European Commission

Community Research

General information

UNION EUROPEA - AMERICA LATINA

COOPERACION CIENTIFICA EN LOS AÑOS 90

EUROPEAN UNION - LATIN AMERICA

SCIENTIFIC COOPERATION IN THE 90's

Vol I: Life Sciences and Technologies for Developing Countries (STD III)

Interested in European research?

RTD info is our quarterly magazine which will keep you in touch with the main developments: results, programmes, events, etc. Write, fax or e-mail for a free sample copy, or a free subscription, to:

Research Directorate-General, Communication Unit European Commission 200 rue de la Loi/Wetstraat, B-1049 Brussels Fax: + 32-2-295.82.20; e-mail: rtd-info@cec.eu.int

EUROPEAN COMMISSION

Research DG/E - INCO-DEV Programme

EUROPEAN UNION - LATIN AMERICA

SCIENTIFIC COOPERATION IN THE 90's

UNION EUROPEA - AMERICA LATINA

COOPERACION CIENTIFICA EN LOS AÑOS 90

Vol I: Life Sciences and Technologies for Developing Countries (STD III)

Published by the EUROPEAN COMMISSION

Research Directorate-General

LEGAL NOTICE: Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

A great deal of additional information on the European Union is available on the Internet.

It can be accessed through the Europa server (http://europa.eu.int).

Cataloguing data can be found at the end of this publication.

Luxembourg: Office for Official Publications of the European Communities, 1999

ISBN 92-828-7832-5

© European Communities, 1999

Reproduction is authorised provided the source is acknowledged.

Printed in Germany

PRINTED ON WHITE CHLORINE-FREE PAPER

Preface

European Union - Latin America Scientific Cooperation in the 90's

It gives me great satisfaction to present this overview of the results of almost a decade of continuous support from the European Community to cooperation between our scientists and their Latin American counterparts. In addition, this publication provides researchers with a valuable source of information on the projects supported, their scope, objectives, and results, and gives full details of the teams involved and how to contact them.

The reader will find in the pages that follow the practical results of the Community's policy on scientific cooperation with the Latin American region. As in the case of other developing regions, Community policy has sought to harmonise a contribution to the region's socio-economic progress with our own scientific interests.

Implementation of this policy has allowed Community scientists to gain access to localities displaying particular environmental, agricultural, ecological and public health characteristics, and to undertake their research in these areas. As a counterbalance, we believe that Latin American researchers have derived great benefit from interaction with their European peers. Given their own scientific quality, this sharing of experience places local teams in a privileged position from which to contribute to finding science-based solutions to problems faced by their communities.

It is precisely with the aim of tackling these problems effectively that, after extensive dialogue with the scientific authorities and communities of the region, the Commission selected areas on which to target cooperation. Agriculture and agroindustry, health and environmental issues were considered the most important priorities, as the reader will be able to see in the body of this publication. However, in order to capitalize on the human potential available, research in other relevant fields such as earth sciences, materials and different branches of engineering was also supported when resources permitted.

We firmly believe that our cooperation has led to the creation of a permanent network of scientific interaction, embracing a vast number of Latin American and European scientists, and which is even broader and more far-reaching than the sum of the results of the projects presented here.

The importance of Latin America for the European Community has recently been brought to the forefront by the Summit of Heads of State of Latin America and the Caribbean, and the European Union, which took place last June in Rio de Janeiro. The dialogue that has taken place over the years in different fora has been reinforced by the Heads of State of the two regions with their decision to establish a Working Group of Representatives. This institutionalised Working Group should provide a renewed impetus to our cooperation: whether this will be achieved through the enlargement of the specific programme for cooperation, by further facilitating access to the specific thematic programmes of the framework programmes, by the conclusion of cooperation agreements, or by the combination of some of these options, is still an open question.

The Working Group of Representatives will be the forum for reflection and advice on the most appropriate way to develop the full potential of our cooperation in the future. The Rio Summit underscored the will of both regions to deepen that cooperation, and the European Commission will apply its best efforts and full capacity to the successful achievement of that aim.

Brussels, October 1999

J. Gabolde Director

Introduction

During the 1990s, the European Community pursued scientific cooperation with Latin America through a series of different programmes.

For the period 1990-1994 two complementary schemes were in operation. First, the Life Sciences and Technologies for Developing Countries (STDIII) programme, which formed part of the EC's Third Framework Programme for Research and Technological Development aimed at mobilizing EC and Developing Country scientists to work on pressing problems of all developing countries, including Latin American countries, in the areas of human health and agriculture. Second, the International Scientific Cooperation (ISC) scheme, which aimed at developing long-lasting working relationships between EC and Latin American scientists, covered a wider range of subjects and set priorities by mutual agreement with the national authorities of individual countries. Through these two schemes a wide-ranging development effort was complemented by a country-specific initiative. The ISC scheme also granted fellowships for Latin American scientists to do research in European laboratories and develop contacts with the European scientific community.

In 1994, a new scheme combining these ideas was introduced. This was the INCO-DC programme (Scientific and Technological Cooperation with Developing Countries), which formed part of the EC's Fourth RTD Framework Programme and which ran until 1998. It focussed specifically on three sectors of widespread importance (sustainable management of renewable natural resources, sustainable improvement of agricultural and agroindustrial production, and health) and used a regional basis, in this case the region being Latin America, on which to set research priorities and build projects.

The newest programme, which started in 1999 and runs for a further four years, is the Research for Development (INCO-DEV) component of the Fifth RTD Framework Programme. This programme targets research of a problem-orientated nature, maintains the regional approach and subject-matter coverage of the earlier INCO-DC programme but adds to it a section on policy research for sustainable development.

This volume contains summaries of joint research projects involving partners in Latin America. It covers all STDIII and INCO-DC projects, and ISC projects which started in the 1992-1994 period. A table summarizing the number of activities carried out and EC financial contribution is given below.

Jaak Sinnaeve

Head of Unit XII-E-4

Research for Development

EC-Latin America S + T cooperation activities						
	Number of activities	Number of institutional partners	EC financial contribution (million ECU)			
Joint Research projects						
STD III (1990-1994)	96	388*	31.76			
ISC (1990-1994)	363	933	57.88			
INCO-DC (1994-1998)	121	818*	58.50			
Fellowships (1990-1994)	319	638	10.44			
TOTAL	899	2777	158.58			

^{*} Includes some partners from non-Latin American developing countries

Table of Contents

Preface

Table of contents Volume 1 - Life Sciences and Technologies for Developing Countries (STD III) 1991-1994 - TS3 contracts Page no. Agriculture 1 1 Health 1111 Volume 2 - International Scientific Co-operation (ISC) 1992-1994 - C11 contracts Page no. Agricultural Sciences 1 Biological Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227 General Index of Projects by Scientists 241	Introduction	
(STD III) 1991-1994 - TS3 contracts Page no. Agriculture 1 Health 1111 Volume 2 - International Scientific Co-operation (ISC) 1992-1994 - C/1 contracts Page no. Agricultural Sciences 1 Biological Sciences 63 Chemical Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227	Table of contents	
Agriculture 1 Health 1111 Volume 2 - International Scientific Co-operation (ISC) 1992-1994 - Cl1 contracts Page no. Agricultural Sciences 1 Biological Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries		ıntries
Health Volume 2 - International Scientific Co-operation (ISC) 1992-1994 - CI1 contracts Page no. Agricultural Sciences 1 Biological Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries		Page no.
Volume 2 - International Scientific Co-operation (ISC) 1992-1994 - CI1 contracts Page no. Agricultural Sciences 1 Biological Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries	Agriculture	1
CI1 contracts Page no. Agricultural Sciences 1 Biological Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries	Health	111
Agricultural Sciences 1 Biological Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries		4 -
Biological Sciences 63 Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries		Page no.
Chemical Sciences 115 Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries	Agricultural Sciences	1
Earth Sciences 159 Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries	G	
Environmental Sciences 203 Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries	Chemical Sciences	115
Health and Biomedical Sciences 271 Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries		
Materials Sciences 365 Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227	Environmental Sciences	203
Physical, Mathematical and Engineering Sciences 413 Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227		271
Volume 3 - International Scientific and Technical Co-operation with Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227		365
Developing Countries (INCO-DC) 1994-1998 - IC18 contracts Page no. Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227	Physical, Mathematical and Engineering Sciences	413
Health 1 Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227	•	
Natural Resources and Agriculture 133 This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227		Page no.
This Volume: Index of Projects by Subjects 219 Index of Institutes by Countries 227	Health	1
Index of Projects by Subjects 219 Index of Institutes by Countries 227	Natural Resources and Agriculture	133
Index of Institutes by Countries 227	This Volume:	
·	Index of Projects by Subjects	
General Index of Projects by Scientists 241	Index of Institutes by Countries	
	General Index of Projects by Scientists	241

STD III

Agriculture

Period: October 1991 to July 1995

INFLUENCE OF CULTIVATION ON ORGANIC NITROGEN STATUS IN TROPICAL SOILS. ADJUSTMENT OF A MATHEMATICAL MODEL TO NITROGEN FERTILITY

Co-ordinator: Consejo Superior de Investigaciones Científicas, Santiago de Compostela, Spain (Tarsy Carballas)

Objectives

- Evaluating the effects of usual agricultural practices (nitrogen fertilisation and rotation) on the state and evolution of N reserves in soils in the Venezuelan Llanos (savanna system).
- ♦ Modelling the N cycle in tropical areas to achieve both improvements in soil productivity and conservation.
- Performing a study of social representations of soil fertility and N fertilisation.
- Using the results of the research to draft recommendations aimed at changing, if necessary, current fertilisation and cultivation habits.

Activities

- * To annually cultivate a local variety of maize (two crops in two years) and a permanent pasture (*Digitaria decumbens*) fertilised with ¹⁵N-urea in an Alfisol located on the Western Venezuelan Llanos.
- * To follow the evolution of N derived from the soil (NDDS) and derived from the fertiliser (NDDF) in plants to evaluate N uptake.
- * To follow the evolution of soil N to determine the N status and to evaluate soil N reserves.
- * To evaluate acidification induced by urea fertilisation.
- * To investigate, during the cropping period, the distribution of soil N and the N derived from ¹⁵N labelled urea in reservoirs with different turnover rates: granulometric fractions, microbial biomass and biochemical fractions.
- * To adapt existing mathematical models to tropical environments and to improve them by taking into account new N reservoirs.
- * To apply sociology techniques to the field of soil fertility and N fertilisation to improve the oral and written discourse of industries and institutions to farmers.

Results

In spite of an N equilibrium, important losses of N derived from fertiliser and from the soil N were detected. N volatilization, which takes place early the crop cycle when there is a high concentration of N derived from urea in the soil and in the plant, was the process that most contributed to N losses: losses by leaching and run-off were of less importance. Denitrification and N losses directly from the plant were not discarded. N losses were higher in the soil under maize than under pasture. A high percentage of the N derived from the fertiliser was immobilised

in the soil in organic N forms at the end of the crop cycle. The immobilising activity of the microbiota in the soil under pasture was higher than in the soil under maize. At the end of the crop, only 15% of the fertiliser that remained in the soil was used by the next crop. The N incorporated into the plants over the whole of the crop cycle contained only 2% of the fertiliser added the preceding year; this value could characterise the composition of the available N fraction. The acidifying effect induced by urea fertilisation only affected the surface layer; this effect, which was lower in the soils under pasture than in the soils under maize, was of minor importance, temporary, and easily controlled by liming. In general, mineral N levels varied during the crop cycle but initial levels were restored at the end of the crop. Ammoniacal N predominated over nitrate N in the pasture soil but the reverse occurred in the maize soil. In both crops, nitrates were scarce and were mainly found at the last stages of the crops, which seems to be the pattern in the area. A hybrid model adapted to tropical conditions, from the CERES MAIZE and NCESWAP models, was designed and the basis for its complete development was established. Simulation of plant phenology, foliage surface calculation, plant weight and root development was modified in the CERES plant model. For the N model, four organic N reservoirs were defined and their evolution was followed in the crops. Microbial N, bicarbonate N, permanganate N and easily hydrolyzable N (H1) represented about 5, 5, 20-25 and 50% of total N respectively, and each of them received about 3% of N derived from urea. The use of H1 as active organic matter reservoir gave satisfactory results for the prediction of plant dry-matter production, N exportation by the plant, and evolution of microbial biomass N. According to this, 50% of total N could be involved in N mineralization-immobilization processes in the short term. The social representations of fertility were much less precise than those of fertilisation. The discourse on fertility and fertilisation varied according to the category of interviewee. The social representations on fertility and fertilisation were mainly determined by political aspects, where the institutional variable had the higher weight, and by the economic aspect, where profitability was the most important variable. These facts minimised the social aspect and ecological problems related to soil conservation and fertility. There is an imposition of knowledge on farmers, reinforced by political decisions concerning agricultural credits, and no integration of such knowledge by the institution responsible for fertiliser distribution.

Partners

CONSEJO SUPERIOR DE INVESTIGACCIONES CIENTIFICAS Bioquímica del Suelo Avda. De Vigo S/N, Apartado 122 E-15080 Santiago de Compostela Spain Tarsy Carballas Tel.: +34-981-59 09 58 Fax: +34-981-59 25 04

E-mail: tcf@cesga.es

UNIVERSIDAD DE LOS ANDES J.M. Hetier

Facultad de Ingeniería Tel.: +58-74-40 16 06 Apartado postal 30 – La Hechicera Fax: +58-74-40 12 86

Merida

Venezuela Now as follows:

 IRD (ex-ORSTOM)
 Tel.: +33-67-61 65 98

 URFPV CIRAD CA
 Fax: + 33-67-61 71 73

 BP 5036
 E-mail:Hetier@cirad.fr

F-34032 Montpellier

France

CENTRE NATIONAL DE LA RECHERCHE

L. Jocteur-Monrozier

SCIENTIFIQUE

Tel.: +33-72-44 80 00

Université Claude Remand Leven 1

Université Claude Bernard – Lyon 1 Fax: +33-72-43 12 23 Ecologie Microbienne du Sol

43, boulevard du 11 November 1918

F-69622 Villeurbanne cedex

France

KATHOLIEKE UNIVERSITEIT LEUVEN R. Merckx

Fac. of Agricultural Sciences

Tel.: +32-16-22 01 31

Lab. of Soil Fertility and Soil Biology

Fax: +32-16-29 38 05

Kardinaal Mercierlaan 92

B-3001 Leuven

Belgium

Period: January 1992 to December 1994

EXTRACTIVISM IN CENTRAL AMAZONIA: VIABILITY AND OPTIMIZATION

Co-ordinator: IRD (ex-ORSTOM), Paris, France (Lescure)

Objectives

- Collect biological and ecological data on the different non-timber forest products exploited in the region.
- Describe production practices and evaluate their impacts on the vegetation.
- Document the importance of extractivism in different kinds of production systems practised by forest dwellers and how extractivism is linked to other subsistence and/or commercial activities.
- Find ways for improving production by conversion to agroforestry.

Activities

Field activities (Brazil and Ecuador)

- * Analysis of extraction activities in different regions with a wide range of ecological and socio-economic conditions. Observations at different biological, ecological and sociological levels.
- * Nutrients cycling in brazil nuts under natural and plantation conditions.

Laboratory activities

For converting production practices from extractivism to agroforestry a better understanding of the problems of germination is needed. Therefore, different conditions of seed conservation and germination were tested at INPA.

Results

- ⇒ Extractive activities do not provide significantly more income than traditional farming activities such as growing manioc. Agroforestry systems appear to be superior from this standpoint. The interest of integrating extractive activities in development policies therefore remains related to their conservationist character.
- ⇒ Extractive activities are not in themselves activities aimed at conservation. Since, by definition, they can only be practised in forest ecosystems, with perhaps some degree of management, they may in some cases have a strong impact on plant populations and should be limited by management rules which should be discussed for each case.
- ⇒ The factors limiting extractive activities are basically socio-economic: lack of access to the resources and land, markets and distribution channels, lack of tax incentives and failure to include them in development policies.
- ⇒ The major assets of extractive activities are their flexibility and ability of being integrated into complex production systems. This flexibility is basically due to the diversity of the products exploited and the exploitation practices. Such activities also have the advantage of being well integrated in local cultures. Last but not least, they are capable of evolving towards agroforestry practices.

Recommendations

- Development policies should take seriously extractive activities as a component of the production systems to increase the value of forest products.
- The gradual transition from extractive activities towards agroforestry practices should be strongly encouraged.
- The development of extractivism should also be considered outside the framework of extractive reserves.
- A tax policy supporting extractive activities should be set up.
- Strong support should be given to integrating environmental value in product prices.
- The desirable transition to agroforestry production requires a re-examination of landtenure.
- Agricultural assistance services need to evolve and gain new expertise in ecosystem management if these proposals are to be successfully implemented.
- Product exploitation legislation, based on the results of research and on potential impacts, which should be considered in space-time frameworks specific to each product, need to evolve. The data on such impacts are missing and research is required in this area.

Selected publications

Aubertin C., 1995. Les "réserves extractivistes" : un nouveau modèle pour l'Amazonie? Nature-Sciences-Sociétés, **3(2)**: 102-115.

Borgtoft Pedersen H. & H. Balslev, 1992. Economic botany of Ecuadoran palms. In M. Plotkin & L. Famolare (eds.): Sustainable Harvest and Marketing of Rain Forest Products. Island Press, Covelo, CA.:173-191

Emperaire L. (Ed.), 1996. La forêt en jeu. L'extractivisme en Amazonie. Collection Latitudes 23, ORSTOM, Paris, 230 p.

Emperaire L & J.-P. Lescure, 1994. Extractivisme et conservation de la biodiversité au Brésil. Journ. d'Agric. Trad. et de Bota. Appl., Nouvelle Série, **36 (1):** 173-186

Lescure J.-P., Pinton F. & L. Emperaire, 1994 People and forest products in central Amazonia: the multidisciplinary approach of extractivism. in: M. Clüsener-Godt & I. Sachs (eds), Extractivism and the Brazilian Amazon; Perspectives on Regional Development. *MAB Digest*, **18:** 58-88, UNESCO, Paris.

Partners

IRD (ex-ORSTOM) Lescure

Département Milieux et Activité Agricole

Tel.: +33-1-48 03 77 77

273 rue Lafayette

Fax: +33-1-40 35 17 13

F-75480 Paris cedex 10

France

INSTITUTO NACIONAL DE PESQUISAS DA Ferraz

AMAZONIA Tel.: +55-92-642 21 18 Alameda Cosme Ferreira 1756 Fax: +55-92-642 21 18

BR 69011 Manaus

Brazil

UNIVERSITY OF AARHUS Basley

Aarhus Tel.: +45-86-12 51 77 **Denmark** Fax: +45-86 13 99 19

Period: February 1992 to January 1996

COAT PROTEIN MEDIATED RESISTANCE OF SOLANUM TUBEROSUM AND NICOTIANA TABACUM TOWARDS ANDEAN POTATO MOTTLE VIRUS

Co-ordinator: Rijksuniversiteit Gent, Ghent, Belgium (Marc Van Montagu)

Objectives

- ◆ Determination of the level of resistance obtained through the expression of the APMV coat proteins (CPs) in tobacco and potato.
- Comparison of the effectiveness of developing resistance by expressing one or both coat proteins in the host plant.
- Outline a general approach towards engineering resistance against viruses with multiple coat proteins.
- Determination of the protection of the transgenic plants against other viruses.
- ♦ Development of a detection kit for APMV presence by applying "Polymerase Chain Reaction" technology.
- ◆ Development of double transgenic plants through crossing of CP plants with "defence-related genes" expressing transgenic lines.

Activities

- * Cloning the coding sequence of both CPs in plant expression vectors, separately and combined.
- * Developing a regeneration protocol for the potato cultivar Delta, and transformation of the above mentioned constructs.
- * Characterization of the transgenic plants (with one or both CPs) and scoring their resistance towards APMV infection.
- * Scoring resistance of transgenic plants co-expressing viral CPs and common defense genes (such as \beta-1,3-glucanases, a proline-rich cell wall protein HRGP, a pathogen-related protein PRms of the PR1 family), towards infection with APMV and other viruses.
- * Development of a detection kit for APMV using PCR technology.

Expected outcome

- ⇒ The project will lead to the understanding of the role of the amount of the CPs in the resistance mechanism against viruses, and consequently to the outlining of a general approach towards engineering resistance against viruses with multiple coat proteins.
- ⇒ Developing resistance towards APMV will substantially increase the yield of important crops such as potato, tomato and eggplant (up to 20% loss due to APMV infection) and reduce the need for insecticides which are detrimental for the environment. The combination with common defence-related genes might improve the expected yield increases. The development of a detection kit for APMV is a test case to be used to work out kits for other viruses.

Pedro Puigdomenech

Selected publications

Willekens H., Langebartels C., Tiré C., Van Montagu M., Inzé D., Van Camp W. 1994. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.) Proc. Natl. Acad. Sci. USA. 91: 10450-10454.

Brioso P.S.T. 1995. Caracterização Viral, detecção de virus vegetais e identificação de fonte de resistencia. PhD thesis presented to the Department of Genetics, Federal University of Rio de Janeiro, Brazil, March 1995. Promotor: Prof. D. E. de Oliveira.

Partners

RIJKSUNIVERSITEIT GENT

Marc Van Montagu Tel.: +32-91-64.51.70 Laboratorium voor Genetica Fax: +32-91-64.53.4 K.L. Ledeganckstraat 35

B-9000 Gent **Belgium**

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Dulce Eleonora de Oliveira Departamento de Genetica Tel.: +55-21-590.01.11 Instituto de Biología Fax: +55-21-590.01.11 Caixa Postal 68011

Brazil

CONSEJO SUPERIOR DE INVESTIGACIONES

Tel.: +34-93-204.06.00 **CIENTIFICAS** Centro de Investigación y Desarrollo Fax: +34-93-204.59.04

Jordi Girona 18 E-8034 Barcelona

21941 Rio de Janeiro

Spain

Period: March 1992 to August 1996

GENETIC IMPROVEMENT OF BANANA FOR LOCAL CONSUMPTION AND FOR EXPORT, WITH REFERENCE TO CERCOSPORIOSIS RESISTANCE

Co-ordinator: CIRAD-FLHOR, Montpellier, France (Hugues Tezenas du Montcel))

Objectives

- Select sweet-banana and plantain cultivars resistant to *Mycosphaerella fijiensis*, causal agent of black-sigatoka disease which is a very serious threat. Assess these cultivars vis-à-vis other diseases and pests.
- Better understand banana genetics and resistance mechanisms.
- ♦ Develop traditional breeding based on this understanding and integrate nonconventional techniques.

Results

- ⇒ This project has enriched the *in vivo* collections at CRBP and CIRAD. The majority of the diploid germplasm introduced came from Papua New Guinea and Vietnam. This was characterised using isozymatic, molecular markers.
- ⇒ Two successive maps were constructed; based on two different segregating populations. Using these two maps a composite map including 157 loci was drawn up. This map will be used to locate any QTL of interest to breeders.
- ⇒ CIRAD's strategy to create triploid hybrid varieties was confirmed.
- ⇒ Three AAB hybrids of the sweet type, resistant to black sigatoka disease, are undergoing commercialization trials in various countries.
- ⇒ At CRBP, tetrapoloid hybrids of plantain resistant to black sigatoka disease- were created using the M53 male parent.
- ⇒ Systems for cell establishment and regeneration were developed to be used in transgenesis.
- ⇒ Conformity in the field of "Grande Naine" (Big Dwarf) banana from somatic embryogenesis was confirmed.
- ⇒ Stable transformants of 'Grande Naine' and dark French were obtained.
- ⇒ Somatic fusion (but without plant regeneration) was obtained.
- ⇒ *Mycosphaerella fijiensis* populations were characterized, and the variability of these populations was noted.
- ⇒ In addition, the project also has led to:
 - -14 doctoral theses, 15 university degrees and training opportunities for several students
 - -4 meetings among the project participants for discussing results
 - presentation of the results by members of the project team in more than 10 international seminars
 - publication of 34 articles and 62 communications.

Selected publications

Escalant J.V., Teisson C., Cote F. 1994. Amplified somatic embryogenesis from male flosers of triploid banana and plantain cultivars. In vitro Cell. Dev. Biol. 30p: 181-186.

De Smet K., Panis B. Sagi L., Cammue B.P.A., and Swennen R. 1994. Improvement of bananas for black sigatoka and Panama disease resistance through genetic manipulation. African Crop Science Journal. Vol. 2, no.1, pp 1-7.

Fauré S., Noyer J.-L., Carreel F., Horry J.-P., Bakry F., Lanaud C. 1994. Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (*Musa acuminata*). Curr. Genet. **25**:265-269.

Jarne Ph. and Lagoda P. J.L. October 1996. Microsatellites, from molecules to populations and back. Ecology and Evolution. **Vol. 11**, no. 10.

Carlier J., Mourichon X., Gonzalez-de-León D., Zapater M.F., and Lebrun M.H. 1994. DNA restriction fragment. Length polymorphisms in Mycosphaerella species that cause banana leaf spot diseases. Molecular and Plant Pathology. Vol. 84, no. 7.

Partners

 CIRAD-FLHOR
 Hughues Tezenas du Montcel

 B.P. 5035
 Tel.: +33-4-67 61 58 60

 F-34032 Montpellier cedex
 Fax: +33-4-67 61 58 71

France

FAC. UNIV. DES SC. AGRONOMIQUES DE LA
COMMUNAUTE FRANÇAISE DE BELGIQUE
Avenue du Maréchal Juin 13
Philippe Lepoivre
Tel.: +32-81-62 24 34
Fax: +32-81-61 01 26

B-5030 Gembloux

Belgium

CIRAD GERDAT

Unité de recherche BIOTROP

B.P. 5035

Jacques Schwendiman
Tel.: 33-67-61 58 29
Fax: 33-67-61 57 92

F-34032 Montpellier cedex 1

France

UNIVERSITE DE PARIS SUD Line Rossignol

Bât. 360 Tel.: +33-1-69 41 70 49 F-91405 Orsay cedex Fax: +33-1-64 46 19 92

France

CENTRO AGRONOMICO TROPICAL DE Jean-Vincent Escalant INVESTICAGION Y ENSEÑANZA Tel.: +506-56 01 69 CR-7170 Turrialba Fax: +506-56 15 33

Costa Rica

CENTRE REGIONAL BANANIERS ET PLANTAINS Christophe Jenny Boîte postale 832 Tel.: +237-42-71 29

Douala Fax: +237-42-57 86

Cameroon

KATHOLIEKE UNIVERSITEIT LEUVEN Rony Swennen

Oude Markt 13 Tel.: +32-16-22 09 31 B-3000 Leuven Fax: +32-16-22 00 98

Belgium

RESEAU INTERNATIONAL POUR David Jones

L'AMELIORATION DE LA BANANE ET LATel.: +33-67-61 13 02 **BANANE PLANTAIN**Fax: +33-67 61 03 34

Parc Scientifique Agropolis, Bât. 7

Boulevard de la Lironde F-34980 Montferriez-sur-Lez

France

Period: April 1992 to August 1994

NUTRIENT CYCLING AND SUSTAINABILITY IN ALLEY-CROPPING SYSTEMS IN THE HUMID TROPICS: II: PHOSPHORUS, LABILE SOIL ORGANIC PHOSPHORUS AND BASE-CATIONS

Co-ordinator: University of Cambridge, Cambridge, United Kingdom (Timothy Bayliss-Smith)

Objectives

- ♦ Maintain the experimental alley-cropping (AC) and open field (control) plots in lowland tropical-rain-forest sites in Costa Rica that were established under the original STD2 funding (1988-92).
- ♦ In both AC and control plots, to analyse the cycling of phosphorus, by means of ecosystem budgets and isotopic root-uptake studies.
- ♦ Investigate the potential role of nutrient supplements in AC systems, in particular base cations, so as to provide guidelines for sustainable land use on acid, leached soils.
- Experiment further on the role of permanent mulch cover in the context of mycorrhizal and free-living microbiota and their phosphatase activity.

Activities

We originally worked on two sites, La Conquista, Sarapiqui (LaC), and Co-ope San Juan, San Carlos (CSJ), but from 1992 onwards the research focused on CSJ. Here the AC trials have been monitored continuously for 5 years, following an initial slash-and-burn operation in 1989. The whole CSJ site covered 2 ha and corresponded to the size and scale of a family holding. It comprised 8 AC and 8 control plots, each with or without additions of rock phosphate, plus supplementary plots and experiments. We intentionally maintained an intense and stressful regime of two crops per year, with maize and beans alternating (a simple analogue of indigenous practice), together with 4 prunings per year in the alley plots.

<u>01/02.</u> Cambridge: project co-ordinator T. Bayliss-Smith was based in U.K. while Research Associate M.R. Hands was stationed in Costa Rica organising the field trials, managing the local labour force and overseeing the lab work at UCR.

<u>03. ITE</u>: A.F. Harrison and J. Dighton conducted fieldwork at CSJ on isotopic root uptake in mid-1993.

<u>04. Granada</u>: R. Azcon visited Costa Rica in mid-1993 to liaise with UCR project researcher M. Bermudez on the on-going experiments on VAM mycorrhizae, using soils from the experimental sites at CSJ.

<u>05. UCR</u>: A. Alvarado, Director of Centro de Investigaciones Agronomicas, liaised with M.R. Hands on the facilities needed for the ITE work on isotopes and for analysis of soils and biomass at University of Costa Rica.

