of the form
{w,w’) such that w ¢ ||#|| but w’ € ||¢||. Consider, for example, NORMc, of o3 in Figure 1. This
will contain the pair {{p}, {p,q}). But {p} ¢ |l9ll = {{p. ¢}, {q}}, though {p,q} is. Consequently
{{r}, {p.q}) is removed from <3 o||¢||, as required by the update rule for normally q.

Although the expectation pattern <4 of o4 is the same as that in o3, there is an obvious sense
in which one of the normal worlds, namely w,, is no longer relevant. The expectation patterns
of an agent in information state o4 will be determined by the set {w3} of optimal worlds which
result when <, is restricted to the set s4. We define this notion as follows:

Definition 5 Let < be a pattern on W and let s C W.

1. w is optimal in (<,s) iff w € s and for every w’ € 5, if W' < w then v’ = w.
2. OPT 15 an optimal set in (<, s) iff there is some optimal w in (<, 8) such that OPT = {u' €
s|w=vw').

Optimality, we see, is relative to two considerations: the default rules which are accepted in an
information state, and the set s of worlds which constitute the current epistemic alternatives.
Worlds which are less than optimal at one point become important when expectations have to
be readjusted. As one's knowledge increases, and more and more alternatives are eliminated, the
optimal worlds may disappear, and the best among the less than optimal worlds take over their
role.

We bring this section to a close by stating update clauses for normally and pressmably. Thus,
ifo=(<,s) and ¢ is in L3(A), o[¢)] is defined as follows:

60

(7) a If ¢is a sentence of Ly(A), then

1. of¢]=0ifs[¢]=0.
2. Otherwise, o[¢] = (<, s[¢]).
b If ¢ is normally ¢, then

1. o[¢] =0if NORM<[y]=8.
2. Otherwise, o[¢] = (< o [|¢]],5).
¢ If ¢is presumably ¢, then

1. o[¢] = o if OPT[Y] = OPT for every optimal set OPT in (<, s).
2. Otherwise, o[¢] = 0.

As we noted before, presumably ¢ resembles might ¢ in being an invitation to perform a test on ¢
rather than updating it. If the proposition expressed by ¢ holds in all optimal worlds in o = (<, s},
then presumably ¢ must be accepted, and o is left unchanged. Unlike normally sentences, sentences
of the form presumably ¢ are not in general stable. Even if it is a rule that normally ¢, it may
be wrong to expect to expect that ¢. Such non-stability can be illustrated schematically by the
following example:

(8) 1[normally p] || presumably p
1[normally p] [-p] | presumably p

6 Conclusion

Important requirements for any approach to nonmonotonicity are the following:

o the defeasibility of conclusions drawn by default;
e scepticism in the face of conflicting defaults;

o the priority of more specific information before more general information.

The only other theory of nonmonotonic reasoning which seems to do justice to these require-
ments is the sceptical theory of nonmonotonic semantic networks due to Thomason and his col-
leagues [8,2]. In a sense it is to that theory that the present one is most closely related: semantic
nets may be regarded as sets of statements belonging to a proper sublanguage of the languages
whose semantics is explicated in Veltman’s [14]. Broadly speaking, a link where P inherits from
Q is formalised as a sentence of the form

P~ Q

which we read as ‘P normally implies Q. Unfortunately there is not space here to present the
semantics of this new binary operator; however, it essentially selects an expectation pattern that
is appropriate for the property P. This semantics does not correspond exactly to the inference
principles proposed for semantic networks, but the fit is quite close. In fact, it appears that the
logic defined by [14] is preferable to that characterized by those inference principles. Cycles of
defaults, for example, are excluded in the Thomason et al. theory for technical reasons, but pose
no special problem for the current modal theory of default reasoning by update, like Veltman’s. It
is an interesting but still open question whether the low computational complexity that has been
claimed for inferencing on semantic nets is lost when we move to the richer languages introduced
in [14].