Expected outcome

The environmental context in Costa Rica is typical of rain forests in the lowland humid tropics: acid, leached latasols and a high rainfall. The project is about the sustainability of alley cropping for small farmers in this environment: to what extent is this from of agroforestry, using minimal inputs, a viable alternative to shifting cultivation? We aim to gain an understanding of the cycling of phosphorus, with or without the benefit of tree mulch from the AC hedgerows, in sustaining the productivity of agricultural systems in the tropical rain forest zone. There are anticipated benefits to development planning as well as to our scientific knowledge of this important agro-ecosystem

Partners

UNIVERSITY OF CAMBRIDGE
Timothy Bayliss-Smith
Department of Geography
Tel.: +44-1223-33.33.78
Downing Place
Fax: +44-1223-33.33.92

UK-CB2 3EN Cambridge United Kingdom

UNIVERSIDAD DE COSTA RICA Freddy Sancho
Centro de Investigaciones Agronómicas Tel.: +506-24.37.12
Ciudad Universitaria Fax: +506-34.16.27

San José Costa Rica

INSTITUTE OF TERRESTRIAL ECOLOGY

Merlewood

Anthony Harrison
Tel.: +44-15395-322.64

Grange Over Sands

Cumbria

United Kingdom

ESTACION EXPERIMENTAL DEL ZAIDINProfesor Alvarado 1
E-18008 Granada

José Miguel Barea
Tel.: +34-58-12.10.11
Fax: +34-58-12.96.00

Spain

Period: April 1992 to March 1996

FARMER STRATEGIES AND PRODUCTION SYSTEMS IN FRAGILE ENVIRONMENTS IN MOUNTAINOUS AREAS OF LATIN AMERICA

Co-ordinator: University of Leeds, Leeds, United Kingdom (David Preston)

Objectives

- ♦ Identify and measure physical components of environmental deterioration at different geographical levels from field to physiographic region.
- ♦ Identify the present and historical links between production systems, social structures and environmental deterioration in relation to agricultural production and food provision in selected areas in Honduras and Bolivia.
- ♦ Identify and explain reasons for differences in land uses and levels of production in similar physical environments at a household, community and regional level.
- ♦ Identify and evaluate, according to locally and scientifically-acceptable criteria, those existing and novel farming practices most capable of facilitating sustainable food production.

Activities

- * Collection of basic socio-economic data on production systems in the study areas to place land use decisions in a broader context. The collection of basic information about locally-perceived environmental problems and ways of overcoming them.
- * The establishment of a sample of farmers to be studied in more depth and through whom a close monitoring of activity over three years will provide data on land use decisions and evidence of environmental problems as well as a record of changes in physical soil characteristics.
- * The study of evidence of vegetation change and association with particular land use strategies in order to develop a model of vegetation degradation.
- * The identification of key issues to be examined in detail to reveal structural pressures on land users in the recent past.

Throughout the period of work, there was a continuous dialogue with rural people in the communities being investigated to identify a set of practices, appropriate to each ecological situation, that facilitate sustainable food production and the provision of an acceptable level of living.

Expected outcome

Our research will enable a much deeper understanding than has hitherto been possible of the links between physical environmental change and household strategies. In particular it should document the extent to which apparent environmental deterioration is a consequence of current land use management. It will also enable to recording of the range of land use practices that most contribute to sustainable production systems.

David Preston

Selected publications

David Preston and Lorraine Clewer. 1993. Wine production in a marginal area: Tarija wine in the 1990s. Journal of Wine Research. **4(3)**: 227-232.

Kees Jansen. 1995. Ecological degradation in the production of food and export crops in north-west Honduras. In: M. Mörner & M. Rosendal (eds.) Threatened peoples and environments in the Americas (University of Stockholm, Institute of Latin American Studies) 161-189.

Partners

UNIVERSITY OF LEEDS

 School of Geography
 Tel.: +44-113-233.33.43

 Woodhouse Lane
 Fax: +44-113-233.33.08

UK-LS2 9JT Leeds E-mail: d.a.preston@leeds.ac.uk

United Kingdom

WAGENINGEN AGRICULTURAL UNIVERSITY Norman Long

Dept. of Sociology of Rural Development Tel.: +31-317-48.20.75 Hollandseweg 1 Fax: +31-317-48.40.37

NL-6707 KN Wageningen

Netherlands

UNIVERSIDAD DE VALENCIA Adolfo Calvo

Departamento de Geografía Tel.: +34-6-386.42.30 Apartado 22060 Fax: +34-6-386.42.49

Valencia Spain

UNIVERSIDAD NACIONAL AUTONOMA DE Rafael del Cid HONDURAS Rafael del Cid Tel.: +504-32.21.10

Postgrado Centroamericano en Economía y Planificación Fax: +504-31.32.89

del Desarrollo Apartado 1748 Tegucigalpa, D.C.

Honduras

UNIVERSIDAD MAYOR DE SAN ANDRES LA PAZ Maximo Liebermann

Instituto de Ecología Tel.: +591-2-79.25.82 Casilla 10077 Correo Central Fax: +591-2-39.11.76

La Paz **Bolivia**

Period: January 1993 to October 1996

IRRIGATION WATER MANAGEMENT AND SALINIZATION: INTERCOMPARISON OF SIMULATION MODELS IN ARGENTINA AND EGYPT

Co-ordinator: DLO Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, The Netherlands (Massimo Menenti)

Objectives

- ♦ Compare two models (SIWARE and TUNIN) that describe the regional aspects of salt and water balance in an entire irrigation scheme, and two models (BIWASA and SWASALT) that describe coupled salt and water flow in soil profiles, considering accuracy and sensitivity to input data and to the schematization of the irrigation and drainage systems.
- ♦ Assess the practical applicability of these models to the context of water administration practices in Argentina and Egypt.

Activities

- * Comparison of the models BIWASA and SWAP. Two field tests were carried out in Argentina, near Lavalle (Mendoza) and in Egypt near Zagazig. At both sites, the data needed to apply and validate the models were collected. Soil hydrological properties were determined on undisturbed soil cores at the laboratories of the participating institutes in Argentina, Egypt and The Netherlands. The solute concentration in soil water was determined by extracting samples of soil water with tensiometers and vacuum pumps. The intercomparison study was based on four simulation studies, since each model was applied at both field sites.
- * Comparison tests of the models SIWARE and TUNIN. The data needed to apply these models were collected for the irrigation system of the Rio Tunuyan Medio (Mendoza, Argentina) and for the eastern Nile delta. The model SIWARE was applied to both irrigation systems. The model TUNIN required the determination of irrigation efficiencies. Because of the limited scope of the investigation, volumes of irrigation water calculated with SIWARE were used instead to determine the required path efficiencies for the eastern delta case study.
- * Analysis of water management practices in Spain, Argentina and Egypt. The physical, legal and administrative settings of irrigation in Spain, Argentina and Egypt were reviewed. Ongoing efforts to improve the effectiveness of water laws in these countries were addressed in the review.

Results

⇒ SWAP and BIWASA: agreement of simulated soil water content with field measurements was good in all cases, while the vertical profile of solute concentration at the Lavalle test site could not be reproduced satisfactorily. A better parameterization of adsorption is necessary. Accurate determination of soil hydrological properties was also difficult, and part of the field observations were used for model calibration. Two-dimensional

(BIWASA) modelling was necessary to describe soil and water flow at the Lavalle test site, where lateral variability is significant due to furrow irrigation. Numerical models are useful for detailed comparison of irrigation strategies using indicators or irrigation performance.

⇒ TUNIN and SIWARE: monthly irrigation volumes within the eastern delta irrigation system were reproduced with rather good accuracy, using the relatively simple TUNIN algorithm based on time-independent path efficiencies. The latter implies that irrigation water is allocated proportionally to the irrigated area. The detailed description of agrohydrological processes included in SIWARE is necessary in a limited range of situations where water volumes are not proportional to the irrigated area. The SIWARE case study in Argentina underscored the difficulty of determining all required input variables with sufficient accuracy at the level of spatial aggregation, on which this model was built

Partners

DLO WINAND STARING CENTRE FOR INTEGRATED LAND, SOIL AND WATER RESEARCH

Marijkeweg 11/22 P.O. Box 125

NL-6700 AC Wageningen

The Netherlands

INSTITUTO NACIONAL DE CIENCIA Y **TECNICA HIDRICAS**

Centro Regional Andino

Cas. Correo 6 Belgrano 210 RA-5500 Mendoza

Argentina

INSTITUTO NACIONAL DE REFORMA Y **DESARROLLO AGRARIO**

Paseo de la Castellana 112 E-28071 Madrid

Spain

UNIVERSITY OF CAIRO

Faculty of Engineering Dept. of Irrigation and Hydraulics

Gizeh, Cairo **Egypt**

DRAINAGE RESEARCH INSTITUTE

Qanater 1362/5

Cairo **Egypt** Massimo Menenti

Tel.: +31-317-47 42 00 Fax: +31-317-42 48 12 E-mail: postkamer@sc.dlo.nl

Jorge Luís Chambouleyrón Tel.: +54-61-24 19 93 Fax: +54-61-38 02 51

E-mail: postmaster@inccra.edu.ar

Julián Martínez Beltrán Tel.: +34-91-347 18 39

Fax: +34-91-564 52 35 411 37 70

Mohamed El Sherbiny M. Kiwan

M.H. Salem

Tel.: +20-2-72 85 32 ext. 3125

Fax: +20-2-72 70 09 E-mail: kiwan@cairo9.eg

Shaden Abdel Ghawad Tel.: +20-2-95 93 83

Fax: +20-2-95 91 53

Period: October 1992 to September 1996

GENETIC IMPROVEMENT OF PHASEOLUS FOOD LEGUMES FOR THE LOWLAND AND HIGHLAND TROPICS OF COLOMBIA AND PERU

Co-ordinator: Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, Belgium (Jean-Pierre Baudoin)

Objectives

- ♦ Exploit the genetic potential of the food legumes *Phaseolus Iunatus* and *P. polyanthus* in the lowland and highland areas of the two countries.
- ♦ Develop improved cultivars of *P. vulgaris* from hybridization with *P. polyanthus* resistant to *Phoma exigua* var. *diversispora* (causing *Ascochyta* blight).
- ♦ Refine the *in vitro* culture techniques of immature *Phaseolus* embryos, and create new interspecific hybrids.
- ♦ Search for DNA molecular markers linked with the genes of resistance to *Phoma* in *Phaseolus*.

Activities

- * Study of the genomes of *P. Polyanthus* and other related taxa, using DNA restricton polymorphism and allozyme markers in Gembloux (Belgium).
- * Refinement of *in vitro* culture of early heart-shaped embryos and development of new interspecific hybrids with *P. vulgaris* in Gembloux (Belgium), Rio Negro (Colombia), Lima (Peru).
- * Screening for field resistance to *Phoma* in Colombia and Peru, and DNA fingerprinting of *Phoma* and *Phaseolus* in Bonn (Germany).
- * Breeding of interspecific hybrids of *P. vulgaris* in highland stations of Colombia and Peru, using recurrent selection schemes and multiple cropping systems.
- * Breeding of *P. lunatus* to overcome the major agronomical constraints in Colombia and Peru.

Results

- ⇒ The biochemical and molecular characterization of *Phaseolus* allowed the determination of the phyletic relationship between taxa, to orient interspecific hybridization and to define in *P. lunatus*, a secondary gene pool made of Andean wild *Phaseolus* species.
- ⇒ Field inheritance studies revealed a monogenic resistance, with complete and partial dominance, to *Ascochyta* blight. *P. polyanthus* is characterized by a high level of field resistance to this disease.
- ⇒ A new technique to rescue early heart-shaped embryos was developed, using two successive media: one for maturation-germination, and one for rooting. Application of this technique allowed to obtain more than 20 new interspecific combinations and several hybrids in the recombination nursery of the recurrent selection scheme adopted for interspecific crosses (*P. vulgaris* x *P polyanthus* and *P. vulgaris* x *P. coccineus*).
- ⇒ Improved varieties of P. polyanthus and P. lunatus were created for the traditional cropping systems in highland and lowland areas of the Andes.

Follow up

- * Total and chloroplastic genome analyses were carried out to specify the genetic organization at intra- and interspecific levels of *Phaseolus*.
- * The new improved *Phaseolus* varieties are being tested in traditional cropping systems of Andean regions, with a view to determining appropriate crop husbandry, particularly in intercropping systems (such as maize or bean).

Selected publications

Schmit V., du Jardin P., Baudoin J.P., Debouck D.G.D. 1993. Phylogenetic study of seven *Phaseolus* taxa, namely *P. vulgaris* and *P. coccineus*, using chloroplast DNA. Theor. Appl. Genet. **87**:506-516.

Baudoin J.P., Camarena F., Lobo M. 1995. Amélioration de quatre espèces de légumineuses alimentaires tropicales: *Phaseolus vulgaris*, *P. coccineus*, *P. polyanthus*, et *P. lunatus*. Sélection intra- et interspécifique. *In*: Quel avenir pour l'amélioration des plantes? J. Dubois, Y. Demarly (eds.) AUPELF-UREF. John Libbey. Eurotext, paris. pp. 31-39.

Baudoin J.P., Camarena F., Lobo M. 1997. Improving *Phaseolus* genotypes for multiple cropping systems. Euphytica. **96**: 115-123.

Maquet A., Zoro Bi.I., Delvaux M., Wathelet B., Baudoin J.P. 1997. Genetic structure of a Lima-bean base collection, using allozyme markers. Theor. Appl. Genet. 95: 980-991.

Mergeai G., Schmit V., Lecomte B., Baudoin J.P. 1997. Mise au point d'une technique de culture *in vitro* d'embryons immatures de *Phaseolus*. Biotechnol. Agron. Soc. Environ. 1: 49-58.

Partners

FAC. UNIV. DES SCIENCES AGRONOMIQUES DE GEMBLOUX

Unité de Phytotechnie des régions intertropicales

Passage des Déportés 2 B-5030 Gembloux

Belgium

CORPORACION COLOMBIANA DE INVESTIGACION AGROPECUARIA

C.I. La Selva A.A. 470

Rionegro (Antioquia)

Colombia

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

Programa Leguminosas y Oleaginosas

Apartado 456 1 Lima

Peru

RHEINISCHE FRIEDRICH-WILHELMS UNIVERSITAET BONN

Institut für Genetik

Abt. Biochemische Genetik

Kirschallee 1 D-5300 Bonn

Germany

Jean-Pierre Baudoin Tel.: +32-81-62 21 12

Fax: +32-81-61 45 44

E-mail: baudoinjp@fsagx.ac.be

Mario Lobo

Tel.: +57-4-537 00 04 Fax: +57-4-461 20 82

Felix Camarena Mayta Tel.: +51-1-435 20 35

Fax: +51-1-435 20 73

E-mail: camafe@lamolina01.lamolina.edu.pe

Milan Höfer

Tel.: +49-228-73 55 19 Fax: +49-228 73 55 45

E-mail: unb121@ibm.rhrz.uni-bonn.de

Period: January 1993 to June 1996

ADAPTATION OF MAIZE TO ACID SOILS OF THE TROPICS

Co-ordinator: Universität Hannover, Hanover, Germany (Walter Horst)

Objectives

The overall objective of the project was to improve and enhance the breeding of maize cultivars adapted to acid soils of the tropics through:

- ♦ identification of the soil factors most limiting maize growth in selected acid soils in Brazil, Cameroon and Guadeloupe
- better understanding of the physiological, morphological, biochemical mechanisms of Al toxicity, Al- and acid-soil resistance
- development of quick laboratory screening procedures reflecting the performance of maize cultivars on acid soils in the field.

Activities

- Morphological and physiological responses of maize plants to Al
- Physiology of Al resistance
- Screening for Al resistance
- Screening and breeding for adaptation to acid soils of the tropics

Results

- ⇒ Inhibition of root elongation by Al, induction of callose formation in root tips, and the hematoxylin staining of Al in root tips are parameters of Al sensitivity which can easily be assessed in hydroponically-grown maize seedlings. Which of these techniques is the most appropriate to be incorporated into a breeding programme for adaptation of maize to acid soils needs to be established. Studies with the objective to further characterize a physiological/biochemical marker of Al resistance have to be intensified.
- ⇒ Although Al resistance is a prerequisite for adaptation to acid soils at most locations, this study clearly showed that, at some locations, other factors of the acid soil complex may be equally or even more important. Interaction of Al resistance with factors such as Mn toxicity, P deficiency and H⁺ toxicity need to be taken into consideration in the improvement of screening techniques for acid soil tolerance.
- ⇒ Acid-soil-resistance traits from exotic germplasm can be and need to be incorporated into locally otherwise adapted germplasm. This, however, requires quick and reliable screening techniques allowing the evaluation of large numbers of genotypes.

Follow-up

The activities are pursued with a modified focus in the INCO research project fitting maize into cropping systems on acid soils of the tropics (ERBIC 18CT960063)

Selected publications

Barcelo J., Poschenrieder Ch., Vásquez M. D., Gunsé B. 1996. Aluminium phytotoxicity. A challenge for plant scientists. Fertilizer Research 43, 217-223.

Calba H., Jaillard B., Fallavier P., Arvieu J.-C. 1996.: Agarose is a suitable substrate for use in the study of Al dynamics in the rhizosphere. Plant and Soil, 178, 67-74.

Horst W.J., Schmohl N., Püsche, A.K. 1997. Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant and Soil. 192, 23-30,

Llungani M., Massot N., Wissemeier A.H., Poschenrieder Ch., Horst W.J., Barcelo J. 1994. Aluminium tolerance of maize cultivars as assessed by callose production and root elongation. Z. Pflanzenernähr. Bodenk. 157: 447-451.

Pintro J.C., Barloy P., Fallavier P. 1996. Aluminium effects on the growth and mineral composition of corn plants cultivated in nutrient solution at low aluminium activity. J. Plant Nutr. 19, 729-741.

Partners

UNIVERSITAET HANNOVER Walter Horst

Institut für Pflanzenernährung
Tel.: +49-511-762 26 26
Herrenhaeuserstrasse 2
Fax: +49-511-762 30 15

D-3000 Hannover 21

Germany

INSTITUT NATIONAL DE LA RECHERCHEJean Barloy

AGRONOMIQUE Tel.: +33-99-28 54 71 Laboratoire d'Agronomie Fax: +33-99-28 75 10

65 rue de Saint-Brieuc

F-35042 Rennes

France

UNIVERSIDAD AUTONOMA DE BARCELONA Juán Barceló

Facultad de Ciencias Tel.: +34-93-581 12 67 Laboratorio de Fisiología Vegetal Fax: +34-93-581 20 03

E-08193 Bellaterra

Spain

CIRAD CA Paul Fallavier

Département GERDAT Tel.: +33-4-67 61 58 22 BP 503.5 Fax: +33-4-6761 59 86

F-34032 Montpellier cedex 1

France

INSTITUT DE RECHERCHE AGRONOMIQUE Charles The

DU CAMEROUNTel.: +237-23 35 38
Dept. of Plant Breeding and Agronomy
Fax: +237-22 18 73

BP 2123 Yaoundé

Cameroon

CIRAD CA
Danièle Clavel
Station d'Amélioration des Plantes
Tel.: +590-25 59 45
F-97184 Pointe-à-Pitre
Fax: +590-25 59 24

Guadeloupe

UNIVERSIDADE ESTADUAL DE LONDRINA

Departamento do Agronomía Tel.: +55-43-221 20 00 VR-BP 6001 Londrina – Parana Fax: +55-43-227 69 32

Brazil

Maria de Fatima Guimarães

Period: December 1992 to November 1997

EVALUATION OF LOCAL POULTRY RESOURCES FOR CREATING GENETIC STOCK WITH IMPROVED ADAPTABILITY, PRODUCTIVITY AND DISEASE RESISTANCE FOR TROPICAL ENVIRONMENTS

Co-ordinator: Technische Universität Berlin, Berlin, Germany (Peter Horst)

Objectives

- Utilization of local genic resources and identification of valuable characteristics such as productive adaptability, disease tolerance and special qualities for market preferences.
- Genetic improvement by complementing special fitness characteristics of local genotypes with potential productivity with high-yield exotic gene material. The targets were:
 - Evaluation of local fowl strains in different continents with respect to major generelated external characteristics, productive performance and disease resistance.
 - Identification at genomic level, genetic variation within and genomic differentiation between local strains.
 - Exploitation of these gene resources to develop genetic stock with high adaptability, productivity and disease resistance under the existing environmental conditions.
 - Test of crossbreeding effects on performance under unfavourable conditions by introducing a dual-purpose exotic strain and to search for the use of distinct tropical major genes in those crossbreeds as a basis for further decisions on autonomous breeding systems.

Activities

Since the purpose of the project was to incorporate widely distributed populations, most work was carried out by local partner institutions in Asia, Africa and South-America. Collection of material, multiplication of stock and performance testing was done overseas, and the main laboratory work and training was done in Europe. The activities were the following:

- * Screening of local populations and evaluation of special characteristics: in each developing country a survey was conducted on the different ecotypes to investigate morphological features, special characteristics, beliefs about biological role, availability of major genes and special use by the local populations in the regions concerned.
- * Investigation of the disease-resistance status of local populations through investigating humoral and cellular immunity responses in birds. An overall immunity-competence index was created to evaluate the different population tested.
- * Estimation of genetic distances and genetic variability within populations. This was done by DNA fingerprint and microsatellite-marker systems. In combining those results, a dendrogram of all genotypes was established, displaying the actually existing genetic differentiation.

* Upgrading of local populations to improve productive adaptability and disease resistance. This was achieved by crossing the selected local populations with a high-yield promoter line. The local, exotic and F1 crosses were tested simultaneously for various performance traits. Selected F1s will be back-crossed with the exotic high-yield population. The best fitting genetic groups have been investigated further to verify the desirable characteristics of adaptability and disease resistance.

Selected publications

Agbede G., Demey F., Verhulst A. and Bell G.J. 1995. Divergent selection for specific immune reactions and resistance to Newcastle disease in native chickens of Cameroon. In: Advances in Avian Immunologie Research, Reading: 111-117.

Ponsuksili S., Wimmers K., Horst P. 1996. Genetic variability in chickens using polymorphic microsatellite markers. Thai Journal of Agricultural Science, **29**: 571-580.

Ponsuksili S. 1995. Estimation of genetic variation within and between different chicken lines by DNA fingerprinting. Ph.D. thesis, Humboldt University of Berlin, pp.106.

Rodríguez-Palacios Z. 1997. Caractérisation hématologique et immunologique des poules locales Boliviennes, des poules exotiques GDR et de la descendance de leur croisement. IMT M.Sc. thèse, pp. 52.

Singh, V.K. 1997. Studies on some economic parameters of various Indian native breeds of chickens and their crosses with Dahlem Red (Exotic Breed). M.V.Sc. Thesis, submitted to Rajendra Agricultrural University, PUSA (Samastipur), Bihar, India.

Partners

HUMBOLDT UNIVERSITY OF BERLIN Peter Horst

Institute of Animal Sciences

Tel.: +49-30-31.47.11.20

Lentzeallee 75

Fax: +49-30-31.47.14.26

D-14195 Berlin

+49-30.31.47.13.01

Germany E-mail: czarnetz@elster.iae.tu-berlin.de

PRINCE LEOPOLD INSTITUTE OF TROPICAL Felix Demey

 MEDICINE
 Tel.: +32-3-247.63.92

 Nationalestraat 155
 Fax: +: 32-3-216.14.31

 B-2000 Antwerpen
 E-mail: animprod@vet.itg.be

Belgium

CENTRAL AVIAN RESEARCH INSTITUTE Dinesh Pased Singh

Avian Genetics and Breeding Division Tel.: +91-581-44.64.20 Izatnagar (U.P.) Fax: +91-581-44.73.21

IND-243 122 Bareilly

India

OBAFEMI AWOLOWO UNIVERSITY Emmanuel Sonaiya

Department of Animal Science Tel.: +234-36-23.02.90 Ile-Ife Fax: +234-36-23.13.20

Nigeria E-mail: fsonaiya@oauife.edu.ng

UNIVERSIDAD TECNICA DE ORURO C. Fausto Choque and O. Iñíguez

Casilla 49 Tel.: +591-52.616.45 Oruro Fax: +591-52.422.15

Bolivia

Period: February 1993 to July 1997

THERMOCHEMICAL UPGRADING OF BIOMASSES TO GASEOUS AND LIQUID FUELS AND FEEDSTOCKS

Co-ordinator: European Centre for Coal Specimens SBN, Eygelshoven, The Netherlands (A.M.H. Van Der Veen)

Objectives

- The project aimed to investigate the development of technologies for the thermochemical conversion of biomass for energy production in developing countries with a positive effect on the environment.
- ♦ The conversion of biomass was investigated into two directions: (hydro)pyrolysis/hydrocracking and gasification.

Activities

- * Preparation of samples from feed materials, catalysts, and substrates and long term storage of the various samples for future research
- * Characterization of feed materials, intermediates and final products
- * Hydropyrolysis / hydrocracking experiments Atmospheric fluidized bed gasification experiments
- * Fluidized bed pyrolysis experiments.

The experiments were carried out with wood residues and residues from sugar cane. Several catalysts were tested during the course of the project.

The characterization of the solid materials included chemical composition, SEM analyses, and surface area determinations. Liquid products were analyzed by means of GC-MS, UV-fluorescence spectroscopy, and size exclusion chromatography.

Expected outcome

The project provided the scientific community with well-characterized samples of biomass feedstocks and catalysts for the upgrading of these feedstocks. The engineering experiments led to an improvement of existing techniques for the thermochemical upgrading of these feedstocks into different directions (gasification, pyrolysis, and hydropyrolysis). These improvements will lead to a more efficient use of biomass feedstocks for long-term power generation and for use as transport fuel. This kind of technology is of special interest to developing countries, since they do not have to import (expensive) fossil fuels for their energy consumption.

Partners

EUROPEAN CENTRE FOR COAL SPECIMENS SBN A.M.H. Van Der Veen

Rimburgerweg 2 Tel.: +31-455-35.20.11 NL-6471 Eygelshoven Fax: +31-455-46.56.53

The Netherlands

IMPERIAL COLLEGE OF SCIENCE Rafael Kandiyoti

TECHNOLOGY AND MEDICINEDept. of Chemical Engineering and Chemical Technology

Tel.: +44-171-589.51.11
Fax: +44-171-584.11.70

Prince Consort Road UK-SW7 2BY London United Kingdom

UNIVERSIDAD DE CONCEPCION Alfredo L. Gordon

Departamento de Ingeniería Química Tel.: +56-41-23.49.85 - Ext. 2534

Casilla 53-C, Correo 3 Fax: +56-41-24.02.80

Concepción Chile

UNIVERSITY OF ALEXANDRIA Mohamed Y Bakr
Faculty of Science Tel.: +20-3-545.45.35
Alexandria Fax: +20-3-595.05.20

Egypt

Period: July 1992 to June 1995

DEVELOPMENT OF AN INTEGRATED SYSTEM TO CONTROL BEAN DISEASES IN TROPICAL AND SUBTROPICAL REGIONS

Co-ordinator: Universität Hannover, Hanover, Germany (Bernhard Hau)

Objectives

- ♦ Establish single and multiple disease-loss relationships for field situations and quantify the effects of control measures on disease progression.
- ◆ Design a system for integrated control of the following bean diseases: bean rust (*Uromyces appendiculatus*), angular leaf spot (*Phaeoisariopsis griseola*), anthracnose (*Colletotrichum lindemuthianum*), Fusarium yellows (*Fusarium oxysporum* f. sp. *phaseoli*), Rhizoctonia root rot (*Rhizoctonia solani*), and bean golden mosaic (GMV).

Activities

- * Field experiments with leaf diseases in Piracicaba and Viçosa (Brazil), and in Hanover (Germany).
- * Microplot experiments with soil-borne diseases in Córdoba (Spain), in order to determine inoculum density and disease incidence relationships.
- * Growth chamber experiments for leaf diseases in Piracicaba in order to determine monocyclic disease parameters, and for soil-borne diseases in Córdoba, to investigate the effects of temperature on disease development for single and multiple diseases.
- * Construction of computer models for single diseases and for disease complexes including their effects on the growth and yield of beans, carried out in Hanover (Germany).

Results

- ⇒ For reliable disease assessment, diagrammatic scales were developed for bean rust, angular leaf spot, anthracnose and bean golden mosaic. In all field experiments, disease parameters, like the area under disease progress curve, were not, or only weakly, correlated with yield parameters. The diseases did not only reduce the photosynthetic active leaf area by their lesions, but affected the growth of the bean plant by dropping diseased leaves (angular leaf spot) or reducing further plant growth (bean rust). Therefore, host parameters reflecting these effects, for instance the leaf area index duration, were more closely related to yield and yield loss.
- ⇒ Under controlled conditions, monocyclic parameters of the fungal diseases were determined and used, to model the disease dynamics. Monocyclic parameters of pathogens can be altered if other diseases interfere, as shown for the effects of a preinfection by the bean line-pattern mosaic virus on the parameters of *U. appendiculatus* and *P. griseola*. Interactions between diseases were also observed in microplot experiments in Spain, in which *F. oxysporum* and *R. solani* showed antagonistic effects.
- ⇒ Based on the experimental results, a coupled model was developed, that can describe host and disease development simultaneously. For bean rust and angular leaf spot, host area

- and the initial part of the disease progress curves can be simulated satisfactorily, but the decline of diseases due to removals of leaves has to be improved.
- ⇒ For the application of an integrated system, methods were tested with a view to facilitating the assessment of host and disease parameters, for instance by estimating disease severity with a modified disease incidence or by assessing host area with a multiple linear equation based on the number of leaves and the mean disease severity.