The DYANA work described above is intended initially as a contribution to the theories of
nonmonotonic reasoning taking shape within philosophy and Artificial Intelligence. However, it

61

does not address directly the more specific problems of nonmonotonic processing that arise in the
context of computational linguistics. In itself this is not objectionable at the end of this first phase
of the research into nonmonotonic reasoning, for much is still needed by way of general clarification
of the various aspects of nonmonotonic reasoning and revision in the face of inconsistency. But
ultimately it is one of the central purposes of DYANA to relate such general insights to the processing
of language. It is linguistic applications such as the inheritance of morphological and phonological
properties and the structure of the lexicon that we hope to address in future work.

References

(1) van Benthem, J. [1990] ‘General Dynamics,” paper presented to Workshop on Seman-
tics and Computation, cis, Universitat Miinchen, July 1990. To appear in Theorelical
Linguistics.

(2] Carpenter, B. and Thomason, R.H. [1989] ‘Inheritance Theory and Path-Based Reason-
ing: an Introduction’, Ms., Intelligent Systems Program, Pittsburgh, PA: University of
Pittsburgh.

[3] Delgrande, J. [1988] ‘An Approach to Default Reasoning Based on a First-Order Condi-
tional Logic: Revised Report’, Artificial Intelligence, 36, 63-90.

[4] Horty, J.F., Thomason, R.H. and Touretzky, D.S. [1987] ‘A Skeptical Theory of Inheri-
tance in Nonmonotonic Semantic Networks’, Proceedings of the 6th National Conference
on Artificial Intelligence, Seattle, Washington, pp358-363.

[5) Klein, E. and Moens, M. [1989] ‘The Dynamic Interpretation of Natural Language’, in
ESPRIT '89: Proceedings of the 6th Annual ESPRIT Conference, Brussels, 27 November-1
December, 1989, pp1100- 1107.

[6] Lewis, D. [1973] Counterfactuals, Basil Blackwell, Oxford.

[7] Morreau, M. [1990] ‘Epistemic Semantics for Counterfactuals’, in Kamp, H. (ed.) Con-
ditionals, Defaults and Belief Revision. Edinburgh: DYaANA Deliverable R2.5.A, ppl-27.
January 1990.

(8] Reiter, R. [1987] ‘Nonmonotonic Reasoning’, Annual Review of Computer Science, 2,
147-187.

[8) Shoham, Y. [1987] ‘Nonmonotonic Logics: Meaning and Utility’, INCAI87, 388-393.

[10) Veltman, F. [1990) ‘Defaults in Update Semantics’, in Kamp, H. (ed.) Conditionals,
Defaults and Belief Revision. Edinburgh: DYANA Deliverable R2.5.A, pp28-64. January
1990.

MICROELECTRONICS AND PERIPHERAL TECHNOLOGIES

Project No. 2016
TIPBASE

COMPACT MODELLING FOR ANALOGE CIRCUIT DESIGN

H.C. DE GRAAFF, W.J. KLOOSTERMAN AND M. VERSLEYEN
Philips Research Laboratories
P.O. Box 80.000
5600 JA Eindhoven
The Netherlands

ABSTRACT

Compact modelling is part of a wide simulation activity, containing also techno-
logical process and device simulation. It forms the essential link to the circuit
simulation. In the Esprit projekt 2016 (TIPBASE) there is a special interest in analogue
circult design, which is reflected in the demands on compact modelling: high
accuracy, special effects (Early effect, non-linear distortion etc.). Various models are
briefly discussed, compared to each other and confronted with measurements up
to 18 GHz.

1. Introduction

The design of integrated electronic circuits is unthinkable today without the use
of computer simulations of the electrical circuits [1]. Circuit analysis programs like
SPICE and PANACEA are used for this purpose; these programs contain mathe-
matical descriptions of the electrical behaviour of the network elements (transistors,
resistors, capacitors). Such descriptions are formulated from electrical measure-
ment results, or, if these are not available, form the results of device and process
simulations. We will name the set of mathematical descriptions for the electrical
behaviour of the network elements a compact model. This compact model forms
the crucial link between the circuit performance on the one hand and the process
quantities on the other hand. In fig. 1 is sketched how the compact model is
positioned in the total chain of simulation tools. In the very beginning we have the
flowchart data as input for the process simulator. Its output is a device structure
(doping profile, geometry), that serves as input for the device simulator. The output
of the device simulator consists of electrical characteristics; they form a simulation
aternative of what can also be obtained from electrical measurements of real
hardware devices.