Selected publications

Amorim L., Berger R.D., Bergamin Filho A., Hau B., Weber G.E., Bacchi L.M.A., Vale F.X.R., Silva M.B. 1995. A simulation model to describe epidemics of rust of Phaseolus beans. II. Validation. Phytopathology. **85**: 722-727.

Bergamin Filho A., Carneiro S.M.T.P.G., Godoy C.V., Amorim L., Berger R.D., and Hau B. 1997. Angular leaf spot of Phaseolus beans: relationships between disease, healthy leaf area, and yield. Phytopathology. 87: 506-515.

Berger R.D., Hau B., Weber G.E., Bacchi L.M.A., Bergamin Filho A., and Amorim L. 1995. A simulation model to describe epidemics of rust of Phaseolus beans. I. Development of the model and sensitivity analysis. Phytopathology. **85**: 715-721.

Godoy C.V., Carneiro S.M.T.P.G., Iamauti M.T., Dalla Pria M., Amorim L., Berger R.D., and Bergamin Filho A. 1997. Diagrammatic scales for bean diseases: development and validation. Journal of Plant Diseases and Protection. 104: 336-345.

Hau B. and Schuld P. 1997. Estimation of disease severity using redefined disease incidence. pp. 271-274 in: Diagnosis and Identification of Plant Pathogens (Dehne, H.-W. et al., eds.), Kluwer, Dordrecht.

Partners

UNIVERSITAET HANNOVER

Institut für Pflanzenkrankheiten und Pflanzenschutz

Herrenhaeuserstrasse 2 D-30419 Hannover

Germany

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

Instituto de Agricultura Sostenible Apartado de Correos 4084

E-14080 Córdoba

Spain

UNIVERSIDADE DE SAO PAULO

Escola Superior "Luiz deQueiroz" Departamento de Fitopatología

Avenida Padua Días 11 BR-13418-900 Piracicaba-SP

Brazil

UNIVERSIDADE FEDERAL DE VICOSA

Departamento de Fitopatología

Campus UFV

BR-36571-000 VICOSA - MG

Brazil

Bernhard Hau

Tel.: +49-511-762.35.03 Fax: +49-511-762.30.15

E-mail: bernhard.hau@mbox.ipp.uni-

hannover.de

Rafael M. Jímenez Díaz Tel.: +34-57-499.222 Fax: +34-57-499.252

E-mail: ag1jidir@lucano.uco.es

Armanda Bergamín Filho Tel.: +55-194-29.42.67 Fax: +55-194-34.48.39

E-mail: abergami@carpa.ciagri.usp.br

Francisco X. R. Do Vale Tel.: +55-31-899.26.20 Fax: +55-31-899.22.40 E-mail: dovale@mail.ufv.br

Period: March 1993 to August 1997

BIOCONTROL OF DAMAGING ROOT-KNOT NEMATODE (MELOIDOGYNE SPP.) PESTS OF STAPLE FOOD AND CASH CROPS BY INDUCING SUPPRESSIVE SOILS WITH THE BACTERIAL PARASITE PASTEURIA PENETRANS

Co-ordinator: Scottish Crop Research Institute, Dundee, United Kingdom (David Trudgill)

Objectives

- ♦ Determine the distribution/importance of root-knot nematodes (RKN) in selected tropical countries and levels of parasitism with *P. penetrans*.
- ◆ Test effects of crop rotation on levels of parasitism of RKN with *P. penetrans*.
- Examine methods of managing RKN and effects on yields of susceptible crops.
- Investigate factors involved in the specificity and effectiveness of *P. penetrans*.

Results (in Ecuador)

- ⇒ 205 of 207 vegetable crops surveyed (10 plants/crop) were RKN infested. Average gall indices (on 1 to 10 scale) were 6.0 (Coastal region), 5.4 (Highland), and 4.8 (Orient), indicating 30 to 40% yield losses. Isozyme analyses (ORSTOM) showed 85% were *M. incognita*. Infection with *P. penetrans*. ranged from 52% in the Coastal region to only 9% in the Highlands. *P. penetrans* occurred in all soil types.
- ⇒ In a micro-plot trial on RKN infested soil, an exotic *P. penetrans* (from NRI) was added to soil already containing a low indigenous population of *P. penetrans*. After six cropping cycles, gall indices had been significantly decreased from a mean of 8.5 to 5.1, parasitism of RKN juveniles had been increased from 22% to 97% and yields of tomato increased by 32%. In a rotational field trial, *P. penetrans* integrated with groundnuts gave higher tomato yields, in the fifth cropping cycle, than maize or beans.
- ⇒ The existence of a very serious and widespread RKN problem was demonstrated on vegetable crops in Ecuador: It is likely that the introduction of small amounts of an exotic isolate greatly increased the pathogenicity of the local isolate of *P. penetrans*, but this needs to be confirmed and developed as part of an integrated strategy involving appropriate resistant cultivars and non-host crops (e.g. ground nuts).

Selected publications

Trivino C. 1996. The occurrence of *Pasteuria penetrans* infecting root-knot nematodes (*Meloidogyne* spp.) in vegetable fields in Ecuador and its potential role in nematode management. Ph. D. Thesis, *University of Reading*. 250 pp.

Blok V.C., Phillips M. S., McNicol J. W. & Fargette M. 1997. Genetic variation in tropical *Meloidogyne* spp. as shown by RAPDs. *Fundamental and Applied Nematology.* **20**, 127-134.

Giannakou I. O., Pembroke B., Gowen S. R. & Davies K. G. 1997. Effects of long-term storage and above-normal temperatures on spore adhesion of *Pasteuria penetrans* and infection of root-knot nematode *Meloidogyne javanica*. *Nematologica*. **43**, 185-192.

Matielle T. Duponnois R. & Diop M. T. 1995. Influence of abiotic soil factors and the host-plant on the infection of phytonematodes of the genus *Meloidogyne* by the actinomycete parasitiod *Pasteuria penetrans*. *Agronomie*. 15, 581-591.

Blok V. C., Ehwaeti M., Fargette M., Kumar A., Phillips M. S. Robertson W. M. & Trudgill D. L. 1997. Evolution of resistance and virulence in relation to the management of nematodes with different biology, origins and reproductive strategies. Nematologica. 43, 1-13.

Partners

SCOTTISH CROP RESEARCH INSTITUTE David Trudgill

Tel.: +44-1382-56 27 31 Zoology Department Invergowrie, Dundee DD2 5DA Fax: +44-1382-56 24 26

United Kingdom

NATURAL RESOURCES INSTITUTE Gowen Simon

Tel.: +44-1634-800 88 Chatham Maritime, Central avenue ME4 4TB Chatham Fax: +44-1634-880 066

United Kingdom

ORSTOM Mireille Fargette

Dept. MAA UR3C Nematologie Tel.: +33-4-67 61 74 00 B.P. 5045 Fax: +33-4-67 54 78 00

F-34032 Montpellier

France

NATIONAL AGRICULTURAL RES. FOUNDATION Effie Vouyoukalou Institute of Subtropical Plants and Olive Trees Tel.: +30-821-571 42

Fax: +30-821-439 63 Agrokipio, Chania

Greece

IACR-ROTHAMSTED EXPERIMENTAL STATION Brian Kerry

Lawes Agricultural Trust Tel.: ++44-1582-76 31 33 AL5 AJQ Harpenden Fax: ++44-1582-76 09 81

United Kingdom

CARIBBEAN AGRICULTURAL RES. AND DEV. Gordon Muller Tel.: +809-645 12 06 **University Campus** Fax: +809-645 12 08 St. Augustine

Trinidad

INST. NAC. DE INVESTIGACIONES AGROPECUARIAS Carmen Travino

P.O. Box 2600 Tel.: +593-2-52 86 50 Ouito Fax: +593-2-50 42 40

Ecuador

LAB. DE RECH. DE LA PROTECTION DES VEGETAUX Abdoussalam Sawadogo

B.P. 403 Tel.: 226-98 03 73

Bobo-Dioulasso

Burkina Faso

MINISTERE DE L'AGRICULTURE A. Daudi

Bvumbwe Research Station

Byumbwe Malawi

RESEARCH AND TRAINING INSTITUTE TUMBI

Joseph Madulu P.O. Box 306 Tel.: +255-61 24 31

Tabora Tanzania

Period: January 1993 to December 1995

DEFINITION AND CONDITIONS OF USE OF FIELD IMMUNODIAGNOSTICS FOR PARASITIC DISEASES PREVAILING IN EXTENSIVELY BRED CATTLE

Co-ordinator: Institut National de la Recherche Agronomique, Monnaie (Nouzilly), France (Chantal Boulard)

Objectives

- ♦ Characterise antigens for an early diagnosis of five endoparasites of ruminants: Fasciola hepatica, Hypoderma bovis, Gasterophilus sp., Oestrus ovis and Dictyocaulus viviparus.
- Produce this or these antigens as pure as possible to develop kits of immunodiagnosis.
- Set up a field immuno-test.
- Start an immuno-epidemiological survey of each of these parasites.

Activities

- * Definition of the antigenic pattern of each parasite, using sequential sampling of sera, following experimental monoinfestation, by western blotting. Analysis of antigenic community between these parasites.
- * Characterisation of the kinetic of the antibodies during a natural infestation and effect of a chimiotherapeutic treatment on this kinetic will be studied by ELISA.
- ★ Liquid chromatography, monoclonal antibodies or molecular biology were used to produce the protein.
- * Antigen concentration, serum dilution and condition of use of the other reagents were determined.
- * In order to use these field tests in optimal conditions, monthly blood samplings were carried out during the first two years of the programme, to determine the ideal period to start an immuno epidemiological survey of each disease.
- * In the last year of the programme, a large epidemiological survey was carried out, with the developed test, by each participating group.

Expected outcome

The results of this project are expected to lead to the knowledge of the prevalence of the different endoparasites studied in our countries. This will help in starting and evaluating the efficiency of control programme to improve animal production.

Selected publications

Boulard C., Villejoubert C. and Moire N. 1996. Cross-reactive, stage-specific antigens in the *Oestridae* family. Vet. Res. 27:535-544.

Benakhla A., Boulard C., Sedraoui S., Oussaid F. 1993. L'hypodermose bovine: approche épidémiologique et caractérisation du cycle biologique en vue de l'établissement d'un plan de prophylaxie dans le nord-est algérien. Revue de Méd. Vét. 144: 8-9, 693-700.

Sampaio Silva M.L., Correia Da Costa J.M., Viana Da Costa A.M., Pires M.A., Lopes S.A. Castro A.M. and Monjour L. 1996. Antigenic components of excretory-secretory products of adult Fasciola hepatica recognized in human infections. Am. J. Trop. Med. Hyg. 54(2): 146-148.

Selected Partners

INSTITUT NATIONAL DE LA RECHERCHE Chantal Boulard Tel.: +33-47.42.77.57 **AGRONOMIOUE** Fax: +33-47.42.77.74

Station de Pathologie Aviaire et de Parasitologie

Centre de Recherches de Tours-Nouzilly

F-37380 Monnaie (Nouzilly)

France

ECOLE NATIONALE VETERINAIRE Alain Chauvin

Service de Parasitologie Tel.: +33-40.68.77.00 **Maladies Parasitaires** Fax: +33-40.68.77.78

Case Postale 3013 F-44087 Nantes

France

ECOLE NATIONALE VETERINAIRE Fifi Oussaid

Laboratoire de Parasitologie Tel.: +213-2-76.67.81

Avenue Pasteur

BP 161

16200 El-Harrach (Alger)

Algérie

UNIVERSIDAD DE SANTIAGO DE COMPOSTELA Pablo Diez-Banos

Facultad Veterinaria Tel.: +34-82-252361 Parasitología y Enfermedades Parasitarias Fax: +34-82-252195

Avenida de Madrid 81 E-27002 Lugo

Spain

INSTITUTO NACIONAL DE INVESTIGACIONES Froulan Ibarra Velarde

FORESTALES Y AGROPECUARIAS Tel.: +52-73-19.02.02 - Ext. 192860

División Trematodiasis CENID Fax: +52-73-20.43.62 Laabo. Parasitología Veterinaria

Carretera Federal Cuernavaca KM 11.5

Cuautla 62500

Cuernavaca, Estado de Morelos

Mexico

INSTITUTO NACIONAL DE SAUDE Maria Sampaio Silva

Depto. de Parasitología Tel.: +351-2-57.15.09 P-4000 Porto Fax: +351-2-200.53.23

Portugal

Period: April 1993 to March 1996

ESTUDIOS BIOQUÍMICOS E HISTOLÓGICOS DE LOS CEFALÓPODOS RELACIONADOS CON LA APLICACIÓN DE TECNOLOGÍAS CONVENCIONALES Y NUEVAS Y CON EL CONTROL DE CALIDAD

Co-ordinator: Consejo Superior de Investigaciones Científicas, Madrid, Spain (Antonio Moral Rama)

Objetivos

- ♦ Contribuir al conocimiento bioquímico e histológico de los cefalópodos de interés comercial en sus distintas fases de desarrollo gonadal.
- ♦ En base a la caracterización de las especies estudiadas, conseguir la aplicación correcta del frío y de otras tecnologías a bordo y en tierra, y elaboración de productos convencionales de alta calidad y nuevos de alto valor añadido para el comercio interior o para la exportación.
- ♦ Estudiar nuevos índices de calidad basados en la evolución de los componentes bioquímicos y en las posibles modificaciones histológicas cuando se apliquen las diferentes tecnologías y durante la conservación.
- Disponer en puerto de una materia prima diversificada de alta calidad, mejorar la elaboración de productos convencionales e incrementar el desarrollo de nuevos productos en base a las tecnologías menos contaminantes.
- Optimizar el empleo de las tecnologías convencionales y desarrollar, si es posible, nuevos equipos para la manipulación, el tratamiento, la conservación y presentación comercial de los productos acabados.
- ♦ Disponer de un grupo amplio de investigadores para conseguir una metodología común de optimización de los distintos procedimientos de conservación y elaboración de productos.

Actividades

Las actividades de este proyecto están concebidas en base a conseguir una posible mejora del particular comportamiento de muchos cefalópodos de uso reciente en alimentación humana, frescos/ refrigerados o congelados, cuando se aplican los procedimientos de utilización convencionales. Sistemáticamente se aprecian fenómenos de retracción, dureza (elasticidad) y a veces sabores extraños del manto.

Para tratar de solucionar estos problemas se realizarán las siguientes tareas:

- * Caracterización histológica, anatómica y fisiológica durante el ciclo biológico: tejido conectivo, muscular, edad, estado de madurez gonadal, índice de condición y alimentación.
- * Caracterización de los componentes bioquímicos e histológicos de las especies objeto de estudio, durante el ciclo biológico. Especialmente de los compuestos nitrogenados. En la fracción nitrogenada no protéica se estudiarán los aminoácidos libres, oxido de trimetilamina, betaínas, nucleotidos, compuestos guanidinicos (octopina, argiminfosfato) y ácidos propioácetico y diprapionico. En la fracción protéica, las proteínas miofibriles, proteínas sarcoplásmicas y con especial atención las proteínas del tejido conectivo por la intervención en los fenómenos de retracción y dureza del músculo. En las tres fracciones protéicas se medirán propiedades funcionales (solubilidad, capacidad de emulsión, hidrofobicidad y módulo de elasticidad de los geles). También se aplicaran técnicas elecroforéticas y de calorimetría diferencial de barrido.
- ★ En base a los resultados de los estudios de caracterización reseñados se procederá a la aplicación de las tecnologías convencionales y nuevas que se consideren más adecuadas.
- * Se seleccionarán los componentes bioquímicos más idóneos en base a las modificaciones que sufran durante el tratamiento y conservacíon de las especies objeto de estudio para utilizarlas como índices

de calidad objetivos. Las especies seleccionadas para estos estudios han sido: Illex coindeti, y Eledone cirrhosa (España); Illex argentinus (Argentina) y Dosidicus gigas (Chile).

* Resultados esperados

- ⇒ En base a los estudios de caracterización, fisiológicos y de los componentes químicos y bioquímicos se espera poder, en cada caso, aplicar la tecnología más adecuada para obtener materia prima de alta calidad que permita el desarrollo de productos de alto valor añadido.
- ⇒ Disponer de técnicas objetivas específicas para el control de calidad de los cefalópodos.
- ⇒ En base a los estudios histológicos / anatómicos se espera disponer de datos para el diseño de equipos de manipulación y aplicación correcta de ciertas tecnologías. Establecer una colaboración permanente entre los distintos grupos investigadores que participan así como con otros que puedan estar interesados en el tema.

Partners

CONSEJO SUPERIOR DE INVESTIGACIONES **CIENTIFICAS**

Instituto del Frío Ciudad Univeristaria E-28040 Madrid

Spain

CONSEJO SUPERIOR DE INVESTIGACIONES **CIENTIFICAS**

Instituto de Investigaciones Marinas Eduardo Cabello 6 E-36208 Vigo

Spain

CIRAD - SAR

Div. Génie & Technologie Alimentaires Avenue du Val de Montferrand B.P. 5035

F-34032 Montpellier

France

INSTITUTO NACIONAL DE TECNOLOGIA **INDUSTRIAL (INTI)**

Centro de Inivestigación de Teconología Pesquera

División Bioquímica Aplicada Marcelo T. de Alvear 1168 7600 Mar del Plata

Argentina

UNIVERSIDAD DE SANTIAGO DE CHILE CENTRO DE ESTUDIOS EN CIENCIA Y TECNOLOGIA DE LOS ALIMENTOS (CECTA)

Avenida Bernardo O'Higgins 3363

Santiago de Chile

Chile

Antonio Moral-Rama

Tel.: +34-1-544.56.07 Fax: +34-1-549.36.27

Guerra Sierra Angel Tel.: +34-86-23.19.30 Fax: +34-86-29.27.62

Stéphane Guilbert

Tel.: +33-67.61.55.36 Fax: +33-67.41.40.15

Marcos Crupkin

Tel.: +54-23-80.37.94/28.01 Fax: +54-23-80.37.94

Claudio Romo

Tel.: +56-2-681.13.81 Fax: +56-2-681.21.08

Period: November 1992 to December 1995

ADDING VALUE TO PRODUCTS, BY-PRODUCTS AND WASTE FROM SMALL-AND MEDIUM-SIZED CASSAVA-PROCESSING INDUSTRIES IN LATIN AMERICA

Co-ordinator: CIRAD-AMIS, Montpellier, France (Dany Griffon)

Objectives

Develop the small- and medium-sized cassava-processing sector by:

- increasing the added value of processing
- designing, developing and marketing high-quality products
- reducing the impact of processing industries on the environment.

Activities and results

Research focused on five areas:

Area 1

Raw materials, processing methods, and quality of cassava meal and starches:

Determining the influence of technological parameters on product quality; bread-making testing by including up to 20% cassava meal; testing for new expansion and panification functional properties of cassava starch by fermentation and sun-drying;, improvement of traditional processes and equipment; development of new equipment (hydrocyclone) ensuring reduced consumption and recycling of extraction water.

Area 2 - Processing of solid and liquid waste

Testing of several pilot anaerobic residual-water processes, and recommendations with regard to their use in the socio-economic environment of local small-size starch-extraction industries in Colombia; determining the advantages of the use of horizontal-flow land-reactors; use of methane fermentation for starch-effluent cleaning; ability to enhance cassava meal and fibrous residue by using them with *Tricosporon* yeast as substrates in the production of aromas; possible recovery of proteins and of A and C vitamins from cassava leaves by osmotic dehydration.

Area 3 - Bioconversion of cassava meals and starches

Adding proteins to meals by Fermentation in Solid Environment, through *Rhizopus* fungus action; using these meals for bread-making (up to 20% mixed with wheat flour); bioconversion of meals through amylolytic lactic bacteria (*Lactobacillus Plantarum* A6, alone or in association with *Lactobacillus lactis*), and formulation of new amylaceous lactic drinks like liquid yoghurt.

Area 4 - Improvement of the functional properties of cassava meals and starches

Producing starch hydrolysates on a pilot scale and obtaining concentrated maltose syrup (50-55%), with a 20 l/h/m2 flow; designing and locally implementing a mono-screw extruder, and elaborating new formulations for cassava-based pre-cooked extruded meals, using maltodextrines in the preparation of light processed-meat products with a calorie value reduced by 11-12 %; microwave processing of cassava starch, with a view to obtaining physical by-products analogous to the fats used in food industries.

Dany Griffon and Nadine Zakhia

Tel.: +33-4-67.61.57.07

Fax: +33-4-67-61-44-55

Susana V. De Fabrizio

Tel.: +54-1-781-05-29

Fax: +54-1-331-32-72

E-mail: dany.griffon@cirad.fr

Area 5 - Market studies for new cassava by-products.

Presentation, in the form of case studies, of the traditional "farinha", sweet and fermented starches, chips for animal feed, and flours for bread-making industries; highlighting the various constraints linked to supply, to production and processing costs, to the organization of marketing, to demand fluctuation, and to quality perception by consumers.

Selected publications

Rojas O., Farinet J., Alazard D. 1996. Traitement anaérobique des eaux résiduaires de la petite et moyenne industrie d'extraction d'amidon de manioc. SFM Colloquium: "Microbiologie industrielle et Environnement. 17-20 April -Narbonne France.

Giraud E., Champailler A., Raimbault M. 1994. Degradation of raw starch by a wild amylolytic strain of lactobacillus plantarum. Appl. Microbiol.,vol 60 (12) 4319-4323.

García V. 1996. Transitions thermiques de l'amidon de manioc en milieu peu hydraté. Doctoral thesis, Institut National Agronomique Paris-Grignon, 169p.

Gaouar O. 1995. Etude d'un réacteur continu à membrane d'ultrafiltration pour la conversion enzymatique de l'amidon de manioc en sirop de glucose. Doctoral thesis, Université de Montpellier II, 171p.

Vilpoux O., Cereda M.P. 1995. Caracterização das fecularias no Brazil, CERAT-UNESP, Botucatu, Brazil.

Partners

CIRAD-AMELIORATION DES METHODES POUR L'INNOVATION SCIENTIFIQUE

Av. Agropolis
B.P. 5035
E. 24022 Mantrallian Codes

F-34032 Montpellier Cedex 1

France

UNIVERSIDAD DE BUENOS AIRES - FCE Y N.

Laboratorio de Microbiología de Alimentos Ciudad Universitaria - Pabellón II-Piso 3

1428 Buenos Aires

Argentina

NATURAL RESOURCES INSTITUTE

June Wenham

Chatham Maritime, Central Avenue Tel.: +44-1634-88-00-88 UK-ME4 4TB Chatham Fax : +44-1634-88-00-66

Kent

United Kingdom

ORSTOM Maurice Raimbault and D. Alazard

Laboratoire de Biotechnologie Tel.: +33-4-67-61-75-83
Boîte Postale 5045 Fax: +33-4-67-54-78-00

F-34032 Montpellier

France

CENTRO INTER. DE AGRICULTURA TROPICAL Guy Henry

Apartado Aereo 6713 Tel.: +57-2-330-72-85
Cali Fax : +57-2-339-72-64

Colombia

UNIVERSIDADE ESTADUAL PAULISTA. Marney Pascoli Cereda and G. Chuzel

Faculdade de Ciencias Agronómicas

Tel.: +55-149-22-33-88

Grupo de Trabalho em Tecnología, Fazenda Experim. Lageado

Fax: +55-149-22-34-38

Caixa Postal 237 - Campus de Botucatu

18600 Lageado

Brazil

CIRAD - DEPARTEMENT CULTURES ANNUELLES Francis Forest

Programme Climat Plantes Production

Tel.: +33-4-67-61-56-41

Boîte postale 5035

Fax: +33-4-67-61-71-60

E-mail: forest@cirad.fr

France

Period: February 1993 to January 1997

INTEGRATION DE STRATEGIES D'AMELIORATION DE LA RESISTANCE DU RIZ À LA PYRICULARIOSE (MAGNAPORTHE GRISEA) DANS LES NOUVEAUX PROGRAMMES DE CREATION VARIETALE

Co-ordinator: CIRAD – CA, Montpellier 1, France (Jean-Loup Notteghem)

Objectifs

- ♦ Connaître la structure et la fonction de gènes de pathogénie de *M. grisea* agent de la pyriculariose du riz.
- ◆ Connaître l'expression de la résistance partielle chez des plants de riz hybrides Fl hétérozygotes.
- ♦ Dnner des stratégies d'obtention de cultivars de riz hybrides F1 pourvus d'une résistance stable à la pyriculariose;
- Obtenir des formules de riz hybrides pourvues d'une résistance durable à la pyriculariose.

Activités

- * L'analyse de gènes de pathogénie de *M. grisea* sera conduite par le CIRAD-CA et l'UPS Orsay en plusieurs étapes. La première année permettra la caractérisation de 4 gènes d'avirulence identifiés dans le croisement GUY11 X 2/0/3. La cartographie moléculaire des gènes sera réalisée la première année et affinée la seconde. Le travail de clonage des gènes sera commencé la première année et poursuivi les années suivantes. L'analyse de leur fonction et la recherche de nouvelles stratégies de création de cultivars résistants sera conduite les troisième et quatrième années.
- * L'analyse de l'expression des gènes contrôlant des composantes de la résistance partielle sera conduite par le CIRAD-CA, l'IDESSA et le CNPAF au cours des première et deuxième années. Puis la résistance de cultivars Fl expérimentaux sera testée en vraie grandeur. Dans le même temps la résistance des lignées candidates à l'élaboration d'hybrides F1, sera analysée. Les meilleures formules de riz hybrides résistants seront définies au cours de la quatrième année.

Résultats attendus

- ⇒ On aura cloné des gènes d'avirulence de *M. grisea*, analysé leurs séquences et leurs fonctions et tenté de définir de nouvelles stratégies de création de cultivars résistants.
- ⇒ On connaîtra le niveau d'expression des composantes de la résistance à la pyriculariose, des lignées de riz modifiées par l'introduction de gènes de stérilité génocytoplasmiques et des lignées restauratrices. On connaîtra également le niveau d'expression des composantes de la résistance des cultivars de riz hybrides Fl. Des cultivars résistants Fl pourront être proposés.
- ⇒ Le CIRAD-CA, l'IDESSA et le CNPAF seront en mesure de proposer des hybrides F1 résistants à la pyriculariose. On évitera ainsi un emploi accru de fongicides pour les cultivars F1 destinés à une culture intensive.

Publications choisies

Dioh W., Tharreau D., Gómez R., Roumen E., Orbach M.J., Notteghem J.L., Lebrun M.H. 1995. Mapping avirulence genes in the rice blast fungus, *Magnaporthe grisea*. In: Rice Genetics III: 916-920.

Notteghem J.L. 1993. Durable resistance to rice blast disease. In: Durability of disease resistance. T. Jacobs and J.E. Parlevliett. Kluwers Academic Publishers, Dordrecht, Nederland, 125-134.

Tharreau D., Lebrun M.H. and Notteghem J.L. 1997. Mutations affecting pertihecium development and asexual sporulation in *Magnaporthe grisea*. Fungal Genetica and Biology. **21**: 206-213.

Partners

CIRAD - CA
Unité de Recherche de Phytopathologie et Malherbologie

BP 5035

Jean-Loup Notteghem
Tel.: +33-67.61.55.44
Fax: +33-67.61.56.03

F-34032 Montpellier 1

France

INSTITUTO SUPERIOR DE AGRONOMIA SECCAO Jorge Francisco Pinto Ganhao AUTONOMA DE SANIDADE E PATOLOGIA Tel.: +351-1-363.81.61 Fax: +351-1-363.50.31

Tapada da Ajuda P-1399 Lisboa Codex

Portugal

UNIVERSITE DE PARIS-SUD

Institut de Génétique & Microbiologie

Division Cryptogamie

Marc-Henri Lebrun

Tel.: +33-1-69.41.70.06

Fax: +33-1-69.41.72.96

Bâtiment 400 F-91405 Orsay

France

EMPRESA BRASILEIRA DE PESQUISA

Pedro Antonio Arraes Pereira

 AGROPECUARIA
 Tel.: +55-62-261.30.22

 Caixa Postal 179
 Fax: +55-62-261.38.80

74000 Golania Goias

Brazil

INSTITUT DES SAVANESMichel Vales

Département Cultures Vivrières Tel.: +225-63.31.26 Laboratoire de Phytopathologie Fax: +225-63.20.45

BP 633 Bouake **Côte d'Ivoire**

Period: October 1992 to September 1996

BIOSYSTEMATIC INVESTIGATIONS OF THE (SUB)TROPICAL TUBER-BEARING LEGUME GENUS PACHYRIZMUS (YAM BEANS), WITH SPECIAL REFERENCE TO THE DEVELOPMENT OF HIGH PERFORMANCE VARIETIES

Co-ordinator: Royal Veterinary and Agricultural University, Frederiksberg C, Copenhagen, Denmark (Marten Sørensen)

Objectives

- To create interspecific hybrids and analyze their compatibility and performance.
- ♦ To evaluate the agronomic adaptability of cultivars, landraces, wild material and interspecific hybrids under different climatic conditions: tropical and Mediterranean.
- ◆ To study the environmental impact of yam bean production under different edafic and cultivation conditions.
- To examine the practical insecticidal uses of the rotenone content of the seeds.
- To clarify producer/consumer acceptability and the potential marketability.