A set of defining equations is not sufficient for making a compact model, we also
need the numerical values of the parameters of these equations. The parameter
values are obtained from the electrical characteristics (measured or simulated) by
means of a parameter extraction program, using in most cases a "least squares"
algorithm [2].

65

Flowchart data

ot

Process
simulator

Y Device structure

Device
simulator

Measurement \ Electr.
data ~TTUTT°C “" { characteristics

Parameter
extraction

1

Geometry [Brocess y Compact model
——
block parameters

Circuit
simulator

* Circuit behaviour

Fig. 1. Chain of coupled simulation tools.

In section 3 we will point out the possibility of generating compact model
parameters with the help of a so-called "process block", which is a powerful design
tool.

The different types of compact models are discussed in section 2, the important
aspects for analogue circuit design in section 3 (one of these aspects, the use of
the process block, was already mentioned).

In section 4 several models, known from publications, will be treated. We can
distinguish between two classes of models, the charge-controlled models and the
carrier-controlled models. The last section (5) will show some recent results of
modern compact models, with examples taken from bipolar microwave devices, as
they are fabricated and studied in the Esprit Project 2016 ("TIPBASE"). Only active
devices are considered, resistors and capacitors are omitted here, although their
modelling at high frequencies is not so easy.

2. Varlous types of compact models
We can distinguish three different types of compact models.

A. Physical models: the set of model equations are directly based on the device

67

physics. The model equations are preferably explicit, analytical functions.

The advantages of physical transistors models are the following:

- the model parameters have physical significance and can be used for checking
the results of the parameter extraction

- they have forecasting properties

- geometrical scaling rules can be easily derived from device physics

- the statistical correlation between the model parameters can be found from
device physics

Physical transistor models also have drawbacks; these are:

- the analytical functions used for the model definition are often simplifying approxi-
mations and therefore inaccurate

- the development time takes several manyears

- each new device structure may require major model revisions

B. Empirical models: here too the model equations are analytical functions, how-
ever, not based on device physics, but of a more curve-fitting nature. This is
usually detrimental to the predictive power, the geometrical scalability, the
physical significance and the correlation of the model parameters. The advantage
is found in the shorter development time.

Purely empirical models are not found in practice, but each physical device model
uses to some extent empirical formulas for the more complex device phenomena
(e.9. in bipolar transistors the bias- dependent transit times).

C. Table models: the measured or simulated points of all the important electrical

characteristics are stored in the computer’'s memory in table form. The required
data that are not measured, are obtained by means of interpolation.
The development time for table models is relatively short, but the drawbacks are
many: poor possibilities for ggometrical scaling, statistical correlation, predictive
power outside the measured range. Because analogue applications require in
general a high accuracy in a wide range of operation modes (d.c., a.c. small-sig-
nal, transient, non-linear) the amount of data storage becomes prohibitive.

The compact models, developed and studied in the Esprit Project 2016 (TIP-
BASE) all belong to the physical type, because the great advantages of this type
outweigh the disadvantages.

3. Special model requirements for analogue circuit design

Analogue circuit design has special demands that are not found with digital circuit
design: a high accuracy, an explicit description of certain device phenomena and
the possibility to generate device parameters with a process block.

A high model accuracy is needed because in analogue design it is not only a
matter of switching at the highest possible speed in the transient mode, but even
more so a matter of signal handling in the frequency domain, together with a good

68

description of non-linear distortion and noise behaviour.
Device phenomena of special importance for analogue applications are the

- Early effect [3]:
this effect increases the output conductance of the (I¢,Vce)-Characteristics, set
fig. 2. It can be characterized by an Early voltage Va. For analogue application:

I b= constant

Ic.

|4 A Vce
Fig. 2. Sketch of (Ic, Vce) characteristics and indication of Early voltage VAa.l

this VA value should be sufficiently high. In simple compact models Va is taken
as a constant and it is a model parameter [4]. In reality VA is bias-dependent; it
is sometimes modelled