Results

The project has succeeded in developing high yielding, early and photothermally neutral varieties of yam bean with good pest and disease resistance. Furthermore, the selected varieties have been demonstrated to have a high efficient biological nitrogen fixation, thus ensuring a high level of sustainability for farmers in developing countries. In addition, field trials in Portugal have led to the identification of a new and attractive tuber crop for cultivation in the Mediterranean region. Finally, the analyses of rotenone levels have led to the identification of multiple-purpose varieties.

Selected publications

Ørting B., Grüneberg W.J. and Sørensen M. 1996. Ahipa (*Pachyrhizus ahipa* (Wedd. Parodi) in Bolivia – genetic resources and crop evolution. **43**: 435-446.

Sørensen M 1996. Yam bean (*Pachyrhizus* DC). Promoting the conservation and use of underutilized and neglected crops. 2 (Heller J. series ed.). Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute. Rome. Pp. 1-141.

Sørensen M, Døygaard S., Estrella E. J., Kvist L.P. and Nielsen P.E. 1997. Status of the South American tuberous legume *Pachyrhizus tuberosus* (Lam.) Spreng. – Biodiversity and Conservation. **6,12**: 1581-1625.

Sørensen M, Grüneberg W.J. and Ørting B. 1998. Genetic resources of ahipa (*Pachyrhizus ahipa* (Wedd.) Parodi). In: Hermann M. and Heller J. (eds.). Andean roots and tubers. Promoting the conservation and use of underutilized and neglected crops. 21 – Institute of Plant Genetics and Crop Plant Research. Gatersleben/ International Plant Genetic Resources Institute. Rome. Pp. 13-73.

Sørensen M, Estrella E. J., Hamann O.J., and Ríos Ruiz (eds.). 1998. Proceedings of 2nd International Symposium in Tuberous Legumes. Celaya. Gto. Mexico 5-8 August 1996. Jordbrugsforlaget, Copenhagen. 545 pp.

Partners

ROYAL VETERIN. AND AGRICULT. UNIVERSITY

Botanical Section, Dept. of Botany, Dendrology, and Forest

Genetics

Rolighedsvej 21

DK-1958 Frederiksberg C (Copenhagen)

Denmark

UNIVERSITE PARIS 7 'DENIS DIDEROT'

Centre de Recherche de Botanique

Lab. Biochimie et Physiologie de l'Adaptation Végétale

Case 7019 2 Place Jussieu F-75251 Paris 05

France

UNIVERSITE NATIONALE DU BENIN,

Faculté des Sciences Agronomiques,

Laboratoire de Biologie Végétale Appliquée

BP 526 Cotonou **République du Benin**

CENTRE D'ETUDE REG. POUR L'AMELIOR. DE L'ADAPTATION A LA SECHERESSE (CERAAS)

B.P. 3320 Thiès Escale

Thiès Senegal

MINISTRY OF AGRICULTURE AND FORESTRY

Research Division Vaini Research Station P.O. Box 14, Nuku'alofa

Tonga

INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS (INIFAP)

Secr. de Agric. y Recursos Hidraulicos Campo Experimental Bajío, CIRCE,

Apdo. Postal 112, C.P. 38000 Celaya, Gto.,

Mexico

CENTRO AGRONOMICO TROPICAL DE INVESTIGACION Y ENSENANZA (CATIE)

Unidad Biodiversidad y Sistemas de Producción

Apdo. 7170 Turrialba

Costa Rica

INSTITUTO NACIONAL DE INVESTIGACIONES AGROPECUARIAS (INIAP)

Departamento Nacional de Recursos Fitogenéticos y

Biotecnología (DENAREF)

Estación Experimental Santa Catalina

Casilla 17-01-340, Quito

Ecuador

UNIVERSIDAD TECNICA DE ESMERALDAS "LUIS

VARGAS TORRES"

Jardín Tropical

Casilla 08-01-0173, Esmeraldas

Ecuador

Marten Sørensen

Tel.: +45-35-28.28.15 Fax: +45-35-28.28.21 E-mail: MS@kvl.dk

Yasmine Zuily

Tel.: +33-1-44.27.60.69 Fax: +33-1-40.51.71.08 E-mail: zuily@ccr.jussieu.fr

D.F. Adjahossou, Fax: +229-35.06.32

E-mail: adjahoss@syfed-bj.bj.refer.org

H. Roy-Macauley Fax: +221-51.50.03

E-mail: ceraas@syfed.refer.sn

V.T. Manu Fax: +676-24.271

M.C. A. Heredia Z.

E-mail: cebaj@cirpac.inifap.conacyt.mx

Fax: +52-461-15.431

A. Q. Mora

E-mail: amora@catie.ac.cr Fax: +506-556.1533

R. Castillo

Fax: +593-2-690.991 E-mail: rcastil@ecnet.ec

A. Arévalo T.

Fax: +593-6-726.446

Period: October 1992 to September 1995

BIOLOGICAL MANAGEMENT OF IRRIGATION CHANNEL WEED PROBLEMS IN IRRIGATED SEMI-ARID AGRICULTURE

Co-ordinator: Institute for Infrastr. Hydraulic & Environmental Engineering, Delft, The Netherlands (M.J.M. Hootsmans)

Objectives

- Produce a model of the interactions between water quality (especially turbidity) and submerged weed growth in irrigation/drainage channels in Argentina, which will be of practical value in aiding management decisions relating to weed management.
- Develop innovative channel management regimes for the target irrigation systems, integrating biological control measures based on the use of fish, and other management options.
- Transfer and implement the new technology in the target area.

Activities

- * Assessment of the present status of aquatic weed problems and fish populations in the two target irrigation areas. To this end, inventories were made on the distribution and abundance of fish and weeds, water chemistry, and light regime.
- ▶ Provision of input and test data permitting the adaptation, calibration and validation of an existing model for simulating macrophyte growth, and development in relation to environmental parameters (mainly light regime- in the target channels. The main aim was to predict the likely effects of changing light availability due to altered sediment loadings on macrophyte growth.
- * Experimental trials using common carp (*Cyprinus carpio*) and grass carp (*Ctenopharyngodon idella*). Assessment of the effectiveness of treatments both as knock-down impact and longer-term effects on weed propagule bank size.
- * Technology transfer phase: staff training (MSc, PhD levels). Implementation of results in a demonstration set-up, using the assistance of local organisations for irrigation and agricultural extension. Production of a video document, and access to the modelling package to support management decisions.
- * Research was carried out in Argentina, the UK and The Netherlands. All field experiments were performed in Argentina. Laboratory experiments were also performed in the Netherlands and in the UK. Results from field and laboratory experiments, together with data from field surveys were used to successfully adapt the present macrophyte growth model SAGA1, developed at IHE Delft (The Netherlands).

Results

⇒ On the basis of field and laboratory experiments, and guided by model predictions based on detailed knowledge of weed life cycles, it was concluded that manipulation of the already existing common carp populations appears very promising in combination with

less frequent mowing operations. In this way, the use of herbicides can be limited, if not excluded completely. Grass carp could be exploited also.

- ⇒ Four functional vegetation types were identified: two groups, differing in dominant species, were found to be well adapted for disturbance tolerance, while being more vulnerable to higher stress pressures. A third group was found in slightly less disturbed sites, with moderate stress due to salinity, turbidity, or drought. A last group consisted of species that are quite tolerant to high saline-stress conditions.
- ⇒ The nuisance vegetation types present in the systems targeted by this study are reasonably representative of those found in many such systems world-wide. The recommendations resulting from this study should therefore at least be suitable as the basis for suggesting appropriate fish-based sustainable management measures for controlling aquatic weeds in other semi-arid irrigated areas, both in Argentina and elsewhere in the world.
- ⇒ The proposed new approach in itself should lead to more environmental awareness at the level of local staff involved in the actual management. This can have an important effect on areas more remote from the actual irrigation scheme.

Selected publications

Dell'Armellina A.A., Bezic C.R. and Gajardo O.A. 1996. Propagation and mechanical control of Potamogeton illinoensis morong in irrigation canals in Argentina. J. Aquat. Plant Manage. 34:12-16.

Hootsmans M.J.M., Santamaría L. and Vermaat J.E. 1995. How to survive in darkness? Photosynthetic and other solutions provided by three submerged aquatic macrophytes (*Potamogeton pectinatus L., Ruppia drepanensis Tineo* and *Zostera noltii Hornem.* Wat. Sci. Tech. 32:49-51.

Hootsmans M.J.M., Drovandi A.A., Soto Perez N. and Wiegman F. 1996. Photosynthetic plasticity in *Potamogeton pectinatus L.* from Argentina: strategies to survive adverse light conditions. Hydrobiologia. **340**:1-5.

Sabbatini M.R., Murphy K.J. and Irigoyen J.H. 1998. Vegetation-environment relationships in irrigation channel systems of southern Argentina. Aquat. Bot. 60:129-133.

Sidorkewicj N.S., López Cazorla A.C.; and Fernández O.A. 1996. The interaction between Cyprinus carpio L. and Potamogeton pectinatus L. under aquarium conditions. Hydrobiología. **340**:271-275.

Partners

INTERNATIONAL INSTITUTE FOR INFRASTRUCTURAL HYDRAULIC AND ENVIRONMENTAL ENGINEERING

P.O. Box 3015 NL-2601 DA Delft The Netherlands

CENTRO DE RECURSOS NATURALES RENOVABLES

CC 738 8000 Bahía Blanca **Argentina**

UNIVERSITY OF READING
Aquatic Biology Research Unit
78 Elmhurst Road
GB-RG1 5HY Reading
England

Michiel J.M. Hootsmans Tel.: +31-15-215 17 89 Fax: +31-15-212 29 21 E-mail: mih@ihe.nl

Osvaldo A. Fernández Tel.: +54-91-347 75 Fax: +54-91-278 76

Jeremy Domaniewsky Tel.: +44-1734-69 27 85 Fax: +44-1734-31 01 80

Period: December 1992 to November 1995

CONSERVATION AND REGENERATION OF SOIL FERTILITY IN TROPICAL AGRICULTURAL SYSTEMS BY THE MANIPULATION OF EARTHWORM COMMUNITIES (MACROFAUNA PROJECT - SECOND PHASE)

Co-ordinator: IRD (ex-ORSTOM de Bondy, Bondy, France (Patrick Lavelle)

Objectives

- ♦ Continue the development and experimentation of techniques to improve plant production and preserve or restore soil fertility through the introduction of selected earthworm species.
- Extend the experiment at the real scale of a farmer's plot and check for social acceptability and economic feasibility.
- ♦ Consolidate the integration and formation of an international group of research able to face the increasing need for research in tropical soil biology.

Activities

- * Development of databases of earthworm species and communities to allow a better knowledge of the existing fauna.
- * Basic ecological studies of species with large environmental tolerance and/or extended distribution
- * Effects of selected earthworm species on soil processes at different scales of time and space.
- * Experimentation of earthworm introduction at the real scale of a farmer's plot at Yurimaguas (Peruvian Amazonia.
- * Application to the regeneration of degraded soils in intensive tea plantations in India and degraded vertisols submitted to intensive market gardening in Martinique.
- * Description and quantification of the socio-economic value of earthworms in low-input agricultural systems.

Results

- ⇒ The research will produce a catalogue of earthworm species that could be used to improve fertility of cultivated soils. Characteristics of soil and microclimate suitable for each species, their demographic parameters and short-term effects on mineralization of organic N and P from the soil will be indicated.
- ⇒ The effects of selected species on different plants, in different soil types will be assessed in standardized conditions to help choose the most efficient earthworm species in any condition.
- ⇒ Finally, large-scale manipulation of earthworm populations will be tested at a real scale and the economic validity of this technique will be assessed. At the end of the research period it will be possible to either propose management options to improve plant production and soil conservation through the direct or indirect manipulation of earthworm communities, or abandon these options if they prove inefficient or impractical.

Selected publications

Lavelle P., Martin A., Blanchart E., Gilot C., Melendez G. and Pashanasi B. 1991. Conservation de la fertilité des sols de savane par la gestion de l'activité de la macrofaune du sol. Savanes d'Afrique: terres fertiles. ed. Ch. Pieri et al. CIRAD/Ministère de la Coopération et du Développement. Paris. pp. 371-397.

Lavelle P., Gilot C., Fragoso C. and Pashanasi B. 1994. Soil fauna and sustainable land use in the humid tropics. Soil resilience and sustainable land use. Ed. I. Szabolcs & D. Greenland. CAB International., Wallingford, UK. Pp. 291-308

Pashanasi B. and Lavelle P. 1991. Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Advances in management and conservation of soil fauna (ed. G.K. Veeresh, D. Rajagopal & C.A. Viraktamath, Oxford & IBH publishing Co. Pvt. Ltd. New Delhi. Pp. 291-298.

Senapati B., Panigrahi R. and Lavelle P. 1994. Macrofaunal status and restauration strategy in degraded soil under intensive tea cultivation in India. Transactions of 15th World Congress of Soil Science. **Vol. 4a**. pp. 64-75. ISSS Acapulco, Mexico.

Partners

CENTRE IRD (EX-ORSTOM) DE BONDY Patrick Lavelle

Laboratoire d'Ecologie des Sols Tropicaux

Tel.:+33-1-48- 02 55 01

32 avenue Henri Varagnat

Fax: +33-1-48- 47 30 88

F-93143 Bondy e-mail: lavelle@bondy.Orstom.fr

France

 ORSTOM
 Alain Albrecht

 B.P. 8006
 Tel.: +596-63 06 09

 F. 07350 F. 1.1 F.
 1.506.71.73 16

F-97259 Fort-de-France Fax: +596-71 73 16

France

UNIVERSIDAD COMPLUTENSE DE MADRID Ana Moreno

Facultad de Biología Tel.:+34-1-549 13 97
Departamento de Biología Animal Fax: +34-1-543 83 45

Isaac Peral E-28040 Madrid

Spain

INSTITUTO DE ECOLOGIA A.C. Isabelle Barois Boullard Apartado Postal 63 Tel.: +52-28-18 60 00

MEX-9100 Xalapa, Ver. Fax: +52-28-18 69 10

Mexico

NORTH CAROLINA STATE UNIVERSITY Beto Pashanasi

Misión Universidad Carolina del Norte

Tel.: +51-1-475 04 10

Javier Prado Este 1894

Fax: +51-1-475 90 16

San Borja P.O. Box 248

Lima **Perú**

UNIVERSITE NATIONALE DU RWANDA Jean Kanyonyo Ka Kajondo

Campus Universitaire de Butare Tel.: +250-30 272 B.P. 117 Fax: +250-30 858

Butare

Rwanda

Partners (cont'd)

SAMBALPUR UNVIERSITY

School of Life Sciences Ecology Section TH 715 IND-768019 Jyoti Vihar

India

WAGENINGEN AGRICULTURAL UNIVERSITY

Dept. of Soil Science and Geology P.O. Box 37 NL-6700 AA Wagenigen

The Netherlands

Bikram Senapati Tel.: +91-663-82 309 Fax: 91-663-20 000

Lijbert Brussaard Tel.: +31-317-48 24 34

Fax: +31-317-48 24 19

Period: March 1993 to February 1996

ORGANISATION OF INFORMATION SYSTEMS ON PRODUCTION INPUTS, CATCHES AND CHARACTERISTICS OF SMALL-SCALE FISHERY IN ECUADOR

Co-ordinator: Scottish Office, Aberdeen, Scotland, United Kingdom (Robin Cook)

Objectives

- Establishment of an information system of data collection and management for the catch and fishing effort in the Artisanal fishery, with national coverage.
- Estimation of maximum sustainable yield for the fisheries of large demersal and pelagic fish exploited by the Artisanal fishing fleet.
- ♦ Identification of the Artisanal fishing community and analysis of its technical and socio-economic characteristics.

Activities

- * A new questionnaire will be designed to be used by technical staff for interviews with fishermen at their landing sites along the Ecuadorian coast.
- * The technical staff will visit the landing sites at the time of landing and ask the fishermen about their catch. Details of the catch will be recorded, or if this is not possible, estimates will be made.
- * Simultaneously with compiling information about catch and fishing effort, covering the vessels and fishing gear used, there will be studies of the Artisanal fishing communities. These studies will collect additional data on:
 - demographic aspects inhabitants, families, homes
 - services schools, cultural facilities, health, transport, waste disposal
 - infrastructure social organisations, commercial and cultural activities, cooperatives, quality of life

Expected outcome

The socio-economic data collected from community studies and interviews with fishermen will be analysed along with biological data on the catch, fishing effort and production inputs. When a sufficiently good database has been established, standard methods for assessing fish stocks will be applied to indicate trends in stock sizes and the optimum level of fishing effort. This kind of information is essential background for fishery management actions aimed at the development of the Artisanal fishery sector.

Selected publications

Declich F., King D., and Montano R. (eds.) 1996. Las comunidades pesqueras artesanales en la costa ecuadoriana : un enfoque multidisciplinario. Memorias del seminario de clausura del proyecto STD3, Gyauaquil.

Partners

AGRICULTURE & FISHERIES DEPARTMENT

Scottish Office Marine Laboratory Victoria Road P.O. Box 101 UK-AB9 8DB Aberdeen

United Kingdom

INSTITUTO NACIONAL DE PESCA

Letamendi 102 y la Ría Guyaquil

Ecuador

COMITATO INTERNAZIONALE PER LO SVILUPPO DEI POPULI

Marziale 47 I-00136 Roma

Italy

Robin Cook

Tel.: +44-1224-87.65.44 Fax: +44-1224-29.55.11

Segundo Miguel Coello Cisneros

Tel.: +593-4-40.17.76 Fax: +593-4-40.23.04

Carlo Tassara

Tel.: +39-06-374.14.90 Fax: +39-06-325.07.51

Period: February 1993 to January 1996

A PROJECT TO SIGNIFICANTLY IMPROVE THE HANDLING AND PROCESSING OF SMALL PELAGIC FISH FOR AQUACULTURE AND FOOD USE

Co-ordinator: Danish Institute for Fisheries Technology and Aquaculture, Hirtshals, Denmark (Tom Nielsen)

Objectives

- Improve handling of large catches of small fish at sea.
- Improve the curing and other food processing of small fish.
- Improve and diversify the processing of surplus fish and offal for salmon feeding.

Activities

- **★** Develop methods for improving the quality of small fish chilled by using ice and sea water in insulated containers.
- * Study the effect of using carbon dioxide in the designed containers on the quality, yield and storage life of the fish.
- **★** Develop methods for using brine salting of the small fish in the designed containers.
- * Compare the traditional anchovy salting with the container salting.
- * Use the new container salting to develop marinated products from herring and sardines and an intermediate moisture product of scad.
- * Study the use of food grade acid and alkali in addition to salt in order to accelerate the fish sauce preparation.
- **★** Use the new container system and CO₂ treatment on fish for fish meal production.
- **★** Develop fish silage from surplus fish and fish offal for salmon feeding.
- * Arrange workshops / seminars in Chile and Peru for dissemination of the results.
- * During the first year the catch handling by using insulated containers and carbon dioxide will be improved. The second year the final container will be designed and used for pre-salting and marinating the fish. The third year the final development of marinated products and fish sauce will be carried out, and test productions of fish meal and fish silage for feed will take place.

Expected outcome

The work detailed in the proposal is expected to lead to improved handling and processing of small pelagic fish for human consumption and a better use of the waste for a good quality of fish meal or fish silage for fish feeding.

Tom Nielsen

Rogelio Pozo Carro

Partners

DANISH INSTITUTE FOR FISHERIES

TECHNOLOGY AND AQUACULTURE - DIFTAThe North Sea Centre

Tel.: +45-98.94.43.00
Fax: +45-98.94.22.26

DK-9850 Hirtshals

Denmark

INSTITUTO DE INVEST. Y TECNOL. PARA LA OCEANOGR., PESCA, Y ALIMENT.

OCEANOGR., PESCA, Y ALIMENT.

Isla de Txatxarramendi
E-48395 Pedernales

Tel.: +34-46-87.07.00
Fax: +34-46-87.00.06

Spain

FUNDACION CHILE Pablo Herrera

Casilla 773 Tel.: +56-2-218.52.11 Santiago Fax: +56-2-242.69.00

Chile

Period: November 1992 to October 1995

DEVELOPMENT OF NOVEL SYSTEMS FOR PLANT PROTECTION AGAINST FUNGAL INFECTION THROUGH GENETIC ENGINEERING OF PLANTS AND MYCOPARASITIC FUNGI

Co-ordinator: Rijksuniversiteit Gent, Ghent, Belgium (Marc van Montagu)

Objectives

- ♦ Analysis of the potential inhibitory effect of fungal cell wall degrading enzymes from plants (Nicotiana plumbaginifolia) and fungi (Trichoderma harzianum).
- ◆ Transformation of both plants and Trichoderma with the engineered genes encoding the studied enzymes.
- Evaluation of transgenic plants for resistance to fungal pathogens and of transgenic Trichoderma for mycoparasitic activity.
- ♦ Improvement of biocontrol activity of Trichoderma by mutagenesis and changed growth conditions.

Activities

- * Characterization of hydrolytic enzymes in Nicotiana plumbaginifolia (β-1,3-glucanases, chitinases,...) and Trichoderma harzianum (β-1,3-glucanases, β-1,6-glucanases, chitinases, proteases,...).
- * Isolation of Trichoderma strains genetically improved for biocontrol (more adaptable to the environment).
- * Construction of chimeric genes, encoding the studied hydrolytic enzymes, and transformation of tomato plants and Trichoderma harzianum.
- * Evaluation of transgenic organisms on improved characteristics.
- * Optimization of the production and application conditions of the Trichoderma spores.

Expected outcome

The project considers the development of novel strategies to control plant diseases caused by fungi, both at the level of the plant (introducing improved antifungal genes) as at the level of a mycoparasitic fungus Trichoderma, which is already being used as a natural biocontroler. This will lead to increased crop yields, which is important from commercial, nutritional and environmental (reduced need of pesticides) points of view.

Marc van Montagu

Alfredo Herrera-Estrella

Carmen Castresana

José Antonio Pintor-Toro

Partners

RIJKSUNIVERSITEIT GENT

Laboratorium voor Genetica Tel.: +32-9-264.51.70/71 K.L. Ledeganckstraat 35 Fax: +32-9-264.53.49

B-9000 Gent

Belgium

CENTRO DE INVESTIGACION Y ESTUDIOS

AVANZADOS Tel.: +52-46-25.15.41 Apartado Postal 629 Fax: +52-46-25.12.82

Irapuato, Guanajuato **Mexico**

CONSEJO SUPERIOR DE INVESTIGACIONES

CIENTIFICAS Tel.: +34-1-561.18.00 Centro de Investigaciones Biológicas Fax: +34-1-562.75.18

Velázquez 144 E-28006 Madrid

Spain

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

CIENTIFICAS Tel.: +34-54-62.47.11 Instituto de Recursos Naturales y Agrobiología Fax: +34-54-62.40.02

Avenida Reina Mercedes

E-41018 Sevilla

Spain

50

Period: January 1993 to December 1996

THE SUSTAINED AGRICULTURAL DEVELOPMENT OF TROPICAL WETLANDS IN SOUTH AMERICA AND AFRICA

Co-ordinator: Dublin University, Dublin, Ireland (Michael Jones)

Objectives

- ♦ Develop a programme for the sustained exploitation of two major freshwater wetland systems in the tropics. These are the floating grass swamps dominated by *Echinochloa polystachya* in Amazonia and the *Cyperus papyrus* swamps of east and central Africa.
- Quantify the role of the wetland systems as carbon sinks by determining the amounts of carbon in the different components of the systems and the cycling of carbon between the atmosphere, the water and these components.
- Produce a mechanistic simulation model of the carbon balance of the wetland systems, and to use this to predict how management practice will alter the carbon balance of the community in the future.

Activities

- * Organise a workshop in Essex to establish the methodology for carbon balance measurements;
- * Determine the carbon balance of the *E. polystachya* ecosystem in the Amazon basin and investigate how its removal alters the carbon balance of the region;
- * Determine the carbon balance of papyrus-dominated swamps in Africa and the effect of harvesting the aerial vegetation on the carbon balance;
- * Organise a workshop in Dublin to review with The Biocomposite Centre, Bangor the utilisation of emergent vegetation;
- * Determine the extent to which *E. polystachya* may be utilised as an animal feed and provide a sustainable source of fodder;
- * Determine how the papyrus vegetation can be utilised when harvested regularly.

Expected outcome

The work outlined in this proposal is expected to show how tropical wetlands can be exploited in a sustainable way. It will also help to quantify the contribution that these wetlands make to global carbon cycling and whether they are a significant carbon sink.

Partners

DUBLIN UNIVERSITY Michael Jones

School of Botany Tel.: +353-1-702.17.69 **Trinity College** Fax: +353-1-772.694

Dublin 2 Ireland

UNIVERSITY OF ESSEX Stephen Long

Tel.: +44-1206-87.33.12 Department of Biology Wivenhoe Park Fax: +44-1206-87.34.16

UK-CO4 3SO Colchester **United Kingdom**

MAX PLANCK INSTITUT FUER LIMNOLOGIE

Wolfgang Junk Tel.: +49-45-22.80.21 Working Group Tropical Ecology August-Thienemann-Strasse 2 Fax: +49-45-22.80.22.81

D-2320 Ploen Germany

INSTITUTO NACIONAL DE PESQUISAS DA Maria Teresa Fernández Piedade

AMAZONIA Tel.: +55-92-642.34.40 Laboratorio Projecto INPA/MAX-PLANCK Fax: +55-92-642.34.40

Alameda Cosme Ferreira 1756

69011 Manaus

Brazil

KENYATTA UNIVERSITY Francis Muthuri

Botany Department P.O. Box 43844

Nairobi

Kenya

Period: January 1994 to June 1997

CARBON ISOTOPE DISCRIMINATION OF LEAF AND STEM CARBOHYDRATES AS INDICATORS OF DROUGHT TOLERANCE

Co-ordinator: Consiglio Nazionale delle Ricerche, Porano, Italy (Enrico Brugnoli)

Objectives

- Determine the effects of drought, imposed at different stages of growth, on the carbon isotope composition of different plant parts and of carbohydrate pools of rice plants;
- ullet Assess intrinsic differences between rice cultivars in carbon isotope discrimination (Δ) in the presence and absence of drought, and relationships between Δ , water-use efficiency (WUE) and vield:
- Devise a screening test for early selection of genotypes with improved drought tolerance; breeding material, including parents, advanced lines and candidate cultivars.

Activities

- * Several field trials and controlled environment experiments were carried out. Field trials were conducted in Brazil over several years starting from 1992 to 1997, though the project was officially started in 1994. Controlled environment experiments were performed to investigate the effects of drought imposed at different developmental stages on productivity and Δ .
- * Other experiments were designed to study the effects of drought on panicle water loss, panicle and leaf water potential, abscisic acid (ABA) content and associated changes in spikelet fertility and in grain yield. Experiments were performed to test possible genetic variations in Δ, stomatal conductance, photosynthetic capacity and ABA content in upland rice. Carbon isotope composition of plant samples was determined by isotope ratio mass spectrometers.

Results

Our results demonstrate that Δ in stem carbohydrates is a useful indicator of drought tolerance in upland rice. The most relevant outcomes of the project can be summarised as follows.

- \Rightarrow Drought induced at flowering markedly reduced Δ of peduncle sugars extracted at the end of the drought period. Among treatments, peduncle sugar Δ was *positively* correlated spikelet fertility and grain yield. Among genotypes, the correlations between yield and spikelet fertility and \Box of peduncle carbohydrates under drought were *negative*.
- \Rightarrow Peduncle sugar Δ was correlated with relative growth rate and with WUE measured during flowering and early grain filling.
- \Rightarrow It has been demonstrated that Δ in leaf sugars allows to estimate mesophyll conductance (g_m) . In rice g_m showed a marked decrease between vegetative and grain filling stages. The decrease in g_m explains, at least partially, the ontogenetic decrease in Δ of the bulk biomass.
- ⇒ Measurements on intact or excised panicles showed that most (80%) of the panicle water loss is represented by cuticular transpiration. Evidence of genetic variation in panicle water loss was found, but such variation was not clearly associated with the ranking for drought susceptibility.

⇒ Application of ABA to rice plants can induce spikelet sterility, independent of variation in plant water status. Drought caused a marked increase in the endogenous ABA content associated to a decrease in spikelet fertility. Among genotypes, there was a *negative* correlation between leaf ABA concentration and spikelet fertility in fully irrigated controls, while this correlation was *positive* under drought. The drought-induced changes in ABA contents were correlated with changes in peduncle sugar Δ.

Publications

Brugnoli E., Scartazza A., Lauteri M., Monteverdi M.C., Máguas C. 1998. Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. In: H. Griffiths (Ed.) 'Stable isotopes: integration of biological, ecological and geochemical processes'. pp. 133-146, BIOS Scientific Publishers, Oxford.

Scartazza A., M. Lauteri, M.C. Guido and E. Brugnoli. 1998. Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Aust. J. Plant Physiol., in press

Pinheiro B. da S., Brugnoli E., Austin R.B., do Carmo M.P., Scartazza A., Hall M.A. 1997. Carbon isotope discrimination of upland rice as affected by drought during panicle emergence and flowering. Submitted.

Partners

CONSIGLIO NAZIONALE DELLE RICERCHE

Istitu per l'Agroselvicoltura Via Marconi 2 I-05010 Porano

Italy

EMPRESA BRASILEIRA DE PESQUISA AGROPECUARIA

Centro Nacional de Pesquisa de Arroz e Feijao

Lab. of Plant Physiology

P.O. Box 179

BR-74001-970 Goiania

Brazil

ROGER AUSTIN

Wingate Way 15 Trumpington

GB-CB2 2HD Cambridge

United Kingdom

UNIVERSITY OF CAMBRIDGE

Subdept. of Quaternary Research The Godwin Laboratory Free School Lane

GB-CB2 3RS Cambridge

United Kingdom

Enrico Brugnoli

Tel: +39-763-374 689 Fax: +39-763-374 330

E-mail: brugnoli@ias.tr.cnr.it

Beatriz Da Silveira Pinheiro Tel: +55-62-833 22 06 Fax: +55-62-833 21 00

E-mail: beatriz@cnpaf.embrapa.br

Roger Austin

Tel.: +44-1223-84 09 30 Fax: +44-1223-84 09 30

E-mail: r.b.austin@dial.pipex.com

Michael Hall

Tel: +44-1223-33 48 72 Fax: +44-1223-33 47 38

Period: January 1994 to December 1997

SUSTAINABLE DEVELOPMENT OF INTENSIVE AQUACULTURE IN THE ANDEAN-PATAGONIA REGION: ENVIRONMENTAL IMPACT AND AGRICULTURAL RE-UTILIZATION OF FISH-FARMING WASTES

Co-ordinator: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain (Ingrid Walter Ayneto)

Objectives

- ♦ Evaluate the environmental impact of intensive salmonid breeding and develop technologies to help sustain the productivity of the Andean-Patagonian ecosystems.
- ♦ Evaluate the agronomic value of fish farming wastes for crop production and reduce the use of artificial fertilizers.
- Evaluate cost-benefit of waste removal and reutilization as fertilizer.

Activities

- * Lake water (chemical and phytoplankton composition) and sediment (nutrient composition) monitoring in sites affected and unaffected by fish farming. Evaluation of the situation before (1992-1993) and after (1994-1997) the start of fish farming.
- * Measurement of phosphorus fluxes from contaminated and uncontaminated lake sediments under laboratory and field conditions (temperature- and light-controlled).
- * Reduction of the pollution load through waste extraction: a waste collector for fish farming in floating cages was designed and installed. Wastes were extracted through pumping systems.
- * Chemical and physico-chemical characterization of residues (fish farming wastes and biosolids) and soils (Andisols and xeric Mollisols).
- * Laboratory incubation to determine rates of N mineralization and P release.
- * Greenhouse trials with ryegrass, ornamentals, and seedlings of two native woody perennials.
- * Field trial with ryegrass in Andisols amended with collector fish-wastes and biosolids in order to compare different types of wastes available in the region.
- * Composting trials of biosolids and fish offal (viscera, skin, heads etc, of salmonids) with sawdust, woodshavings and yard trimmings as bulking agents.

Results

⇒ Water quality

A gradual increase in phytoplankton density and biomass (p<0.01) was observed in the area affected by the fish farm. The dominant species during the growing season were diatoms *Aulacoseira granulata* and *Rhizosolenia eriensis*. The global trophic level of the reservoir had not changed after fish farming establishment. Apparently, the main factor that favours such stability is the high rate of water renewal. The eutrophication effect is shown by the higher development of periphyton in the affected areas. The extraction of wastes removed 22-30% of the total P of the wastes. This efficiency could be further improved by adjusting the feeding system and the frequency of waste

pumping from the collector. This would significantly reduce the negative effects of intensive fish farming, and consequently, to increase the fish production volume.

⇒ Agricultural reutilization of fish farming wastes.

Organic residues show a high N and P amendatory value, allowing the transformation of a potential pollution problem into an agronomic resource. amendments, collector fish wastes and fish offal composts, behave as slow-release N fertilizers, reducing N losses by leaching. They also show higher and better quality P contents than biosolids, but rates should be tested carefully in low P-fixing soils to avoid excessive levels of extractable P. Due to their high amendatory value and the costs of waste collection and/or processing, their use should be encouraged in intensive crops, such as ornamentals and seedlings of woody perennials where they show promise.

Publications

Diaz M. and Pedrozo F. 1996. Nutrient limitation in Andean-Patagonian lakes at latitude 41 S. Archiv für Hydrobiologie. 138(1):123-135.

Baffico G. and Pedrozo F.L. 1996. Factors of growth controlling periphyton production in a temperate reservoir of Patagonia (Argentina) used for fishfarming, lakes and reservoirs: research and management. Lakes & Reservoirs: Res. & Manag. 2(3/4):243-249.

Mazzarino M.J.; Walter I.; Costa G., Laos F., Roselli L. and P. Satti. 1997. Plant response to fish farming wastes in volcanic soils. Journal of Environmental Quality 26: 522-528.

Mazzarino M.J.; Laos F., Satti P. and Moyano S. 1998. Agronomic and environmental aspects of utilization of organic residues in soils of the Andean-Patagonian Region. Soil Science and Plant Nutrition 44:105-113.

Laos F.; Mazzarino M.J.; Walter I. and L. Roselli. 1998. Composting of fish waste with wood by-products, and testing compost quality as a soil amendment: Experiences in the Patagonia Region of Argentina. Compost Science & Utilization 6:59-66.

Partners

INSTITUTO NACIONAL DE INVESTICACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA

Dept. Producción y Tecnología de Alimentos Apartado de Correos 8111

E-28080 Madrid Espaga

Spain

UNIVERSIDAD NACIONAL DEL COMAHUE

Centro Universitario de Bariloche

Depto Agricultura

Apartado de Correos 1336

8400 San Carlos de Bariloche

Argentina

UNIVERSITY OF STERLING

Institute of Aquaculture

UK-FK9 4LA Stirling

United Kingdom

Ingrid Walter Ayneto

Tel.: +34-913 47 67 38 Fax: +34-913 57 22 93

E-mail: walter@inia.es

Fernando Pedrozo

Tel.: +54-944-233 74

Fax: +54-944-221 11

Liam Kelly

Tel.: +44-1786-47 31 71

Fax: +44-1786 47 21 33

Period: December 1993 to November 1995

EVALUATION AND MOLECULAR BASES OF LOW COST POSTHARVEST TECHNOLOGIES

Co-ordinator: Instituto del Frío, Madrid, Spain (Carmen Merodio)

Objectives

Analysis of the effect of low-cost postharvest technologies (short-term high CO₂ levels and ethylene removal) on maintaining post-harvest quality of several tropical and subtropical fruits during storage at low temperatures. These technologies offer the advantage of: low investments and reduced exploitation costs, making their use very suitable for developing countries.

Activities and results

<u>Cherimoya (Annona cherimola Mill.) cv. "Fino de Jete"</u>: Pretreatment with 20% CO₂ and 20% O₂ for 3 days had a long residual effect at low temperature and improved storage life by

- * reducing the senescence-like responses,
- * slowing fruit softening,
- * inhibiting ethylene production and promoting free spermidine and spermine accumulation and a direct effect on the activation of defence responses to low temperature stress.

Cherimoya (Annona cherimola Mill.) cv. "Concha Lisa". This variety can be stored for up to 37 days at 8° C if receiving a pretreatment with 20% CO₂ levels combined with the use of ethylene absorbent (KMnO₄-impregnated carrier) at a dose of 3.5g/Kg fruit. CO₂ diffusion in cherimoya fruit under these conditions has been characterized. The applied Fick's diffusion model allows very good predictions for CO₂ penetration.

Lulo (Solanum quitoenses L.). We have found out that the most evident damage caused by storage of lulo fruit at chilling temperature was significantly reduced if receiving a treatment of 15% CO₂-2% O₂ for 32 hours. Electrophoretic analysis revealed the accumulation of new polypeptides of high molecular weight in treated fruits. Treatment with CO₂ lowered ethylene production and modified the pattern of sugars and malic acid accumulation in both peel and pulp tissues. Ethylene removal technology improved storage life period (14 days), by preventing fruit softening and weight loss, and maintaining its outstanding eating quality.

<u>Pitahaya (Acanthocereus pitajaya)</u>. Pitahaya fruit stored at 2°C showed chilling injury symptoms while at 5°C no evident damage was observed. No ethylene production was detected during the pitahaya ripening period. In order to overcome damage caused by storage at 2°C, a thermal pretreatment was applied. Regarding witnesses, pretreatment at 25°C previous to storage at 2°C was a useful technology for yellow pitahaya fruit.

Avocado (*Persea americana* Mill.) cv. "Fuerte". Results of hybridization of selected cDNA probes to mRNA from avocado indicated that high CO2 treatment (20%) enhanced changes in gene expression. A clear relationship between softening and increase in the levels of mRNAs encoding for PG and cellulase (Cx) was found. PG and Cx mRNA expression was induced by relative very low increases in ethylene production. The decline in flesh firmness in concordance with the increases in PG and Cx was faster in CO2-treated avocado fruit. Our results confirmed that the action of the ACC oxidase (ACO) was post-transcriptionally regulated. Four novel cDNAs initially screened for differential expression during low temperature or CO₂ treatment were isolated from the avocado cDNA library and sequenced.

Selected publications

Camargo C, Restrepo P, Castro Urueña S and Valbuena Tovar N. 1995. Estudio del comportamiento del lulo (Solanum quitoense L.) a bajas temperaturas y la influencia de choques térmicos sobre los daños pro frío. Fruticultura Profesional. **68**: 56-62.

Del Cura B., Escribano M.I., Zamorano J.P. and Merodio C. 1996. High carbon dioxide delays postharvest changes in RuBPCase and polygalacturonase-related protein in cherimoya peel. Journal of American Society for Horticultural Science, 121 (4). 735-739.

Escribano M.I., Aguado P., Reguera M.R. and Merodio C. 1996. Conjugated polyamine levels and putrescine synthesis in cherimoya fruit during storage at different temperatures. Journal of Plant Physiology. **147**, 736-742.

Escribano M.I., Del Cura B., Muñoz M.T. and Merodio C. 1997. The effect of high CO₂ at low temperature on RuBPCase and polygalacturonase protein levels in cherimoya fruit. Journal of American Society for Horticultural Science. 122 (2): 258-262.

Muñoz M.T., Escribano M.I., and Merodio C. 1997. Ethanolic metabolism in cherimoya fruit during storage at ambient and under high CO₂ atmospheres. Journal of Horticultural Science. **72**: 363-370.

Partners

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

U.E.I. Refrig. de Prod. Vegetales Instituto del Frío Ciudad Universitaria E-28040 Madrid

Spain

UNIVERSITY OF NOTTINGHAM

Dept. of Physiology & Environmental Sciences Faculty of Agricultural and Food Sciences Suttone Bonington Campus

GB-LE12 5RD Loughborough **United Kingdom**

UNIVERSIDAD NACIONAL DE COLOMBIA

Proyecto Frutas Tropicals Departamento de Química AA 14490 Santa Fé de Bogotá

Colombia

UNIVERSIDAD AUSTRAL DE CHILE

Centro de Estudios en Ciencia y Tecnología de los

Alimentos

Avda Bernardo de Chile 3363

Santiago de Chile

Chile

Carmen Merodio

Tel.: +34-1-585 69 16 Fax: +34-1-549 36 27

Donald Griesson

Tel.: +44-115-951 63 33 Fax: +44-115-951 63 34

Crisólogo Camargo Hernández (retired)

replaced by:

Luz Patricia Restrepo Tel.: +57-1-269 91 83 Fax: +57-1-269 35 49

Claudio Romo

Tel.: +56-26-81 13 81 Fax: +56-26-81 21 08

Period: January 1994 to June 1997

IMPROVED CONTROL OF BEAN ANTHRACNOSE DISEASE IN LATIN AMERICA AND AFRICA THROUGH INCREASED UNDERSTANDING OF PATHOGEN DIVERSITY

Co-ordinator: Université de Paris-Sud, Orsay, France (Michel Dron)

Objectifs

Ce projet STD3 a pour but une gestion raisonnée de la résistance du haricot commun à l'anthracnose, maladie causée par le champignon *Collectotrichum lindemuthianum*. L'objectif est d'adapter les variétés résistantes de l'hôte à la variabilité du pathogène présent dans les zones de culture intensive du haricot. L'axe principal est à l'étude de la variabilité de *C. lindemuthianum* au point de vue pathologique et moléculaire.

Activités

1. Distribution, caractérisation et identification des isolats pathogènes

Les collectes seront effectuées par les partenaires du Costa Rica et de Tanzanie (zones où l'anthracnose sévit) dans des régions bien définies (position géographique, altitude, climat, plantes associées). Les isolats seront purifiés (cultures monospores), puis caractérisés selon des critères morphologiques, cytologiques et cytochimiques).

2. Analyse du pouvoir pathogène

La spécificité pathogène des isolats sera déterminée après infection d'une gamme différentielle de cultivars. La capacité des isolats à attaquer d'autres espèces de plantes sera également testée. Les différents types de processus infectieux seront étudiés. Une fois caractérisés, les isolats retenus seront conservés dans deux collections situées à LARS (UK) et UPS (France).

3. Analyse de la variabilité génétique du parasite

L'utilisation des méthodes moléculaires ci-dessous permettra de préciser l'importance de la variabilité entre les isolats de *C. lindemuthianum* et leurs relations avec les *Collectotrichum* d'autres espèces parasitant d'autres légumineuses :

- a) RAPD (Random Amplified Polymorphic DNA) permettant d'évaluer la diversité à l'échelle du génome);
- b) RFLP (Restriction Fragment Length Polymorphism) pour étudier la variabilité an niveau d'une région du génome qui n'est pas impliquée directement dans le pouvoir pathogène : le DNA ribosomique;
- c) séquençage de fragments particuliers des gènes ribosomiques (espaceurs internes transcrits, espaceur intergénique non transcrit) après amplification par PCR;
- d) établissement des caryotypes d'isolats sélectionnés en fonction de critères pathologiques et génétiques, après séparation des chromosomes par électrophorèse en champ pulsé.

Résultats attendus

Ces travaux devraient montrer si la variabilité génétique de *C. lindemuthianum* est similaire en Amérique Latine et en Afrique. Cette étude comparative apportera des informations sur la stabilité des gènes impliqués dans le pouvoir pathogène du champignon. Cette analyse permettra de formuler des hypothèses sur l'aptitude de *C. lindemuthianum* à surmonter les gènes de résistance du haricot, de mettre au point un système expérimental pour tester ces hypothèses et de proposer des stratégies pour une meilleure gestion des résistances du haricot à l'anthracnose.

Partners

UNIVERSITE DE PARIS-SUD Michel Dron

Labo. de Phytopathologie Moléculaire

Tel.: +33-1-6933.6382

Bâtiment 630

Fax: +33-1-6933.6424

15, Avenue G. Clémenceau F-91405 Orsay cedex

France

UNIVERSIDAD NACIONAL HEREDIA German Rivera Coto

Escuela de Ciencias Agrarias Tel.: +506-376.363 P.O. Box 86-3000 Fax: +506-381.585

Heredia Costa Rica

UNIVERSITY OF BRISTOL John Bailey

Dept. of Agricultural Sciences

Tel.: +44-1275-39.21.81

Long Ashton Research Station

Fax: +44-1275-39.40.07

Weston Road Long Ashton UK-BS18 9AF Bristol

UK-BS18 9AF Bristol
United Kingrom

UYOLE AGRICULTURAL RESEARCH CENTRE Frederika Mwalygo

Plant Protection Tel.: +255-65-3081 P.O. Box 400 Fax: +255-65-3087

Mbeya **Tanzania**

UNIVERSITY COLLEGE DUBLINDept. of Environmental Resource

Bryan Michael Cooke
Tel.: +353-1-706.7194

General Agriculture Fax: +353-1-283.7328

Agriculture Building Belfield 4 Dublin

Ireland

Period: May 1994 to April 1998

AMÉLIORATION GÉNÉTIQUE DE L'ADAPTATION À LA SÉCHERESSE DE L'ARACHIDE

Co-ordinator: Institut Sénégalais De Recherches Agricoles, Bambey, Sénégal (Amadou Ba)

Objectifs

L'objectif général est de créer et sélectionner de nouvelles variétés d'arachide adaptées aux conditions de sécheresse du Sahel, du Botswana et de l'Etat du Céara au Brésil.

Les étapes de ce travail sont les suivantes :

- ♦ Améliorer la compréhension des mécanismes physiologiques de la résistance à la sécheresse et notamment du maintien de la photosynthèse en condition de stress hydrique et augmenter la capacité de sélection par l'automatisation des tests physiologiques de sélection.
- ♦ Achever les sélections en cours de variétés à cycles très courts et de variétés physiologiquement adaptées à la sécheresse.
- ♦ Contribuer à mettre au point les itinéraires techniques adaptés aux différents systèmes de production pour les variétés créées.
- ♦ Mettre en relation l'effet de la sécheresse et le niveau de résistance à la contamination par Aspergillus flavus (champignon responsable de l'aflatoxine).

Activités

- * Création de variétés à cycle très court par back-crosses et sélection généalogique à partir de ces back-crosses. Le but est de transférer les allèles de précocité d'un géniteur de précocité de 75 jours, Chico, sur les deux variétés de 90 jours, 73-30 et 55-437, actuellement vulgarisées.
- * Obtention de variétés physiologiquement adaptées à la sécheresse par sélection récurrente. Une population initiale a été créée par croisements en pyramide entre huit génotypes choisis pour leur bon comportement lors des tests agronomiques et physiologiques. La sélection récurrente permet d'améliorer cette population à la fois sur les critères agronomiques et sur des critères physiologiques sans en diminuer la variabilité génétique. Cette population subira son troisième cycle sur le même principe et des sélections généalogiques seront réalisées à partir du deuxième cycle de sélection.
- * Recherche sur la physiologie de l'adaptation à la sécheresse. Actuellement trois types de tests physiologiques sont réalisés sur la population ci-dessus. Ces tests concernent le développement racinaire, la résistance des membranes protoplasmiques à la dessiccation et la transpiration. On cherchera à préciser le "coût physiologique" d'une fermeture précoce des stomates sur les échanges gazeux de la photosynthèse et à mettre au point le test de sélection correspondant au meilleur équilibre. Par ailleurs, on cherchera à améliorer l'efficience et la rapidité des tests existants par l'automatisation de certaines opérations.
- * Contribution à la mise au point des itinéraires techniques pour les nouvelles variétés par la réalisation d'essais en milieu paysan.
- * Etude de l'effet de la sécheresse sur la contamination par A. flavus et sur la composition en acides gras des graines. Les relations sont établies entre cette contamination et le stress hydrique de l'arachide en cours de culture d'une part, et entre la composition en acides gras et la sensibilité à l'aflatoxine d'autre part. On déterminera les interactions entre la résistance à la sécheresse et la résistance au champignon dans une gamme de variétés connues.

G.S. Maphanyane

Résultats attendus

- ⇒ Créer et vulgariser des variétés dont le cycle sera plus court que les variétés les plus hâtives actuellement vulgarisées et produisant au moins autant pour les régions dont le cycle de culture a été réduit au cours des vingt dernières années.
- ⇒ Créer et vulgariser des variétés capables de "supporter" un stress hydrique en cours de culture pour l'ensemble des régions à pluviométrie irrégulière.
- ⇒ Mettre à profit la compréhension des mécanismes physiologiques de la résistance à la sécheresse pour tenter d'éclairer ceux de la résistance à *A. flavus* en pré-récolte.

Partners

INSTITUT SENEGALAIS DE RECHERCHES Amadou Ba

AGRICOLES Tel.: +221-736050/6051 Centre National de Recherches Agronomiques Fax: +221-736052/6197

Sélection & Adaptation à la Sécheresse

B.P. 53 Bambey **Sénégal**

DEPARTMENT OF AGRICULTURAL RESEARCH

Division of Crops Research
Private Bag 0033

Tel.: +267-359.780
Fax: +267-375.204

Gaborone **Botswana**

UNIVERSIDADE FEDERAL DO CEARA Francisco José Alves Fernandes Tavora

 Centro de Ciencias Agrarias
 Tel.: +55-85-243.97.30

 Avenida Mister Hull 2977
 Fax: +55-85-243.84.42

60355-000 Fortaleza - Ceara

Brazil

INSTITUT D'ETUDES & RECHERCHES
AGRICOLES
Didier Balma
Tel.: +226-319.202

Programme Protéagineux Fax: +226-319.206 01 BP 476 Ouagadougou 01

Oouagadougou Burkina Faso

ESTACAO AGRONOMICA NACIONAL Maria do Ceu Matos

Quinta do Marques Tel.: +351-1-443.15.05 P-2780 Oeiras Fax: +351-1-442.08.67

Portugal

CIRAD - CA Robert Schilling

Programme Cultures Vivrières Paysannes Tel.: +33-67.61.56.44 BP 5035 Fax: +33-67.61.56.32

F-34032 Montpellier 1

France

Period: January 1994 to December 1996

DEVELOPMENT OF SELECTION AND CLONAL PROPAGATION TECHNIQUES FOR MULTIPLICATION OF ELITE YIELD AND ANTHRACNOSE TOLERANT CASHEW (ANACARDIUM OCCIDENTALE L.)

Co-ordinator: Centro de Investigação das Ferrugens do Cafeeiro – CIFC, Oeiras, Portugal (Carlos José Rodrígues Júnior)

Objectives

The increasing demand by international markets for cashew nut and cashew derivatives has brought together the expertise from Portugal, U.K., Brazil, Guinea-Bissau and Morocco with the following purposes:

- ♦ To expand cashew germplasm collection and develop propagation techniques required for the safe introduction of appropriate elite cashew germplasm (yield potential and if possible anthracnose tolerance) into Guinea-Bissau and Morocco.
- To increase general knowledge about clonal propagation techniques.
- To extend and strengthen research and training links between West African countries and Brazilian centres where traditional approaches to cashew breeding and selection are under way.

Conclusions

- ⇒ In its centre of origin (Brazil) and in producing countries (Guinea-Bissau, Tanzania,India) cashew shows a big biodiversity in potential yield, behaviour towards the main diseases (anthracnose and oidium), nut technological characteristics, etc.;
- ⇒ Cashew germplasm collections at UFAL (Brazil) and CIFC (Portugal) were increased with new genotypes (wild, semi-spontaneous and improved clones) from different geographic areas;
- ⇒ Greenhouse and field studies towards anthracnose resistance or tolerance showed different levels of attacks and yield potential, envisaging a future selection of some tolerant material;
- ⇒ In Guinea-Bissau 4 progeny fields were established with locally selected trees and some introductions that should be followed in the next years for subsequent selection;
- ⇒ Cashew was introduced in to Morocco and observations show good adaptation to the coastal strips located on the Atlantic Ocean (West) and Mediterranean Sea (North);
- ⇒ Conventional propagation techniques used in Brazil (side-grafting and budding) were introduced into Morocco and Guinea-Bissau but more systematic studies are necessary to optimise them in these countries;
- ⇒ The improvement of "in vitro" techniques and the study of several factors affecting its efficiency were carried out following different approaches: the micropropagation of juvenile and adult trees by apical and axillary node culture, micrografting, somatic embryogenesis and thin cell layer. Cashew propagation is possible in well defined "in vitro" conditions (namely node culture and micrografting) and the results obtained represented a big improvement in relation to the past. Neverthless, further experiments seem to be necessary to increase this knowledge as well as to optimise a protocol for a large scale production of this so recalcitrant crop;
- ⇒ Genetic fingerprinting studies by RAPD experiments showed that striking polymorphisms and reproducible and distinct differences were readily visible within accessions from Brazil, Mozambique and Guinea-Bissau and within a collection of 20 elite Tanzania clones. Despite the promising RAPD polymorphisms observed it is necessary to confirm the "transferability" of the techniques. Strategies for developing robust, reliable and non-random PCR-based markers for detecting and characterising DNA-level polymorphisms were presented;

⇒ A collection of *Colletotrichum gloeosporioides* was established with isolates from different cashew organs of the plant, from different geographic origins and from other tropical fruit species. Some morphocultural diversity regarding fungus growth rates in different media and temperatures was found. Pathogenicity tests on detached cashew leaves of one clone showed also different behaviour of the isolates in terms of lesion area produced. These results showed that cashew isolates of *Colletotrichum gloeosporioides* presented a certain diversity in terms of morphocultural characteristics and virulence. Further studies are needed to characterise better the fungus and the cashew/*Colletotrichum gloeosporioides* relationship.

Selected publications

Bessa A. M. S. & Sardinha R. M. A. 1994. *In vitro* cashew (*Anacardium occidentale* L.) propagation from callus culture. Abstracts of the VIIIth International Congress on Plant Tissue and Cell Culture. IAPTC. Firenze. Italy. 12-17 June 1994. p.23.

Bessa A. M. S. & Sardinha R. M. A. 1994. Propagação vegetativa do cajueiro (*Anacardium occidentale* L.) através da cultura *in vitro* de microestacas. Abstracts of XIII Congresso Brasileiro de Fruticultura 1:257-258.

Bessa A. M. S. & Sardinha R. M. A. 1994. Produção múltipla de rebentos de cajueiro (*Anacardium occidentale* L.) na base das microestacas *in vitro*. Abstracts of XIII Congresso Brasileiro de Fruticultura 1:259-260.

Bessa A. M. S. 1995. Propagação vegetativa *in vitro* do cajueiro (*Anacardium occidentale* L.). Abstracts of I^a Reunião Nacional da IPTC. 16-17 November 1995, Lisbon. Portugal.

BOGGETI B., JASIK, J. & MANTELL S. H. 1996. In vitro root formation in cashew (*Anacardium occidentale* L.). Abstract published in *Plant Physiol. Biochem.*, Special Issue, 10th Congress FESPP, Florence, Italy, September 1996, p.331.

Gemas V. J. V. & Bessa A. M. S. 1997. Sugar utilisation in cashew (*Anacardium occidentale* L.) nodal culture. Abstracts of the International Simposium on Biotechnology of Tropical and Subtropical Species. Brisbane. Queensland. Australia. The 29th September to the 3th of October 1997.

Various papers in: *International Cashew and Coconut Conference*. 17-21 February 1997. Dar Es Salaam. Tanzania. (In press).

Mneney E. E., Mantell S. H., Tsoktouridis G., Amin S., Bessa A. M. S. & Thangavelu M. 1997. RAPD-profiling of Tanzanian cashew. *Abstracts of papers and Posters of the International Cashew and Coconut Conference*. 17-21 February 1997. Dar es Salaam. Tanzania. p. 29-30.

Mulin M. 1995. Callus formation from thin cell layers of *Anacardium occidentale* L. *Silva Lusitana* 38 (2): 205-211.

Mulin M. & Pedroso M. C. 1995. *In vitro* response of thin cell layers of *Anacardium occidentale* L: A histological approach. Abstracts of IV° Congresso Luso-Espanhol de Fisiologia Vegetal. Estoril. Portugal. P.21. Muniz F., Castro N. R., Queiroz F. M., Lemos E. E. P., Barbosa G. V. S. 1996. Caracterização de isolados de *Colletotrichum gloeosporioides* (Penz.) Sacc. e resistência do cajueiro (*Anacardium occidentale* L.) ao patógeno. XIV Congresso Brasileiro de Fruticultura 20-25 October 1996. Curitiba. Paraná. Brazil. p.103. *Fitopatologia Brasileira*. (In press).

Partners

INSTITUTO DE INVESTIGAÇÃO CIENTIFICA TROPICAL - IICT

Centro de Investigação das Ferrugens do Cafeeiro - CIFC

Quinta do Marques

P-2780 Oeiras

Portugal

UNIVERSIDADE FEDERAL DE ALAGOAS (UFAL)

Dept. de Química

Laboratório de Pesquisas em Recursos Naturais (LPqRN)

Cidade Universitaria, Tabuleiro

57000 Maceio - AL

Brazil

Enrico Eduardo Pinto de Lemos

Carlos José Rodrígues Júnior Tel.: +351-1-442 33 23/441 35 91

Tel.: +55-82-324 12 38

Fax: +351-1-442 30 23

Fax: +55-82-324 13 45

MINISTERIO DO DESENVOLVIMENTO RURAL E

AGRICULTURA

Direcção Geral das Florestas e Caça (DGFC)

Caixa Postal 71 Guinea-Bissau

UNIVERSITÉ HASSAN II (IAV)

Département d'Horticulture, Institut Agronomique et Vétérinaire

Laboratoire de Biotechnologie Végétale

B.P. 6202 Rabat

Morocco

UNIVERSITY OF LONDON

Wye College Unit for Advanced Propagation Systems (UAPS)

Wye

TN25 5AH Ashford - Kent

United Kingdom

Cipriano Cassama

Tel.: +245-221 780 Fax: +245-221 071

Abdelhadi Abousalim

Tel.: +212-7-77 17 45

Fax: +212-7-77 58 38

Sinclair Mantell

Tel.: +44-1223-81 24 01 Fax: +44-1223-81 33 20

65

Period: March 1994 to February 1998

CLIMATOLOGICAL AND HYDROLOGICAL DETERMINANTS OF AGRICULTURAL PRODUCTION IN SOUTH-AMERICA REMOTE-SENSING AND NUMERICAL SIMULATION

Co-ordinator: Instituto Nacional Tecnología Agropecuaria, Castelar, Argentina (Cesar Manuel Rebella)

Objectives

The project started in March 1994 and its general objective was to establish a cooperative network in South America for monitoring the impact of climatic and hydrological conditions on agricultural production and increase the local capabilities and inter-relationships among institutions by means of exchanges of methodologies, results and training of their human resources in specific topics.

Particular objectives included:

- Guidelines adaptation of farming systems for varying climatic, hydrological and land use conditions.
- Evaluation of large areas of agricultural production.
- ♦ Development of methods to derive hydrological indicators with remote sensing measurements.
- Definition and development of pertinent data bases.
- ♦ Assessment of perceptions and preferences about remote sensing based techniques of officers involved in management of agricultural production.

Activities

- **★** Development of a regional cooperative network;
- **★** Generation of satellite data products;
- **★** Land use mapping;
- * Evaluation of agricultural and hydrological indicators by means of time series analysis of meteorological satellite data sets;
- **★** Land surface energy balance and evaporation mapping;
- * Evaluation of agrometeorology products;
- * Collection of agrometeorological, hydrological and statistical data and set up of a database.

Expected outcome

- ⇒ Periodic workshop meetings;
- ⇒ Variety of satellite products;
- ⇒ Land use maps of different areas and guidelines for cost effective use of satellite images;
- ⇒ Maps of climatic, hydrological and agricultural indicators based on time series analysis of satellite information;

Cesar Manuel Rebella

Tel.: +54-1-621.0125

José Zuluaga Tel.: +54-61-3825

Fax: +54-61-38251

Hilton Silveira Pinto

Fax: +54-1-481.3032/2360

- ⇒ ET algorithms applicable to different physiographic regions, maps of actual evapotranspiration;
- ⇒ Detailed design of agrometeorological information system, maps of potential agricultural production;
- ⇒ Guidelines for product improvement and targeted marketing;
- ⇒ Digital information system for agricultural planning.

Partners

INSTITUTO NACIONAL TECNOLOGIA AGROPEC.

Centro de Investigación en Recursos Naturales

Instituto de Clima y Agua

Los Reseros y las Cabanas S/N

CC. No 25 1712 Castelar

Argentina

INST. NAC. DE CIENCIA Y TECNICA HIDRICAS

Centro Regional Andino Bekgrano Oeste 210

Casilla de Correos 6 5500 Mendoza

Argentina

ORSTOM R. Bosseno

Servisio Nacional de Meteorología e Hidrología Tel.: +591-2-355824 Casilla de Correos 20996 Fax: +591-2-391854

9214 La az **Bolivia**

UNIVERSIDADE ESTADUAL DE CAMPINAS

Centro de Ensino e Pesquisa em Agricultura Tel.: +55-192-393669

Cidade Universitaria Zeferino Vaz Fax: +55-192-394717

P.O.Box 1170 13081 Campinas

Brazil

UNIVERSIDAD DE SANTIAGO DE CHILE Fernando Santibanez
Facultad de Ciencias Agrarias y Forestales Tel.: +56-254-12703

Laboratorio de Agroclimatología Fax: +56-254-17055

Santa Rosa 11315 Casilla de Correo 1004

Santiago Chile

UNIVERSIDAD DE VALENCIA Vicente Caselles Miralles

Departmento de Terrodinámica y Física Tal.: 134 638 64300

Departamento de Termodinámica y Física Tel.: +34-638-64300 Unidad de Teledetección Fax: +34-636-43345

Doctor Moliner 50 E-46100 Burjasot

Spain

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIOUE

Station de Bioclimatologie

BP 91

Domaine Saint-Paul F-84143 Montfavet

France

WINAND STARING CENTRE OF INTEGRATED

LAND, SOIL & WATER RESEARCH

Dept. of Water Management in Arid Zones

Marijkeweg 11/22 P.O. Box 125

NL-6700 AC Wageningen

Netherlands

DIRECCION NACIONAL DE AERONAUTICA CIVIL

Dirección de Meteorología e Hidrología

Avenida Mariscal López 1146

Asunción

Paraguay

DIRECCION GENERAL DE RECURSOS NATURALES RENOVABLES

Dirección Suelos y Agua Avenida Eugenio Garzón 456

12900 Montevideo

Uruguay

Bernard Seguin

Tel.: +33-90.31.61.03 Fax: +33-90.89.98.10

Massimo Menenti

Tel.: +31-317-47.42.00

Fax: +31-317-42.48.12

Miguel Angel Vazquez Tel.: +595-21-22139

Fax: +595-21-22139

Alvaro Califra Sanguinetti Tel.: +598-2-352778

Period: January 1994 to September 1997

MANIPULATION OF APOMIXIS FOR THE IMPROVEMENT OF TROPICAL FORAGES

Co-ordinator: Agricultural and Food Research Council, Aberystwyth Dyfed, United Kingdom (Michael Hayward)

Objectives

- Gain an understanding of the mechanism controlling apomixis in the tropical forage grasses *Brachiaria* and *Paspalum sp.* and to utilize the knowledge and information gained to manipulate the reproductive biology of the species concerned.
- Exploit this information in the development of novel germplasm combining desirable agronomic traits otherwise unobtainable by orthodox breeding procedures leading eventually to the production of improved cultivars.

Activities

- ♦ The production of sexual genotypes at differing ploidy levels by the raising of sexual tetraploids from the diploids by the use cell culture systems and the use of androgenetic procedures to develop sexual diploids from the apomictic tetraploids (ORSTOM France, EMBRAPA Brazil, IBONE Argentina and IGER UK).
- ♦ The development of screening tools for the determination of the mode of reproduction by assessment of the distribution of callose around the embryo sac (CPRO Netherlands and ORSTOM) and the identification of molecular markers associated with the apomictic trait (IGER UK)
- ♦ The manipulation of apomixis by gene isolation and the development of a transformation system for *Brachiaria* and *Paspalum* together with the production of novel variation by this means and by the use of cell culture and protoplast fusion systems (IGER and ORSTOM).
- ♦ The training at IGER of young research workers from EMBRAPA and IBONE in the molecular screening and cell culture technologies.

Expected outcome

The programme should provide enhanced technologies for the recognition of sexual versus apomictic plants of the two grass genera involved, together with the generation of novel variation which will be tested for its practical utility in concurrent breeding programmes. By so doing it should ameliorate problems associated with the extensive cultivation of a restricted range of genetic diversity.

Partners

AGRICULTURAL AND FOOD RESEARCH COUNCIL

Plant Genetics & Breeding Department

Plas Gogerddan

UK-SY23 3EB Aberystwyth Dyfed

United Kingdom

EMPRESA BRASILEIRA DE PESQUISA AGROPECUARIA

National Centre for Research in Beef Cattle

Plant Cytogenetics Laboratory

C.P. 154

79002970 Campo Grande

Brazil

INSTITUTO DE BOTANICA DEL NORDESTE

Grass Genetics Laboratory Sargento Cabral 2131

3400 Corrientes

Argentina

CENTRUM VOOR PLANTENVEREDELINGS- & REPRODUCTIEONDERZOEK (DLO)

Arable and Forage Crops Department

P.O. Box 16

NL-6700 AA Wageningen

Netherlands

ORSTOM

Département Milieux & Activités Agricoles

Rue de La Fayette 213 F-75480 Cedex 10 Paris

France

Michael Hayward

Tel.: +44-1970-82.82.55

Fax: +44-1970-82.83.57

Cacilda Borges Do Valle

Tel.: +55-67-763.10.30

Fax: +55-67-763.22.45

Camilo Qarin

Tel.: +54-78.32.73.09

Fax: +54-78.32.50.64

Marinus Wagenvoort

Tel.: +31-317-47.70.12 Fax: +31-317-41.80.94

Yves Savidan

Tel.: +33-1-4803.7645

Fax: +33-1-4035.1713

Period: January 1994 to July 1997

REGENERATION AND CONSERVATION OF HARDENED AND BARREN VOLCANIC SOILS IN LATIN AMERICA (CHILE, ECUADOR, MEXICO).

Co-ordinator: ORSTOM, Bondy, France (Paul Quantin)

Objectives

Determine conditions for sustainable regeneration of hardened and eroded volcanic soils:

- 1. Characterization and mapping of hardened barren ground; dynamics of their extension.
- 2. Study and improvement of physical, chemical, organic and microbiological fertility factors.
- 3. Agronomic studies of cultivation systems and assessment of their yield capacity.
- 4. Economic analysis and evaluation of profitability of sustainable agricultural rehabilitation.
- 5. Measurement of erosibility, comparing natural soils and rehabilitated soils in adapted and sustainable conditions.
- 6. Water relations were also studied.

Results

- ⇒ The strong reversible coherence of "fragipan" (brittle and plastic when humid; hard when dry) tepetates is due to the parallel orientation of clays.
- ⇒ If the causes of soil infertility (hardness, compactness, impermeability, lack of organic C and assimilable N and P), are remedied, cangahua and tepetate soils are as productive as a natural soil. However, the productivity of small-holder plots does not increase in time, because of a deficiency in mineral and organic fertilizer application.
- ⇒ Minimum ploughing is less productive for maize culture without intercrops, than traditional ridging, because of the slopes. The minimum ploughable depth is 40 cm, but for maize and broad-bean cultivation, the optimal depth is 50-60 cm.
- ⇒ In the cangahua or tepetate regions of Ecuador and Mexico, close to 80% of households own respectively less than 3 or 4 acres/household. These families can survive only if hardened soils are rehabilitated, if they can be salaried by employers, or even if they migrate.
- ⇒ Cultivated hardened soils are subject to significant erosion (50 to 100 t/ha/year) when they are not managed adequately. However, small plot or terrace trials show that appropriate techniques, such as ridging or terracing reduce erosion to acceptable limits (1 to 6 t/ha/year).

Selected publications

Quantin P., Arias H.&Prat C. International Soil Science Society, 15th world congress of soil science, Acapulco, Mexico, July 1994. Symposium ID 13 "Indurated volcanic soils: uses and management Transactions". **Vol 6a**, p. 428-610, 14 communications of which 7 from the EU programme; **Vol 6b**, p. 214-252.

Zebrowski C., Quantin P, and Trujillo G. (Eds). 1997. Suelos volcánicos endurecidos, III Simposio Internacional (Quito, 12/1996), UE-ORSTOM-PUCE-UC, Quito, Equateur. 550 p.

Partners

ORSTOM Quantin Paul

Centre de Bondy
Tel.:+33-1-48 03 77 77
32, avenue H. Varagnat
Fax: +33-1-48 03 08 29
F-93143 Bondy cedex
E-mail: prat@mpl.orstom.fr

France

JUSTUS-LIPSIUS-UNIVERSITAET GIESSEN Gerd Werner

Wiss. Zentrum Tropeninstitut Tel.:+49-641-702 26 85 Bodenkunde und Bodenerhaltung Fax: +49-641-702 26 84

Schottstrasse 2 D-35390 Giessen

Germany

COLEGIO DE POSTGRADUADOS José Luís Oropeza Mota

Centro de Edafología Tel.:+52-595-457 01
Carretera México-Texoco Km 35,5 Fax: +52-595-457 23

56230 Montecillo D.F.

Mexico

UNIVERSIDAD AUTONOMA DE TLAXCALA Antonio Flórez Díaz Secretaría de la Investigación Científica Tel.:+53-246-223 13

Apartado postal 19 Fax: +53-246-211 90070 Tlaxcala

Mexico

UNIVERSIDAD CENTRAL DE ECUADOR Jorge Flor Irigoyén

Facultad de Ciencias Agrícolas Tel.:+593-2-543 322 ext. 20 Escuela de Ingeniería Agronómica Fax: +593-2-528 704

Ruben Penaloza

Ciudadela Universitaria (U. Central)

A-4607 Quito **Ecuador**

UNIVERSIDAD DE SANTIAGO DE CHILE

Facultad de Ciencias Forestales Tel.:+56-63-221229 Instituto de Silvicultura Fax: +56-63-221 227

Campus Universitario Isla Techa Casilla 853 Valdivia

Chile

Period: January 1994 to December 1996

BEST MANAGEMENT PRACTICES FOR THE PRODUCTIVE/PROTECTIVE REHABILITATION OF DEFORESTED SLOPING LANDS

Co-ordinator: Conphoebus S.C.R.L., Piano d'Arci-Catania, Italy (Beniamino Morgana)

Objectives

- ♦ Work out and validate a methodology to identify, analyze and select suitable management practices for reversing the widespread deterioration of sloping lands, by achieving a balance between poverty alleviation, household food security, and environmental protection.
- ♦ Identify suitable management practices for two representative, partially deforested, mountainous or hilly areas (in the order of 10,000 to 100,000 hectares). In Guatemala and Costa Rica, where there are different physical, social, economic, and energetic conditions, the risk of erosion is very high, the existing essential data are nearly sufficient for the development of the project, and pilot interventions can be carried out.

Results

- ⇒ Integration of the local teams in the international environment. During the development of the project, two Central American researchers were added to the European working groups. Also, a European junior researcher collaborated with the Central American working groups.
- ⇒ A methodology to identify, analyze and select suitable management practices in deforested sloping areas.
- ⇒ A model able to describe crop production, including economic outcomes, within a regional context (in respect of real constraints), based partly on the utilization of existing, widely tested models (EPIC, ALES) and in other parts on a further elaboration of their combination.
- ⇒ A decision-support instrument, helping in the selection of the best management practices, based on multi-criteria analysis, and taking into account the indications given by the partners over the sustainable-management practices for the tropical areas of Central America.
- ⇒ Selection of the suitable management practices, particularly with regard to the social and economic peculiar conditions in the two sample areas in Costa Rica and in Guatemala. Coffee and sugar cane were selected in Costa Rica, considering different protective practices, while in Guatemala, maize, bean and potato were selected with different protective practices. In the 'risky areas' with steep slopes (i.e. >50% slopes), various forestal species with the related management practices were selected for the dominant and subordinate plane. In those zones, particularly degraded and steep (with >75% slopes), particular indications were given
- ⇒ Thematic maps concerning the optimization process results.

⇒ Video and photographic documentation showing the stepwise development of field research and the practical application of the suggested management practices both in Costa Rica and in Guatemala.

Selected publications

Stamos C.V., Koullas D.P., Daouti-Koukios E.G. 1996. Development of a decision-support tool for the evaluation of management practices in deforested sloping lands. Proceedings of 5th National Congress on Soft Energies. **Vol. 2**, pp BIO 323-329. Democritos Research Centre, Athens (Greece). November (in Greek).

Stamos C.V., Koukios E.G. 1996. Land management for sustainable development. Presentation. Seminar on the optimal use of biological resources. NTUA. Athens (Greece). November.

Stamos C.V., Diamantidis N.D., Magri S., Sardo V., Mora Camacho J.R., Collado Martínez C.A., Koukios E.G. 1997. Best management practices for the productive/protective rehabilitation of deforested sloping areas. Proceedins of the International Conference on Sustainable Agriculture for Food, Energy and Industry. Federal Agriculture Research Centre, Braunschweig (Germany). June.

Partners

CONPHOEBUS S.C.R.L.

Ist. di Ricerche per le Energie Rinnovabili Zona Industriale - Passo Martino Casella Postale I-95030 Piano d'Arci - Catania

Italy

UNIVERSIDAD NACIONAL

Sede Región Brunca Apartado Postal 34-8000 San Isidro del General

Costa Rica

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Dept. of Chemical Engineering – Division IV Bioresource Technology Unit Zografou Campus GR-15700 Athens

Greece

INSTITUTO DE CIENCIA Y TECNOLOGIA AGRICOLAS

Disciplina de Manejo de Suelos y Agua km 21,5 Carretera hacia Amatitlán Barcena, Villa Nueva 01013 Guatemala City

Guatemala

Beniamino Morgana Tel.:+39-95-748 91 11

Fax: +39-95-748 92 07 E-mail: Conphoeb@Tin.it

Juán Rafael Mora Camacho

Tel.:+506-771-68 84 Fax: +506-771-51 41

E-mail: Drueda@irazu.una.ac.cr

Emmanuel G. Koukios Tel.:+30-1-772 31 91 Fax: +30-1-772-31 92

E-mail: koukios@orfeas.chemeng.ntua.gr

Carlos Adolfo Collado Martínez

Tel.:+502-4-631 20 08 Fax: +502-4-631 20 02 E-mail: ICTA@micro.com.gt

Period: June 1994 to May 1998

ETUDE DE LA DIVERSITE BIOLOGIQUE ET DE L'ATRIPLEX HALIMUS POUR LE REPERAGE IN VITRO ET IN VIVO D'INDIVIDUS RESISTANT A DES CONDITIONS EXTREMES DU MILIEU, ET CONSTITUTION DE CLONES

Co-ordinator: Université de Paris-Sud, Chatenay-Malabry, France (Pierre Dutuit)

Objectifs

- ♦ Contribuer aux efforts d'amélioration de la production des steppes fourragères à base d'*Atriplex halimus*, afin de permettre une augmentation de la production animale des régions arides méditerranéennes.
- Protéger ces écosystèmes particulièrement fragiles.
- Pays participants à ce projet : Belgique, France, Algérie, Chili, Tunisie.

Activités

- * Repeuplement de zones dégradées à l'aide de populations homogènes résistantes obtenues par le clonage *in vitro* d'individus choisis au sein de la diversité biologique de populations naturelles ou créées.
- * Le développement des techniques *in vitro* nécessitant l'équipement d'unités de culture autonomes et capables de cloner par microbouturage ou par embryogénèse somatique des quantités importantes d'individus aux qualités de tolérance à la sécheresse, à la salinité et possédant de bonnes performances fourragères.
- * Ces unités recevront in situ une assistance scientifique de la part des laboratoires européens.

Le projet comporte plusieurs étapes :

Sélection in situ

Trois campagnes de repérage par an (soit 12 au total) seront faites dans des régions bien déterminées du point de vue édaphoclimatique pour chacun des trois pays concernés du Sud.

Les populations naturelles d'*Atriplex halimus* sont hautement hétérogènes. De cette diversité biologique sera extraite une cinquantaine d'individus répondant à des critères de résistance à la sécheresse (dix), à la salinité (dix), mais aussi à des critères de productivité fourragère (dix) et de bonne adaptation générale (vingt).

Les prises d'échantillons destinés à la culture in vitro se feront sur ces individus mis en défens.

Clonage in vitro

* Etude de la micropropagation * Etude des contraintes * Sélection in vitro * Mise au point de tests * Embryogénèse somatique * Semences artificielles

Etude du comportement des clones en écosystèmes naturels

Cette étape consiste au retour aux conditions naturelles des clones produits in vitro.

Résultats attendus

Repérage in situ des individus performants pour le clonage :

- ⇒ Résistance à la salinité
- ⇒ Production de biomasse
- ⇒ Palatabilité

Pierre Dutuit

- ⇒ Mise au point de tests in vitro pour la sélection des individus à cloner pour les critères :
- ⇒ De résistance à la salinité
- ⇒ D'activité photosynthétique
- ⇒ D'absorption de l'azote
- ⇒ De teneur en oxalate et tannin
- ⇒ Mise au point de la micropropagation par microbouturage et embryogenèse somatique.
- ⇒ Réintroduction dans l'aire géographique de l'*Atriplex halimus* de clones sélectionnés.

Partners

UNIVERSITE DE PARIS-SUD

Equipe d'Ecotechnologie Tel.: +33-1-4683.5419 Laboratoire de Botanique Fax: +33-1-4683.1303

Tour E 1 - Etage 2

F-92296 Chatenay-Malabry

France

UNIVERSITE CATHOLIQUE DE LOUVAIN J.M. Kinet

Laboratoire de Cytogénétique Tel.: +32-10-47.20.50 Place Croix du Sud 4-5 Fax: +32-10-47.34.35

B-1348 Louvain-La-Neuve

Belgium

UNIVERSITE DES SCIENCES & TECHNIQUES DE Fatima Ben Ribiha **BLIDA** Tel.: +213-3-41.58.50

Institut d'Agronomie Fax: +213-3-41.78.13

Département de Phytotechnie

B.P. 270 9000 Blida Algérie

FACULTE DES SCIENCES DE TUNIS

Sadok Bouzid Laboratoire de Biologie Végétale Tel.: +216-1-51.26.00 Campus Universitaire Fax: +216-1-88.54.80

1060 Tunis

Tunisie

UNIVERSIDAD DE SANTIAGO DE CHILE

Sergio Lailhacar Tel.: +56-2-678.57.32 Departamento de Producción Animal Fac. des Sciences Agraires & Forestières Fax: +56-2-678.57.00

Santa Rosa 11 315, La Pintana

Casilla 1004 Santiago Chili

Period: July 1994 to June 1998

IMPROVEMENT OF SYMBIOSIS BETWEEN RHIZOBIUM MELILOTI AND ALFALFA IN ACID SOILS FROM ARGENTINA AND URUGUAY

Co-ordinator: Universität Bielefeld, Bielefeld, Germany (Alfred Pühler)

Objectives

- ♦ Development of an alfalfa nodulating *Rhizobium* (ANR) collection of native rhizobia isolated from Argentina and Uruguay.
- ♦ Identification of strains with increased acid tolerance and/or increased symbiotic properties.
- Identification of genes involved in competition and acid tolerance.
- Development of genetic tools to analyse the plant-microbe-interactions.
- Technology transfer between the participating groups.

Activities

- **★** Isolation of ANR from acid soils in Argentina and Uruguay.
- * Screening for acid tolerant ANR using liquid cultures.
- * Microbiological characterisation of the ANR (melanin production, antibiotic resistance, growth characteristics, FAME, LPS-profile).
- * Genetic characterisation of the biodiversity among the ANR, by using different PCR techniques, IS-fingerprinting, plasmid analysis and 16S rDNA sequencing.
- **★** Development of GFP-labelled ANR for ecological model experiments.
- * Plant inoculation experiments with identified strains, by using hydroponic media of different pH and soil samples from Argentina and Uruguay.
- * Construction of cosmid gene libraries from acid tolerant strains in order to isolate genes involved in acid tolerance and competition.

Results

- More than 500 ANR were isolated.
- An acid tolerant ANR-subpopulation build by two medium acid tolerant *Sinorhizobium meliloti* strains and 15 acid tolerant *Rhizobium* spp. strains highly similar to the type strain Or191 could be identified.
- The medium acid tolerant S. meliloti strains exhibited good symbiotic properties.
- The acid tolerant *Rhizobium* spp. strains showed a poor nitrogen fixation capacity but high competitiveness when coinoculated with *S. meliloti* strains.
- The S. meliloti strains were characterised by a high biodiversity.
- The acid tolerant alfalfa nodulating *Rhizobium* spp. population is formed by only one strain type.

Follow up

- Identification of genes conferring acid tolerance and enhanced competition.
- Pilot experiments using soil samples to emulate field experiments.

Selected publications

Del Papa M.F., Balagué L.J., Castro Sowinski S., Wegener C., Segundo E., Martínez-Abarca F., Toro N., Niehaus K., Pühler A., Aguilar M., Martínez-Drets G., and Lagares A. Isolation and characterization of alfalfa nodulating rhizobia present in acid soils of Central Argentina and Urugay. To be submitted.

Segundo E., Martínez-Abarca F., van Dillewijn P., Fernández-López M., Lagares A., Martinez-Drets G., Niehaus K., Pühler A., and Toro N. Diversity, growth and symbiotic behaviour of Sinorhizobium meliloti strains isolated from acid soils of Argentina and Uruguay. Comparison with other alfalfa nodulating rhizobia. To be submitted.

Wegener C., Schröder S., Pühler A., Martinez-Abarca F., Toro N., Del Papa, M.F., Lagares A., Martinez-Drets G., and Niehaus K. A population of twelve acid tolerant alfalfa nodulating Rhizobium strains isolated from different sites in Argentina exhibited the same molecular characteristics as the *Rhizobium* spp. strain Or 191. To be submitted.

Partners

UNIVERSITAET BIELEFELD

Tel.: +49-521-106 56 07 Fakultät für Biologie Lehrstuhl für Genetik Fax: +49-521-106 56 26 Postfach 100131:

D-33501 Bielefeld

Germany

CONSEJO SUPERIOR DE INVESTIGACIONES **CIENTIFICAS**

Departamento de Microbiología Estación Experimental del Zaidín

Profesor Albareda 1 E-18008 Granada

Spain

UNIVERSIDAD NACIONAL DE LA PLATA

Instituto de Bioquímica y Biología Molecular

Facultad de Ciencias Exactas

Calles 47 y 115 1900 La Plata **Argentina**

INSTITUTO DE INVESTIGACIONES

BIOLOGICAS

Clemente Estable Division of Biochemistry Avenida Italia 3318 11600 Montevideo

Uruguay

Alfred Pühler

E-mail: puehler@genetik.uni-bielefeld.de

Nicolas Toro García Tel.: +34-58-121011 Fax: +34-58-129600

E-mail: ntoro@eez.csic.es

Antonio Lagares

Tel.: +54-21-250497 Fax: +54-21-259223

E-mail: lagares@biol.unlp.edu.ar

Gloria Martínez-Drets Tel.: +598-2-471616 Fax: +598-2-475548

E-mail: gloria@iibce.edu.uy

Period: June 1994 to May 1997

DIAGNOSIS AND CONTROL OF BACTERIAL DISEASES IN PENAEID SHRIMP HATCHERIES – RELATIONSHIP BETWEEN MICROBIAL FLORA, NUTRITION, PRODUCTION TECHNIQUES, AND HEALTH STATUS OF PENAEID SHRIMP

Co-ordinator: Universiteit Gent, Ghent, Belgium (J. Mergaert)

Objectives

Investigate the relations between the microbial flora occurring in hatchery environments, nutrition, and water quality, and the survival and health of shrimp larvae during different developmental stages.

Results

- ⇒ In the larval stage, an overwhelming predominance of *Vibrio alginilyticus* and *Vibrio harveyi*, both in *P. vannamei* and *P. sinensis*, was observed. The bacterial flora associated with the larvae is unstable and is influenced by the bacterial flora in the food and the environment.
- ⇒ V. harveyi was found to be the major pathogen during larval stages. Through genomic fingerprinting of V. harveyi strains, two patterns were found to be related with health problems in shrimp culture. Specific Vibrio pathogens are associated with specific shrimp developmental stages.
- \Rightarrow ELISA rapid characterization systems were successfully developed for the detection of V. harveyi and $Vibrio\ parahaemolyticus$.
- \Rightarrow The probiotic properties of V. alginloyticus strain Ili was demonstrated, and this strain has been successfully applied as a probiont on a large scale during larval development.
- ⇒ The introduction of vitamin-C-enriched rotifer improved the feeding regime and resulted in a faster larval development.
- ⇒ Results show that a dietary provision of 1% n-3 HUFA is the minimum requirement for post-larval penaeids, and 4% for late post-larvae.
- ⇒ The supplementation of soybean phosphatidylcholine significantly improved growth, increased the total lipid content of the tissue in *P. japonicus*, and reduced the sensitivity to osmotic stress in *P. vannamei*. The addition of various types of phosphatidylcholine to the diet resulted in a significant increase in the whole body lipid content in both shrimp species.
- ⇒ The overall biochemical composition of post-larvae revealed few differences in vitamin and astaxantine levels between hatchery and wild post-larvae.
- ⇒ Fatty acid analysis provided the best tool to differentiate hatchery post-larvae and wild post-larvae, as 16 out of 34 fatty acids were present in clearly distinct concentrations.
- ⇒ During the project, a total of 2,000 bacterial shrimp isolates were collected and stored at the Laboratory for Microbiology. Databases containing Biolog, FAME and AFLP characterization data are available for comparison and further study at the Laboratory for

Microbiology. ELISA diagnostic systems for the detection of *V. harveyi* and *V. parahaemolyticus* are available at the Heriot-Watt University and at the University of Qingdao.

Selected publications

Kontara E.K., Merchie G., Lavens P., Robles R., Nelis H., De Leeneer A. and Sorgeloos P. 1996. Improved larviculture outputs of postlarval shrimp *Penaeus vannamei* through supplementation of L-ascorbyl_2-polyphosphate in the diet. Aquaculture International. 5:127-136.

Naessens E., Van Hauwaert A., Cobo M.L., Townsend S., Ramos X., Wouters R. and Lavens P. 1995. Dietary n-3 HUFA and DHA/EPA requirements of *P. vannamei* postlarvae. In: Larvi '95 Fish and Shellfish Larviculture Symposium – P. Lavens, E. Jaspers and I. Roelants (eds.). European Aquaculture Society. Special publication no. 24, Gent, Belgium. Sept. 3-7 1995. Pp 217-220.

Robertson P.A.W., Calderón J., Carrera L., Start J.R., Zherdmant M. and Austin B. 1998. Experimental *Vibrio harveyi* infections in *Penaeus vannamei* larvae. Diseases of Aquatic Organisms. **32**:151-155.

San Miguel L., Zherdmant M., Serrano J., Donoso E., Mendoza S., Motte E., Carrera L., Morales I., and Miahle E. 1998. A strain of *Vibrio alginolyticus* as a candidate for the prevention of vibriosis in *Penaeus vanname*i shrimp larvae. Submitted.

Vandenberghe J., Li Y., Verdonck L., Li J., Xu H.S., and Swings J. 1998. Vibrios associated with *Penaeus sinensis* (crustacea; decapoda) larvae in Chinese shrimp hatcheries. Aquaculture (in press).

Partners

RIJKSUNIVERSITEIT GENT Jean Swings

Laboratorium voor Microbiologie Tel.: +32-9-264 51 16 K.L. Ledeganckstraat 35 Fax: +32-9-264 53 46

B-9000 Gent **Belgium**

RIJKSUNIVERSITEIT GENT

Lab. of Aquaculture and Artemisa

Reference Centre

Patrick Sorgeloos

Tel.: +32-9-264 37 54

Fax: +32-9-264 41 93

Reference Centre Rozier 44 B-9000 Gent **Belgium**

HERIOT-WATT UNIVERSITY Brian Austin

Dept. of Biological Sciences Tel.: +44-131-449 51 11 RICCARTON Fax: +44-131-451 30 09

GB-EH14 4AS Edinburgh

United Kingdom

OCEAN UNIVERSITY OF QINGDAO Huai Shu Xu

Dept. of Marine Biology Tel.: +86-532-286 43 61

Marine Biotechnology Division Fax: +86-532-287 90 91 / 82 49

5 Yushan Road

RC-266003 Qingdao, Shandong

P.R. China

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Centro Nacional de Agricultura e Investigaciones Marinas

Microbiology Dept. P.O. Box 09014519

Guyaquil **Ecuador**

Tel.: +593-4-29 64 56 Fax: +593-4-35 46 29

Jorge Calderón

Period: October 1994 to December 1998

A NOVEL BASIS FOR PEST MANAGEMENT OF *GLOBODERA* SPP. ON POTATO IN THE CENTRAL ANDES

Co-ordinator: University of Leeds, Leeds, United Kingdom (Howard J. Atkinson)

Objectives

- ♦ Identify the extent of decline of potato cyst nematodes (PCN) caused by traditional non-host crops of South America such as quinoa and lupin.
- Screen lines of quinoa and lupin that enhance PCN decline and select them for breeding programmes.
- ◆ Develop a reliable basis for determining readiness of PCN to hatch under different cropping regimes.
- Characterize the potential nematicidal activity of lupin and quinoa at the molecular level.
- ♦ Investigate the influence of potato cultivars on the survival, infectivity and multiplication of Bolivian PCN populations.

Activities

- * Techniques are being developed for monitoring the level of dormancy of field populations of PCN and their readiness to hatch in Bolivian fields under different cropping regimes. Novel techniques will be developed to assess PCN populations; these will include:
 - Measurement of adenylate energy charge using HPLC
 - Changes in the size of the nucleolus in the nucleus of the dorsal pharyngeal gland as an indicator of readiness to hatch (image analysis)
 - Viable egg loss from measurement of eggs number and cyst size (image analysis)
 - Neutral lipid content and fatty acid composition of PCN populations from different field sites (image analysis, gas chromatography).
- * Various analytical chemistry techniques, including high-pressure liquid chromatography, gas chromatography, and mass spectrometry, are being used to analyse and provide footprints of host and non-host crop root exudates. This work will provide a reliable basis for screening plant lines for maximum antagonistic activity against PCN.
- * Field trials will be conducted in Bolivia to determine the response of PCN populations to different management strategies that currently prevail in local agriculture. Additionally, non-host crops (lupin, quinoa) are being tested to identify lines that contribute to the management of PCN when used in rotation with potatoes. Such lines will form a valuable resource for future plant breeding programmes.

Expected outcome

The work carried out in this project will develop a novel model for improved management of PCN in a sustainable agriculture that is based on traditional agricultural practices. Host and non-host cultivars will be selected that favour enhanced frequency of potato cropping without PCN-related crop loss. This programme should increase potato yield per hectare and free land

for crops such as cereals and legumes that are also used as staple foods by subsistence farmers.

Selected publications

Holz R.A., Troth K. and Atkinson H.J. 1998. The influence of potato cultivars on the neutral lipid content and fecundity of Bolivian and UK potato cyst nematodes, *Globodera* spp. Parasitology (submitted).

Holz R.A. and Atkinson H.E. 1998. Fatty acid composition of lipids from cysts of Bolivian PCN, *Globodera* spp., grown on potato Solanum tuberosum andigena. Nematologica (submitted).

Holz R.A., Riga E. and Atkinson H.J. 1998. Seasonal changes in the dorsal pharyngeal gland nucleolus of unhatched second-stage juveniles of *Globodera* spp. In Bolivia. Journal of Nematology (submitted).

Partners

UNIVERSITY OF LEEDS

Centre for Plant Biochemistry & Biotechnology Woodhouse Lane

Leeds

UK-LS2 9JT West Yorkshire

United Kingdom

PROINPA

Calle Man Cesped 293 Casilla 4285 Cochabamba **Bolivia**

CENTRO DE INVESTIGACIONES CIENTIFICAS ISLA DE LA CARTUJA

Instituto de Investigaciones Químicas Americo Vespucio s/n Isla de la Cartuja E-41092 Sevilla

Spain

Howard Atkinson

Tel.: +44-113-233 29 00 Fax: +44-113-233 31 44

E-mail: h.j.atkinson@leeds.ac.uk

Javier Franco

Tel.: +591-42-495 06 Fax: +591-42-457 08 E-mail: jfranco@papa.bo

Manuel Martín-Lomas Tel.: +34-95-448 95 63 Fax: +34-95-446 05 65

Period: October 1994 to March 1998

IMPROVING THE GROWTH OF TROPICAL NITROGEN-FIXING FOREST TREES IN THE GENERA ACACIA AND CASUARINA THROUGH TISSUE CULTURE AND GENETIC TRANSFORMATION

Co-ordinator: ORSTOM, Montpellier, France (Emile Duhoux)

Objectives

The goal of the project is to develop genetic transformation strategies for nitrogen-fixing species of tropical trees in the genera *Acacia (Acacia mangium, Acacia mearnsii* and *Acacia crassicarpa*) and *Casuarina (Casuarina glauca* and *Allocasuarina verticillata*). Gene transfer technologies were used to introduce agronomically important trraits and to obtain new tree-micro-organism symbioses more adapted to the ecological features of the planting sites:

- ♦ Development of techniques for the micropropagation of superior clones of *Acacia sp.* and *Casuarina*.
- Efficient regeneration of whole plants, starting from somatic embryogenesis of *Acacia sp.* and *Casuarina*.
- Using the β-glucuronidase gene and a selection marker, transformation of *Acacia* and *Casuarina* was achieved using either the natural vector *Agrobacterium*, or direct gene transfer techniques (high-velocity microprojectiles); transgenic plants were regenerated.
- Using the β-glucuronidase gene under the control of different known regulatory sequences, constitutive or tissue-specific expression vectors were identified for *Acacia* and *Casuarina*: stability of the transgenes was studied.
- Using the most appropriate vector, a metallothionein gene was introduced into *Casuarina*, and transgenic plants were regenerated.

Activities

- * Micropropagation
- * Regeneration procedure
- **★** Induction of shoot primordia by *Rhodococcus fascians*
- * Identification of a selection marker for the genetic transformation of *Acacia* and *Casuarina*
- * Transformation vectors to follow shoot meristem formation
- * Agrobacterium-mediated DNA transfer
- **★** Direct DNA transfer by high-velocity microprojectiles
- * Analysis of transformed tissues
- * Expression vectors for Acacia and Casuarina
- * Introduction of a metallothionein gene into Casuarinaceae trees.

Results

- ⇒ Identification of superior clones of A. mangium, with good organogenic potential.
- ⇒ Micropropagation of A. mangium and A. mearnsii.
- \Rightarrow Micropropagation of C. glauca, using shoots from mature trees

- ⇒ Using Thidiazuron, differentiation of buds on A. mangium calli derived from nypcotyls.
- ⇒ Regeneration of rooted plants from cotyledons of A. crassicarpa
- ⇒ Identification of selection markers for *Acacia* and *Casuarina*
- ⇒ Induction of tumours after inoculation of *A. mangium*, *A. mearnsii* and *A. crassicarpa* by wild-type *A. tumefaciens* strains
- \Rightarrow Transfer of the β -glucuronidase gene into A. mangium, using a wild-type A. tumefaciens strain.
- ⇒ Transient expression of the uidA gene in *Acacia mangium calli* following particle bombardment
- ⇒ Regeneration of transgenic *C. glauca* trees after transformation of epicotyls with the disarmed *A. tumefaciens* strain C58C1(GV2260; BIN19GUSint).
- \Rightarrow Regeneration of transgenic A. verticillata plants expressing the β -glucuronidase gene under the control of constitutive or tissue-specific promoters.
- ⇒ Nodulation by Frankia of transgenic A. verticillata and C. glauca.
- ⇒ Isolation and characterization of a metallothionein gene from C. glauca.

Outcome

- Gene transfer into *Acacia*, using either disarmed strains of *Agrobacterium tumefaciens* or particle bombardment; growth of transformed tissues
- Stability of expression of the 35S promoter in the tropical nitrogen-fixing *trees A. verticillata* and *C. glauca*.
- Basic knowledge of the expression of several constitutive and tissue-specific promoters in nodulated *Casuarinaceae* trees
- Transformation of A. *verticillata* and *C. glauca* with a constitutively expressed metallothioneione gene.

Selected publications

Monteuuis O. 1995. *In vivo* grafting and *in vitro* micrografting of *Acacia mangium*: impact of ortet age. Silvae Genet. 4.190-193.

Vereecke D., Temmerman W., Maes T., Van Montagu M., and Goethals K. 1996. Molecular analysis of the virulence determinants of the phytopathogen *Rhodococcus fascians*. Med. Fac. Landbouw. Univ. Gent. 61/2a. 231-240.

Rohde A., Van Montagu M., Inzé D., and Boerjan W. 1997. Factors regulating the expression of cell-cycle genes in individual buds of *Populus*. Planta. **201**:43-52.

Quoirin M., Aragao F., Rech E. and De Oliveira D.E. 1997. Transient expression of a reporter gene introduced by bioballistic bombardment into *Racosperma mangium* tissues. Braz. Journal of Genetics. **20(3)**: 507-510.

Franche C., Diouf D., Le Q.V., N'Diaye A., Gherbi H., Bogusz D., Gobé C. and Duhoux E. 1997. Genetic transformation of the actinorhizal tree *Allocasuarina verticillata* by *Agrobacterium tumefaciens*. Plant J. 11: 897-904.

Partners

ORSTOM Emile Duhoux

Laboratoire de Physiologie Cellulaire et Moléculaire
des Arbres

Tel.: +33-4-67 61 10 12
Fax: +33-4-67 63 82 65

911 avenue Agropolis

BP 5045

F-34032 Montpellier cedex 5

France

UNIVERSITE MOHAMMED V Abdelkrim Maltouf Filali

Faculty of Sciences Tel.: +212-7-77 54 61
Lab. of Microbiology Fax: +212-7-77 54 61

Ibn Battouta Street

B.P. 1014 Rabat **Morocco**

INNOPRISE CORPORATION SENDIRIAN O. Monteuuis

BERHAD Tel.: +60-89-77 53 28 Plant Biotech. Lab. Fax: +60-89-76 31 92

P.O. Box 60793 90017 Tawau

Malaysia

UNIVERSIDADE FEDERAL DO RIO DE Dulce Eleonora De Oliveira

JANEIRO Tel.: +55-21-590 01 11
Instituto de Biología Fax: +55-21-590 01 11
Departamento de Genética

CCS Bloco A 20 Andar – Sala 098-UFRJ-RJ

Avenida 24 s/n

BR-21941-590 Rio de Janeiro

Brazil

TEAGASC Gerard Douglas

Agriculture and Food Development Authority

Tel.: +353-1-846 06 44

Malahide Road

Fax: +353-1-846 05 24

17 Dublin **Ireland**

RIJKSUNIVERSITEIT GENTLaboratorium voor Genetica

Marc Van Montagu
Tel.: +32-9-264 52 05

Faculty of Science Fax: +32-9-264 53 49

K.L. Ledeganckstraat 35 B-9000 Gent

Belgium

UTILIZATION OF HEMICELLULOSE WASTE FROM AGRICULTURAL AND FOREST INDUSTRIES USING XYLAN-DEGRADING AND XYLOSE-FERMENTING YEASTS

Period: October 1994 to September 1998

Co-ordinator: Rheinische Friedrich Wilhelms Universität, Bonn, Germany

(Milan Hofer)

Objectives

- Isolate new polysaccharide-degrading fungi and xylose-fermenting yeast species from nature.
- ♦ Modify genetically available industrial yeast strains by introducing desirable genes from other fungi and/or yeast (protoplasts fusion, chromosome-protoplast fusion).
- ♦ Investigate respiratory metabolism of xylose-fermenting strains as affected by mutations in the mitochondrial DNA.
- ♦ Investigate transport phenomena in yeasts, both in wild strains and in genetically modified strains, with a view to circumventing glucose repression in the mixture of sugars obtained by degradation of waste materials, and increasing osmotolerance and ethanol tolerance in the production strain.
- ♦ Solve the problem of glucose repression of xylose uptake and/or fermentation in chosen yeast and hybrid strains by developing derepressed mutants.
- ♦ Construct hybrids between xylose-fermenting and osmotolerant yeasts with higher resistance to elevated osmotic pressures.
- Assess stability of the constructed strains and their industrial potential using laboratory and pilot scale fermenters.

Activities

- * Strains with rapid growth rate and high osmotolerance will be isolated from decaying cacti and citrus wastes.
- * The genetic modification of yeast strains will be performed by protoplast fusion between living strains and/or between killed cells (by chromosome breaking agents) and suitable recipient strains to obtain hybrids and/or transformed strains able to grow on xylans and to ferment xylose and which, in addition, are tolerant to osmotic pressure and ethanol.
- * A range of mitochondrial mutants will be isolated (spontaneously arising or by chemical mutagenesis) and characterized for ethanol/xylitol production.
- * Transport studies will involve measurements of H⁺/xylose-cotransport as well as assessment of the driving force, of the membrane potential and of pH.
- * Glucose transport-deficient mutants of selected xylan/xylose fermenting yeast strains will be obtained by integrative or substitutive transformation using glucose transporter gene(s) isolated from *Schizosaccharomyces pombe*; the role of hexokinase in glucose repression will be assessed.
- * Pilot scale fermenters will be used to evaluate the performance of promising strains from laboratory scale experiments.

Expected outcome

The joint research capacity will be aimed at developing fermentation technology leading to products of high economic value (ethanol, xylitol) from agricultural and forest wastes which otherwise constitute a pollution problem.

Partners

RHEINISCHE FRIEDRICH WILHELMS Milan Hofer

UNIVERSITAETBotanisches Institut

Tel.: +49-228-735 504

Fax: +49-228-735 513

Kirschallee 1 D-53115 Bonn Germany

INSTITUTE OF MICROBIOLOGY AND Herwig Kaspari

BIOTECHNOLOGY Meckenheimer Allee 168 D-5300 Bonn

D-5300 Bon Germany

PLANTA PILOTO DE PROCESOS INDUSTRIALES Danley Callieri

Avenida Belgrano y Pasaje Caseros Tel.: +54-81-330 744/330 057

RA-4000 San Miguel de Tucumán Fax: +54-81-330 087

Argentina

ST. PATRICK'S COLLEGE Peter Whittaker

Dept. of Biology

Maynooth

Tel.: +353-1-708 38 42

Fax: +353-1-708 38 45

Co. Kildare Ireland (Rep. of)

JAWAHARLAL NEHRU UNIVERSITY
Rajendra Prasad
School of Live Sciences
Tel.: +91-11-650 016
New Mehrauli Road
Fax: +91-11-686 58 86

IND-110067 New Delhi

India

Period: January 1995 to June 1998

DEVELOPMENT OF METHODS FOR THE CLONAL PROPAGATION OF ELITE, DISEASE-RESISTANT COCONUT PALMS BY SOMATIC EMBRYOGENESIS

Co-ordinator: IRD (ex-ORSTOM), Montpellier, France (S. Hamon)

Objectives

The coconut palm (*Cocos nucifera* L.) is a major agricultural crop in tropical areas. Its importance is due to its role in oil production. It also provides cash and subsistence to small holders. However, the coconut sector has several problems that affect its productivity, particularly the use of unimproved planting material, the old age of existing plantations and various pests and diseases such as Lethal Yellowing (a phytoplasma disease which has devastated coconut crops in the Caribbean Region and continental America). Since coconut palm is generally cross-pollinated and heterozygous, propagation by seeds gives rise to a great variability in hybrid progenies. *In vitro* vegetative multiplication of high-performance individuals thus remains the only short-and medium-term hope for the production of homogenous high-yielding planting material. Cloning would also allow rapid multiplication of selected individuals that exhibit resistance or tolerance to Lethal yellowing. Since coconut is a highly recalcitrant species in *in vitro* culture, the main objective of this project is to overcome present problems in the culture of coconut tissues in order to improve somatic embryogenesis and ensure mass production of plantlets (ramets).

Results

- ⇒ The collaboration has successfully allowed the regeneration of vitroplants (from plumules, immature inflorescences and leaf fragments) in most laboratories involved in the project. Reliable protocols for plantlet regeneration have been developed from plumules and immature inflorescences.
- ⇒ This is the first time that prototype regeneration for coconut has become available. This important breakthrough, which is crucial to the future of coconut *in vitro* culture, reflects the quality of the exchange of information, technical know-how and protocols which has taken place between the various partners.
- ⇒ An International Symposium on Coconut Biotechnology was organised (December 1-5 1997) in CICY, Mérida (Yucatan). 19 countries were represented (6 from Latin America). The symposium included papers in the following areas: biotechnology and coconut industry, genetic improvement, coconut diseases, *in vitro* propagation. This symposium gave to the consortium, an opportunity to widely broadcast the knowledge and some of the results acquired in the framework of this STD3 project.

Significant publications

Chan JL, Saénz L, Talavera C, Hornung R, Robert M & Oropeza C. 1998. Regeneration of coconut (cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Reports, 17 6-7 (515-521).

Rival A, Triques K., Beulet T., Nato A., Lavergne D., Santamaria J.M., Verdeil J.-L., Hocher V. and S. Hamon. 1998 - A multi-parameter approach for the study of *in vitro* photosynthesis. IX IAPTC Congress, Jerusalem, Israel. (oral communication).

Triques K., Rival A., Beulé T., Puard M., Roy J., Nato A., Lavergne D., Havaux M., Verdeil J.L., Sangare A. and Hamon S. 1997. Photosynthetic ability of *in vitro* grown coconut (*Cocos nucifera* L.) plantlets derived from zygotic embryos. Plant Science, **127**: 39-51.

Verdeil J.L., Rillo E., Hornung R., Sangare A., Jacobsen H.J., Oropeza C., Hocher V. and Hamon S. 1997. Report on the progress of the current STD3 project on coconut micropropagation through somatic embryogenesis. International Symposium on Coconut Biotechnology. CICY, Mérida, Mexico. 1 to 5 Dec. 1997.

Partners

ORSTOM
S. Hamon and J.L. Verdeil
Laboratoire de Ressources Génétiques et
d'Amélioration des Plantes Tropicales
Av. Agropolis 911
S. Hamon and J.L. Verdeil
Tel.: +33-4-67-61-74-96
Fax: +33-4-67-54-78-00
E-mail: hamon @ orstom.fr

BP 5045

F-34032 Montpellier

France

PCA ALBAY RESEARCH CENTER Erlinda Rillo

Albay Research Center Tel.: +639-974-114/9228130 Tissue Culture Dept. Fax: +639-9216173/9229180

Banao

4503 Guinobatan Albay

The Philippines

CENTRO DE INVESTIGACION CIENTIFICA Carlos Oropeza

DE YUCATANTel.: +52-99-44-02-91/71Unidad de Propagación ClonalFax: +52-99-44-09-077 Antigua Carretera a ProgresoE-mail: cos@cicy.cicy.mx

Ex-Hacienda Xcumpich

Mex-97310 CODEMEX, Mérida

Yucatán **Mexico**

UNIVERSITAET HANNOVERHans-Joerg JacobsenLehrgebiet Molekulargenetik für BiologieTel.: +49-511-769-40-82

Herrenhaeuserstrasse 2 Fax: +49-511-762-40-88
D-30419 Hannover E-mail: nhefmek@mbox.lgm.uni-hannover.de

Germany

UNIVERSITY OF LONDON Jeffrey Moorby

Wye College Tel.: +44-1233-81-24-01
Dept. of Agriculture, Horticulture and the Fax: +44-1233-81-33-20
Environment E-mail: shs-rh@wye.ac.uk

TN25 5 AH Wye

Ashford

United Kingdom

CIRAD Jean-Luc Verdeil

Dépt. des Cultures Pérennes

Tel.: +33-4-67-61-58-00
911 avenue Agropolis

Fax: +33-4-67-78-51-00

BP 5035 E-mail: Verdeil @ .melusine.mpl.orstom.fr

F-34032 Montpellier **France**

89

Period: September 1994 to June 1998

MULTIDISCIPLINARY STUDY OF THE TRANSFORMATION OF AMAZONIAN FRUITS FOR THEIR COMMERCIALIZATION BY EXISTING ORGANIZATIONS OF SMALL FARMERS

Co-ordinator: Université Catholique de Louvain, Louvain-la-Neuve, Belgium (Yvan Larondelle)

Objectives

- ♦ Generation of the nutritional, technological and socio-economic data needed to promote the production and marketing of food products derived from Amazonian fruits in the Amazon region of Brazil, specifically in the State of Pará. This objective is to be reached by developing and applying technological to be implemented in micro or small firms related to the small farmers' communities of the region.
- ♦ The valorization of regional fruits resulting from extraction or fruticulture may then become a factor in sustainable ecodevelopment in the Amazon region.

Activities

The activities have been divided into three phases: a short pluridisciplinary inventory of the existing resources with special focus on fruits; a 30- month phase of biotechnological and socio-economic thorough analysis of four selected fruits with at least one process per fruit, and finally a short phase aiming at the transposition of one selected process at the practical level.

Results

Phase 1 led to the selection of four fruits and of at least one process per fruit.

Brazil nuts (*Bertholettia excelsa*) present an excellent profile in sulphur-containing aminoacids and in unsaturated fatty acids, with high concentration of vitamin E and selenium. Protocols have been set up and optimized for the production of partially skimmed milk (to use as beverage) and fatty milk (to use for cooking). The partially skimmed milk was further studied in terms of emulsion stability and susceptibility to heat treatments. Partially skimmed milk adjusted to pH 8,0 and homogenized at high pressure in the presence of lecithin was selected for indirect UHT treatments.

The flour left after milk production still has good nutritional properties. The humidity content optimal for the storage of that flour was determined, as well as the kinetics of drying. Mixed flours adapted to the nutritional needs of infants and children were formulated on the basis of flours produced in the Pará State (Brazil nut residue, rice, bean, soya, corn and pejibaye - *Bactris gasipaes*).

Cupuassu (*Theobroma grandiflorum*) pulp has an excellent aromatic profile coupled with a high acidity. Its pasteurization was optimized by using *Alicyclobacillus acidoterrestris* as an indicator of quality process. Furthermore, the kinetics of modification of colour, flavour and aroma were modelled. The most appropriate thermal treatments may then be determined for any type of packing and pulp, and for any pH and Brix. Storage studies showed good quality-keeping during at least six months with a major effect of storage temperature but not of pasteurization temperature.

A cupuassu nectar was defined for northern and southern European consumers. Its pasteurization was modelled on vitamin C thermal degradation kinetics. The nectar behaved like a pseudo-plastic fluid.

Economic studies show that mechanical pulp extraction coupled with pasteurization is the most appropriate process for small firms. National market is growing.

The pulp of **assai fruit** (*Euterpe oleracea*) is traditionally extracted with water. This results in a very popular juice, rich in lipids, manganese, and antocyans, but highly perishable because of high microbial contamination and peroxidasic activity. Studies have been conducted on the process of juice making (identification of significant production parameters; conception of a continuous extracting machine), the significance of fruit varieties on production and nutritional quality, and the calorific power of stones. Measures designed to reduce the fruit's microbial charge (washing, sulphating and blanching) and the stabilization of juice by pasteurization (impact on micro-organisms and enzymes) have been thoroughly studied as well.

The flavour (aromatic compounds) and aromatic potential (analysis of heteroside structure and aromatic compounds after acid or enzymatic hydrolysis) of four Amazonian fruits (cupuassu, passion fruit, bacuri - *Platonia insignis* and Barbados cherry - *Malpighia punicifolia*) were determined to foresee the aromatic modifications that may result from technological treatment. Passion fruit showed an important aromatic potential including four glycoside classes. A weak potential with two glycoside classes characterised the three other fruits.

Formulation of blended juices made of **passion fruit**, mixed either with Barbados cherry, papaya and orange, was optimized. Sedimentation problems were solved by centrifugation in the two first cases, while an addition of papaya pulp was necessary in the third one. After pasteurization at 90°C for 10 min, the storage of the mixtures could be extended to 6 months at 30°C.

Follow up

Since 1997, this project is giving a scientific support to a Research and Development field project ("Valorization of fruits by the peasant organizations of the Pará State") based on collaboration between two NGOs (FASE in Brazil and ADRAI in Belgium). Its objective is to validate recommendations made by the researchers in demonstrative experiments in the field.

Partners

UNIVERSITE CATHOLIQUE DE LOUVAIN

Faculté des Sciences Agronomiques Unité de Biochimie de la Nutrition

Place Croix-du-Sud 2/8 B-1348 Louvain-la-Neuve

Belgium

UNIVERSIDADE FEDERAL DO PARA

Centro Tecnológico Dept. Engenharía Química Campus Universitario do Guama Avda. Perimetral

66075-100 Belem PA

Brazil

EMPRESA BRASILEIRA DE PESQUISA AGROPECUARIA

Centro de Pesquisa Agroforestal Laboratorio de Agroindustria Bairro do Marco 48 BR-66095-100 Belem-PA

Brazil

UNIVERSIDADE CATOLICA PORTUGUESA

Escola Superior de Biotecnología Rua Dr. Antonio Bernardino de Almeida P-4200 Porto

Portugal

INSTITUTO DO DESENVOLVIMIENTO ECONOMICO

Coordenadoria Socio-Económica

Avda Nazare 871 66035-170 Belem-PA

Brazil

UNIVERSITE CATHOLIQUE DE LOUVAIN

Faculté des Sciences Agronomiques

Unité d'Economie Rurale Place Croix-du-Sud 2/15 B-1348 Louvain-la-Neuve

Belgium

UNIVERSITE DE MONTPELLIER II

Institut des Sciences de l'Ingénieur

Laboratoire de Génie Biologique et Science des

Aliments

Place E. Bataillon F-34095 Montpellier

France

Yvan Larondelle

Tel.: +32-10-47 37 85/35 Fax: +32-10-47 37 28

E-mail: larondelle@bnut.ucl.ac.be

Maria de Lourdes Soares Oliveira Tel.: +55-91-249 20 88 ext. 295

Fax: +55-91-229 14 59

Raimunda Fatima Ribeiro de Nazaré

Tel.: +55-91-226 62 29 Fax: +55-91-226 96 80

Cristina Luisa Miranda Silva

Tel.: +351-2-558 00 01 Fax: +351-2-590 351

Teresinha Monteiro Santos

Tel.: +55-91-224 54 14 Fax: +55-91-225 34 14

Bruno Henry de Frahan

Tel.: +32-10-47 36 74 Fax: +32-10-47 87 06

Jean Crouzet

Tel.: +33-4-67 14 33 12 Fax: +33-4-67 14 42 92

Period: January 1995 to June 1998

OPTIMISATION DES TECHNIQUES DE SELECTION DU PALMIER A HUILE A L'EGARD DE LA FUSARIOSE ET PRISE EN COMPTE DE L'INTERFACE RACINE/SOL DANS L'EVALUATION DE LA RESISTANCE

Co-ordinator: CIRAD - Côte d'Ivoire, Abidjan, Côte d'Ivoire, (Hubert de Franqueville)

Objectifs

- ♦ Validation de techniques mises au point au laboratoire pour évaluer la résistance à la fusariose du matériel végétal, à différents stades végétatifs.
- ♦ Evaluation de la pression parasitaire et des facteurs qui interviennent au niveau de la rhizosphère dans le développement de la fusariose.
- ♦ Confronter les résultats obtenus par de nouvelles techniques avec le comportement réel du matériel végétal en zone fusariée et aux résultats des inoculations en prépépinière qui constituent actuellement la base de la sélection précoce du matériel tolérant à la fusariose. Sélectionner des individus (tête de clone, géniteurs) et non plus seulement des populations (croisements).

Activités

* Etude des composantes internes de la résistance et outils d'investigation :

- Perfusion de spores de Fusarium oxysporum f.sp. elaeidis (Foe) dans les pétioles de têtes de clones déjà caractérisées, puis dans des têtes de clones potentielles. Analyse des extraits de l'endocarpe du fruit. Etude de leurs propriétés fongistatique par chromatographie, densitométrie et autobiographie.
- Etude de la réponse métabolique du palmier à huile et à infection par le Foe et nature des substances impliquées; caractérisation des extraits phénoliques.

* Etude de l'interface racine/sol dans l'expression de la résistance :

- Analyse des exsudats racinaires, constitutifs ou synthétisés après inoculation du Foe, en fonction de la résistance ou la sensibilité du matériel végétal.
- Etude de la pression de sélection exercée sur l'évolution quantitative et qualitative des populations de *Fusarium* soit par l'outil moléculaire, soit par compatibilité végétative.
 Identification des sites de pénétration du *Foe*: étude histologique et cytologique.
- Marquage des souches par le gène GUS.
- Etude ultrastructurale de la pénétration et de la progression du pathogène dans la racine.

Résultats attendus

Définir une stratégie globale de lutte contre la fusariose qui tienne compte des facteurs de résistance du palmier à huile et des facteurs intervenant dans l'infection racinaire par *Fusarium oxysporum* f.sp. *elaeidis*. Assurer la durabilité de la culture de plus en plus exposée au parasite et maintenir le potentiel de production d'huile de palme, en Afrique notamment, pour répondre au développement de la région et aux besoins en corps gras des populations concernées.

Hubert de Franqueville:

Jacqueline Pelseneer- Cooremans

Tel.: +225-221.869

Fax: +225-214.368

Partners

CIRAD - COTE D'IVOIRE

Département des Cultures Pérennes Unité de Recherche Défense des Cultures

01 B.P. 6483 Abidjan 01 **Côte d'Ivoire**

UNIVERSITY OF BATH Richard Cooper

School of Biology and Biochemistry

Tel.: +44-1225-826.826

Claverton Down

Fax: +44-1225-826.779

UK-BA2 7AY Bath Avon

United Kingdom

UNIVERSITE LIBRE DE BRUXELLES

Faculté de Médecine & de Pharmacie

Tel.: +32-2-5556251/6505279

Laboratoire de Parasitologie Mycologique

Fax: +32-2-5556128/6505282

Route de Lennik 808 B-1070 Bruxelles

Belgium

UNIVERSITE DE LYON I Maurice Jay

Unité de Biologie Micromoléculaire & Phytochimie Tel.: +33-72.44.82.05 Boulevard du 11 Novembre 1918, 43 Fax: +33-72.43.14.26

Bâtiment 741

F-69622 Villeurbanne

France

INSTITUT DES FORETSDépartement des Plantes Oléagineuses

Sekou Diabate
Tel.: +225-302.734

Plantation Expérimentale Robert Michaux Fax: +225-226.985

BP 8 Dabou **Côte d'Ivoire**

EMPRESA BRASILEIRA DE PESQUISA Edson Barcelos

 AGROPECUARIA
 Tel.: +55-92-622.20.12

 Oil Palm Project
 Fax: +55-92-622.11.00

 Rodovia AM 010
 Fax: +55-92-622.11.00

KM 25 Caixa Postal 319 69.011-970 Manaus - AM

Brazil

Period: October 1994 to May 1998

SUSTAINABLE AGRICULTURE: THE ROLE OF INTEGRATED MANAGEMENT OF ROOT ROT (PHYTOPHTHORA CINNAMOMI RANDS) IN AVOCADO (PERSEA AMERICANA MILL)

Co-ordinator: Centro de Investigación y Tecnología Agrarias ; La Laguna-Tenerife, Spain (Luisa Gallo Llobet)

Objectives

The objective of the proposed research was to develop effective, environmentally responsible methods for management of avocado root rot disease caused by *Phytophthora cinnamomi* Rands which is the main limiting factor of this fruit crop. The main objectives were:

- ♦ Search for sources of resistance. To evaluate, select, and develop avocado rootstocks resistant/tolerant to *P. cinnamomi*, and to work with fast assay methods for selection.
- ♦ Evaluate the agronomic and commercial characteristics of the selected rootstocks with resistance to *P. cinnamomi* in infected soils with different climatic conditions.
- ♦ Gain in-depth knowledge of the avocado production system used in Michoacan (Mexico) with a view towards extrapolating data to other avocado-producing regions affected by *P. cinnamomi*.
- Evaluate the effects of host nutrition on root growth and disease resistance.
- ♦ Genetic identification of selected resistant-tolerant avocados and *P.cinnamomi* strains using isoenzyme analysis and molecular markers.

Activities

- * Targeting of West Indian trees for seed collection and searching for resistance to *Phytophthora* root rot using inoculated nutrient solutions, natural infected soil in pots, field trials and fast assay methods. Resistant rootstocks will be tested and compared with available commercial resistant ones.
- * Study of the effect of organic soil amendments and solarization for biocontrol of *Phytophthora* root rot of avocado.
- * Classification of suppressive and non-suppressive soils, and isolation and identification of bacteria possibly involved in suppression.
- ★ Determination of the effects of calcium, boron and zinc nutrition on root growth and disease and to evaluate the effect of humic acid on nutrient absorption and disease resistance.
- * Genetic identification of selected tolerant-resistant avocado material and of *P. cinnamomi* strains using isoenzyme analysis and molecular markers will be performed. Isoenzymatic characterization for both plant and pathogen material will be done.

Expected outcome

The proposed research developed approaches to plant disease control that will form the core of an integrated management system and will permit successful long-term production of avocado. The work carried out will provide a West Indian avocado resistant germplasm bank. The use of avocado rootstocks with genetic resistance to the disease in combination with other control methods will permit replanting of areas where the disease has occurred. This process will allow

us to transfer the technology obtained to growers to promote understanding and adaption / adoption of integrated avocado crop management.

Partners

CENTRO DE INVESTIGACION Y TECNOLOGIA

AGRARIAS

Departamento de Protección Vegetal

Apartado de Correos 60

E-38200 La Laguna - Tenerife

Spain

CENTRO DE FITOPATOLOGIA

Colegio de Postgraduados

56230 Montecillo

Texcoco Méjico

Mexico

UNIVERSIDAD DE COSTA RICA

CIPROC

Facultad de Agronomía

2060 San Pedro de Montes de Oca

San José

Costa Rica

CONSEJO SUPERIOR DE INVESTIGACIONES

CIENTIFICAS

Algarrobo Costa

E-29750 Málaga

Spain

UNIVERSITY OF BIRMINGHAM

School of Biological Sciences

Edgbaston

UK-B15 2TT Birmingham

United Kingdom

Luisa Gallo Llobet

Tel.: +34-22-54.01.50

Fax: +34-22-54.29.12

Daniel Teliz

Tel.: +52-595-45.211

Fax: +52-595-45.211/45.723

Luis Felipe Aarauz Gavallini

Tel.: +506-253.53.23 - Ext. 4214

Fax: +506-234.61.64

Carlos José López Herrera

Tel.: +34-52-511.000/1

Fax: +34-52-511.186

Brian Ford-Lloyed

Tel.: +44-121-414.55.65

Fax: +44-121-414.59.25

Period: November 1994 to October 1997

AN INTEGRATED STUDY OF LAND PROPERTIES, THEIR FLORISTIC INDICATIONS AND APPROPRIATE FARMING SYSTEMS IN AN ACKNOWLEDGED BIODIVERSITY CENTRE IN AMAZONIAN PERU

Co-ordinator: University of Turku, Turku, Finland, (Risto Kalliola)

Objectives

Many agricultural efforts in Amazonia have suffered from inadequate knowledge of site properties and appropriate land management systems. The major objective of this work is to gain new scientific understanding of the ecological constrains of agricultural production in this region by:

- determining the geological background for the existence of sites with different production potentials;
- developing a model for the identification of edaphic differences utilizing ecological knowledge of indicator plant species along with remote sensing data;
- promoting the development of appropriate farming systems for each site type to allow continuous production of food plants and/or silvicultural products.

Activities:

The study is a combination of fundamental research and applied research. The former studies have attempted to gain understanding of the variation in site edaphic conditions using aspects of geography, geology and biology. The applied studies try to develop appropriate farming systems for all the different site types.

Results

The results of this study have confirmed the hypothesis that the Amazonian soils can be much more varied than has been previously regarded, and that these variations are relevant in relation to both the ecology of the natural forests and land use planning.

Selected publications

Kalliola R. & Flores Paitán S. 1997. Ecological site conditions and landuse options in Amazonian Peru. In: Usó, J.L., C.A. Brebbia & H. Power (eds.) Advances in Ecological Sciences 1. Ecosystems and sustainable development. Computational Mechanics Publications, Southampton, pp. 254-263.

Kalliola R. & Flores S. (eds.) Geoecologia y desarrollo de la zona de Iquitos, Peru (in preparation).

Ruokolainen K., Linna A. & Tuomisto H. 1997. Use of Melastomataceae and pteridophytes for revealing phytogeographic patterns in Amazonian rain forests. — Journal of Tropical Ecology 13: 243–256.

Ruokolainen K., Tuomisto H. Ríos R., Torres A. & García M. 1994. Comparación florística de doce parcelas en bosque de tierra firme en la Amazonia peruana. — Acta Amazonica 24(1/2): 31–48.

Räsänen M. E., Linna A. M., Santos J. C. R. & Negri F. R. 1995. Late Miocene tidal deposits in the Amazonian foreland basin. - Science **269**: 386-390.

Tuomisto H., Ruokolainen K., Kalliola R., Linna A., Danjoy W. & Rodriguez Z. 1995. Dissecting Amazonian biodiversity. — Science 269: 63–66.

Risto Kallioloa

Partners

UNIVERSITY OF TURKU

 Dept; of Geography
 Tel.: +358-21-633 55 77

 SF-20500 Turku
 Fax: +358-21-633 58 96

 Finland
 E-mail: riskall@utu.fi

INTERNATIONAL SOIL REFERENCE AND Sjef Kauffman

INFORMATION CENTRE P.O. Box 353 Tel.: +31-8370-71 718 Fax: +31-8370-244 60

NL-6700 AJ Wageningen The Netherlands

FORSCHUNGSINSTITUT SENCKENBERG Georg Irion

Abteilung für Meeresforschung

Tel.: +49-4421-9475

Schleusenstrasse 39A

Fax: +49-4421-9475/50

D-26382 Willemshaven

Germany

INSTITUTO NACIONAL DE RECURSOS Walter Danjoy Arias **NATURALES** Tel.: +51-14-41 04 25

Remote-Sensing and SIS Directory

Apartado 4992

Fel.: +51-14-41 04 25

Fax: +51-14-41 46 06

Calle 17, no. 355 Urb. El Palomar, San Isidro

Lima **Peru**

UNIVERSIDAD NACIONAL DE LA AMAZONIA Gobert Paredes Arce PERUANA Tel.: +51-94-23 41 53

Departamento de Agronomía

Fax: +51-94-23 89 51

Samanez Ocampo 185

Apartado 496

Iquitos **Peru**

Period: November 1994 to October 1997

ASSESSMENT OF GENETIC DIVERSITY OF ECONOMICALLY AND ECOLOGICALLY IMPORTANT TROPICAL TREE SPECIES OF CENTRAL AMERICA AND THE CARIBBEAN: IMPLICATIONS FOR CONSERVATION, SUSTAINABLE UTILIZATION AND MANAGEMENT

Co-ordinator: Institute of Terrestrial Ecology, Midlothian, United Kingdom (Julia Wilson & Amanda Gillies)

Objectives

- ♦ Develop tools to assess genetic diversity in tropical tree species using molecular techniques;
- ♦ Assess levels and organisation of genetic diversity in populations of economically and ecologically important species, and identify populations with particular value for conservation and breeding;
- Identify biological or anthropic factors contributing to decreases in genetic diversity;
- Promote training in techniques for studying genetic variation in tropical woody plants.

Activities

- * Collect *Tabebuia heterophylla* in the Antilles, establish gene banks, assess genetic diversity;
- * Map, inventory and collect material from *Swietenia macrophylla* populations in Central America:
- * Evaluate relationships between molecular and morphological variation in *Vochysia* guatemalensis and Cedrela odorata
- * Assess genetic diversity in *Swietenia* and *Cedrela* populations;
- * Assess genetic erosion in *Swietenia*, develop conservation and utilization strategies, establish gene banks and provenance tests;
- * Collect progenies of *Dicorynia guianensis*, *Eperua grandiflora*, *Chrysophyllum sanguinolentum*, *Virola michelii*, *Ocotea rubra* and *Vouacapoua americana*, estimate mating system and gene flow parameters and evaluate relationships between life history traits and levels of genetic diversity;
- * Develop appropriate molecular techniques, train in molecular methods, sample collection and herbarium techniques.

Results

- ⇒ T. heterophylla is predominantly outcrossing. Trees varied in auto-incompatibility. Results indicate the capacity of the tree to reproduce in both high and low density situations. Populations from northern islands were more diverse than those from southern islands; but northern islands showed less differentiation between them. Results suggest that gene flow between islands is extremely low.
- ⇒ Populations of *C. odorata* from the Atlantic/Southern Pacific and Northern Pacific regions of Costa Rica were strongly genetically differentiated.

- \Rightarrow Heavily logged populations of *S. macrophylla* show less diversity than undisturbed populations.
- ⇒ Diversity of populations varies according to their proximity to sites of putative Pleistocene Refugia.
- ⇒ V. michelii, C. sanguinolentum and E. grandiflora appear to be strictly outcrossing; D. guianensis and V. americana demonstrated mixed mating systems and were tolerant of selfing.
- ⇒ Chloroplast DNA studies of *D. guianensis* show clustering (<50 m) of haplotypes at the same scale as the patches of this species in the forest. However, no spatial differentiation was found for nuclear DNA polymorphism, suggesting that there is asymmetry of geneflow by seed and pollen.
- ⇒ Pollen clouds of *V. michelii* showed genetic differentiation at a scale between 2 and 3 ha, which is close to the neighbourhood size of male trees. For *V. americana*, differences in allelic frequencies of pollen clouds parallel those of adult trees in the same location. Differentiation of allele frequencies in adult trees occurs at a large spatial scale (up to 50 ha).
- ⇒ *V. michelii* and *C. sanguinolentum* were more phenotypically diverse than *E. grandiflora* and *D. guianensis* (determined by RAPDs). *V. americana* was substantially less polymorphic. Comparing species, outcrossing rate and phenotypic diversity were inversely correlated. Population size of a species was not correlated with diversity.
- ⇒ Vochysia guatemalensis is predominantly outcrossing.

Follow up

Follow up studies will be partly conducted under ERBIC18*CT97-0149. They will include observations on genetic diversity of regenerating seedlings of *S. macrophylla* (to examine the effects of logging on the next generation) and observations of a wider spectrum of Guyanan rainforest species, to confirm the importance of outcrossing in maintenance of genetic diversity. If confirmed, the latter may lead to modifications in sylvicultural and logging operations. Results obtained under this contract have contributed to the formulation of government policy in Costa Rica and Nicaragua regarding *S. macrophylla* and have contributed to revision of the collection strategy in the Antilles for *T. heterophylla*.

Selected publications

Caron H., Dutech C., Bandou E. 1997. Variations spatio-temporellels du régime de reproduction de *Dicorynia guianensis* Amshoff en forêt guyanaise. Genetics, Selection and Evolution (in press)

Gillies A.C.M., Cornelius J.P., Newton A.C., Navarro C, Hernández M, Wilson J. 1997. Genetic variation in Costa Rican populations of the tropical timber species *Cedrela odorata* L. (Spanish Cedar), assessed using RAPDs. Molecular Ecology **6:** 1133 – 1145.

Torregrossa J.P., Labbé P., Fléreau C., Kremer A. 1998. Biologie florale de *Tabebuia heterophylla* (Bignoniaceae). Submitted.

Partners

INSTITUTE OF TERRESTRIAL ECOLOGY

Bush Estate Penicuik

EH26 0QB Midlothian **United Kingdom**

CENTRO AGRONOMICO TROPICAL DE INVESTIGACIÓN Y ENSEÑANZA

Cartago Turrialba 7170

Costa Rica

INSTITUT DE LA RECHERCHE AGRONOMIQUE

INRA Bordeaux

Station de Recherches Forestières de Bordeaux-Cestas

Laboratoire de Génétique et Amélioration

BP 45

F-33611 Gazinet

France

INRA Guadeloupe

B.P. 515 97185 Pointe-à-Pitre cedex

Guadeloupe FW1

Antilles

INRA Guyane

Station de Recherches Forestières

B.P. 709 97387 Kourou

Guyane Française

Tel: (+44) (0) 131 445 4343 Fax: (+44) (0) 131 445 3943

Julia Wilson & Amanda Gillies

E-mail: julia.wilson@ite.ac.uk

Carlos Navarro

(00) (506) 556 6431, 556 0169

(00) (506) 556 1533

email: cnavarro@computo.catie.ac.cr

Antoine Kremer

Tel.: +33-5-57 97 90 00 Fax: +33-5-57 97 90 88

E-mail: antoine.kremer@pierroton.inra.fr

Patrick Labbé

Tel.: +590-25 59 16 Fax: +590-94 16 63

E-mail: labbe@antilles.inra.fr

Henri Caron

Tel.: +594-92 93 00 Fax: +594-32 69 14

E-mail: caron@antilles.inra.fr

Period: January 1995 to December 1998

FOG AS A NEW WATER RESOURCE FOR THE SUSTAINABLE DEVELOPMENT OF THE ECOSYSTEMS OF THE PERUVIAN AND CHILEAN COASTAL DESERT

Co-ordinator: Università degli Studi di Firenze, Firenze, Italy (Mario Falciai)

Objectives

- Experimental verification of the following assumptions:
 - effectiveness of artificially collected fog water in the restoration of vegetation;
 - ability of the plants to sustain themselves by means of water supply derived from the fog they collect and with no more need of man-made collectors;
 - possibility that the surplus of water obtained by means of artificial collectors can be used for subsistence agriculture and for pasture growth.
- Characterization of the ecosystems of the coastal desert;
- ♦ Devising possible scenarios of social and economic impact in the field of development projects based on rational utilization of the resources of the coastal desert and on actions to be undertaken to enforce existing laws for environmental protection.

Activities and results so far

- * Pilot experiment carried out in a selected area of the coast near the town of Mejía, to verify the assumptions outlined above. In the experimental area, 20 large fog collectors, made up of a polypropylene mesh have been mounted for a total capturing area of 960 m². The water obtained from fog collection is being used throughout the year to experiment with the species of plants selected and cultivated in plots in the experimental station area with a drip irrigation system.
- * Verification of the possibility of using fog water to restore vegetation in order to allow the development of subsistence agriculture and controlled cattle grazing.
- * Verification that some plant species survival can depend on the sole contribution of water coming from fog.
- * Collection of amounts of water larger than required by vegetation. This resource can be stored and used in other periods.
- * Contribution to the development of a work methodology suitable for applications in other regions of the world, where the advection of marine clouds produces high elevation fogs.

Selected publications

Falciai M., Bresci E. 1997. "Fog capture and utilization in the coastal Peruvian desert". 8th International Conference on Rainwater Catchment Systems, Tehran, Iran April 21-25, 1997.

Calamini G., Falciai M., Giacomin A., Salbitano F. 1998. "Growth pattern and survival in a tree-plantation trial under fog-dependent environmental conditions". 1st International Conference on Fog and Fog Collection, Vancouver (Canada). July 19-24, 1998; accepted as contribution

Pettenella D., Bicciato F. 1998. "Socio-economic impacts of fogcatchers: a case-study in the Tambo Valley area (Peru)". 1st International Conference on Fog and Fog Collection, Vancouver (Canada), July 19-24, 1998; accepted as contribution.

Jiménez P., Villasante F., Talavera C., Villegas L., Huaman E., Ortega A. 1998. "Southern Peru lomas flora" 1st International Conference on Fog and Fog Collection, Vancouver (Canada), July 19-24, 1998; accepted as contribution.

Lacaze D., Bellan M.F., Puig H. 1998. "Use of a GIS to choose the best areas for fog collectors in Southern Peru". 1st International Conference on Fog and Fog Collection, Vancouver (Canada), July 19-24, 1998; accepted as contribution.

Roberto Semenzato

Partners

UNIVERSITA DEGLI STUDI DI FIRENZE Mario Falciai

Dept. Ingegnieria Agraria e Forestale Tel.: +39-55-30 23 12 41 Via San Bonaventura 13 Fax: +39-55-31 02 24 I-50145 Firenze E-mail: idrag@cesit1.unifi.it

Italy

UNIVERSITA DEGLI STUDI DI PADOVA

Dept. Territorio e Sistemi Agroforestali Tel.: +39-49-8277.157 Via Gradenigo 6 Fax: +39-49-8277.102

I-35131 Padova E-mail: semenzato@padova.infn.it

Italy

UNIVERSITA DEGLI STUDI DI FIRENZE Gianfranco Calamini

Istituto di Selvicoltura Tel.: +39-55-30231.246 Via San Bonaventura 13 Fax: +39-55-307263

I-50145 Firenze E-mail: calamini@cesit1.unifi.it

Italy

UNIVERSITE PAUL SABATIER François Blasco Inst. de la Cart. Internat. de la Végétation Tel.: +33-61-55.85.43

Avenue du Colonel Roche 13 Fax: +33-61-55.85.44

F-31062 Toulouse

France

UNIVERSIDAD NACIONAL DE SAN AUGUSTIN Percy Carlos Jiménez Inst. Regional de Ciencias Ambientales Tel.: +51-54-288971

Casilla 985 Fax: +-5154-288971 Arequipa E-mail: ireca@unsa.edu.pe

Peru

UNIVERSIDAD CATOLICA DE CHILE Pilar Cereceda Troncoso

Instituto de Geografía Tel.: +56-2-6864721 Avenida Vicuna MacKenna 4860 Fax: +56-2-5526028 E-mail: dcereced@puc.cl

Correo 22 Casilla 306 Santiago Chile

UNIVERSITA DEGLI STUDI DI PADOVA

Giorgio Franceschetti Dept. Territorio e Sistemi Agroforestali Tel.: +39-49-8272.705

Agripolis Fax:: +39-49-8272.703 I-35020 Legnaro (PD)

Italy

103

Period: January 1995 to December 1998

DEVELOPMENT OF MINIMALLY PROCESSED PRODUCTS FROM TROPICAL FRUITS USING VACUUM IMPREGNATION TECHNIQUES

Co-ordinator: Universitad Politécnica de Valencia, Valencia, Spain (Petro Fito Maupoey)

Objectives

- ♦ Develop minimally processed products from tropical fruits that have physical, chemical and sensory characteristics as similar as possible to the raw material and are stable at room temperature or on refrigeration, according to local commercial practices.
- Develop products from banana, mango, papaya and pineapple, among other fruits, with two types of properties:
 - high-moisture-content foods (HMF) similar to fresh foods
 - Intermediate moisture-content foods (IMF) such as purees and jams, prepared with mild thermal treatments and showing optimum retention of colour and flavour.
- ♦ Model, design and optimize processes to obtain these products, using osmotic dehydration (OD), vacuum impregnation operations (VI), and pulsed vacuum osmotic dehydration (PVOD). These processes will be combined with other treatments, such as pH reduction, use of preservatives, mild heat treatment, high-pressure or refrigeration.

Activities

- **★** Physico-chemical and structural characterization of raw and processed material, and correlation between these parameters.
- * Analysis of the sorption isotherms of each fruit in order to find the relationship between water activity and product composition.
- * Modelling of mass transfer kinetics and fruit response (impregnation/deformation levels) in vacuum impregnation process.
- * Modelling of the effects of temperature, pressure and type of osmotic solution on the kinetics of VOD and PVOD through calculation of kinetic parameters for the transfer of water and solutes between food and osmotic solution.
- * Evaluation of combined preservation methods on growth, thermal resistance and inactivation of micro-organisms, considering the effects of water-activity reduction, pH lowering, mild thermal treatment, refrigeration, and oxygen-availability lowering on moulds, yeasts, and bacteria, mesophile anaerobes and aerobes, and psicrophile aerobes. Assessment of changes in texture, colour and nutritional value.
- * Design of HMF and IMF products, using impregnation and osmotic-dehydration treatments on the basis of the detailed results of the modelling.
- * Study of the native flora (moulds, yeast, and bacteria) development during processing and storage of the products, as well as the quality factors: water activity, pH, texture, colour, vitamin C, degradation of added preservatives and sugar hydrolysis, as a function of the storage temperatures.
- * Sensory evaluation of the developed products by a consumer panel, and establishment of correlation between subjective and instrumental evaluation of colour and texture.

Selected publications

Fito P., Chiralt A. 1997. An approach to the modelling of solid-food/liquid operations: application to osmotic dehydration. In: Food Engineering 2000. Ed. P. Fito, E. Ortega, G. Barvosa. Chapman & Hall. 231-252.

Martínez-Monzó J., Martínez-Navarrete N., Chiralt A., Fito P. 1998 Mechanical and structural changes in apple (var. Granny Smith) due to vacuum impregnation with cryoprotectant agents. Journal of Food Science. 63(3), 1-

Salvatori D., Andréa A., Chiralt A., and Fito P. 1998. The response of some properties of fruits to vacuum impregnation. Journal of Food Process Engineering. 21, 59-73.

López-Malo A., Alzamora S.M. and Argaiz A. 1997. Vanillin and pH synergetic effects on mould growth. Journal of Food Science. 62:1-4.

Tapia M.S., Consuegra R., López-Malo A., Corte P. and Welti J. 1997. Minimally processed papaya by vacuum osmotic dehydration techniques. Food Science and Technology International (in press).

Tapia de Daza M.S., Alzamora S.M. and Welti-Chanes J. 1997. Obtention of minimally processed, highmoisture fruit products by combined methods. In: Food Engineering 2000. (Editors; G. Barbosa-Cánovas, P. Fito and E. Ortega), Chapman and Hall, New York.

Pedro Fito Maupoev

Partners

UNIVERISTAT POLITECNICA DE VALENCIA

Dept. de Tecnología de Alimentos Tel.: +34-96-387 73 64 Camino de Vera s/n Fax: +34-96-387 79 56 E-46020 Valencia E-mail: pfito@tal.upv.es

Spain

UNIVERSIDAD DE BUENOS AIRES Stella Maris Alzamora Facultad de Ciencias Exactas y Naturales Tel.: +54-1-784-0208

Fax: +54-1-784 02 08/ Ciudad Universitaria 1428 Buenos Aires

Argentina

UNIVERSIDAD CENTRAL DE VENEZUELA Maria Soledad Tapia de Daza

Facultad de Ciencias y Tecnología de Alimentos Tel.: +58-2-752 44 03 Calle Suapure Lomas de Bello Monte Fax: +58-2-752 38 71

P.O. Box 47097 YV-1041 A Caracas

Venezuela

FUNDACION UNIVERSIDAD DE AMERICAS Jorge Welti Chanes **PUEBLA** Tel.: +52-22-29 20 05

Dept. de Ingeniería Química y Alimentos Fax: +52-22-29 20 09

Apartado postal 100 Sta. Catarina Martir 72820 Cholula

Mexico

UNIVERSIDADE CATOLICA PORTUGUESA

Fernanda Oliveira Escola Superior de Biotecnología Tel.: +351-2-558 00 01 Rua Dr. Antonio Bernardino de Almeida Fax: +351-2-59 03 51

P-4200 Porto

Portugal

Period: January 1995 to January 1998

ECOSYSTEMS OF THE IX REGION OF CHILE: INFLUENCE OF LAND USE ON SUSTAINABILITY

Co-ordinator: Universität Bayreuth, Bayreuth, Germany (Klaus-Müller-Hohenstein)

Objectives

- ◆ Characterise the main land-use systems (ecosystems) of the Central Valley of the IX region of Chile.
- Examine the sustainability of these ecosystems in the context of biodiversity, nutrient stocks and acidification.
- ♦ Establish a Geographic Information System (GIS)-based environmental monitoring and recommendation system, including social and economic aspects.
- ♦ Make recommendations for sustainable agriculture and land use in the IX region in strict co-operation with the local population, esp. farmers.

Activities

The project deals with two types of data:

- Descriptors, which characterise the different properties of the respective systems;
- Indicators, which shall describe the degree to which the respective factors or factorcombinations contribute or impede a sustainable use.

Detailed investigation will comprise the following:

- * Soil chemistry: detailed description using standard methodologies of total and plant-available elements. As P availability and soil acidification are major problems in this region, adsorption isotherms of P, P fractions, and A1 species shall be determined.
- * Soil physics: standardized description of soil physical properties as well as erodability (plots and modelling).
- * Soil biology: characterisation of soil microbial biomass and soil organic matter by the fumigation/extraction method, classical fractionation, and NMR.
- * Phytopathology: evaluation of frequency and intensity of attack of most important diseases and pests by standard methods.
- * Hydrology/Hydrochemistry and Pesticide residues: dynamics of small watersheds will be followed and standard water characterisation techniques will be used to evaluate the effect of the different systems on the water regime.
- * Biogeography: inventories of existing plant associations, characterisation of the biodiversity and selection of indicator species.
- * Agronomy: balances for nutrients, organic matter, energy, and economics will be determined to characterise productivity and its changes over time.
- * Agro-sociology/Anthropology: the decision backgrounds of the different groups will be evaluated and recommendations will be elaborated to motivate them to make a better use of natural resources.

Expected outcome

- ⇒ It is expected that the project will provide a model that could be used to elaborate plans for a more sustainable use of natural resources by means of a GIS. Some factors that prevent the land use from being sustainable have already been identified and discussed with representatives of the local population, of the forest companies and with colleagues from different Chilean universities during a workshop in March 1998, in Temuco.
- ⇒ Recommendations for an improved use of agricultural and forest lands will be elaborated, as well as publications about the main scientific results of the different working groups.

Partners

UNIVERSITAET BAYREUTH

Institut für Geowissenschaften LS. Biogeographie- Abt. Agrarökologie

D-95440 Bayreuth

Germany

INSTITUTE FOR ARABLE CROPS

RESEARCH

Rothamsted Experimental Station

Soil Science Department GB-AL5 2JQ Harpenden

United Kingdom

UNIVERSIDAD DE LA FRONTERA

Departamento Ciencias Químicas Laboratorio de Química Ambiental

Avenida Francesco Salazar 1145

Casilla 54 D

Temuco Chile

UNIVERSIDAD AUSTRAL DE CHILE

Instituto Producción y Sanidad Vegetal

Casilla 567 P.O. Box 567 Valdivia

Chile

Klaus Müller Hohenstein

Tel.: +49-921-55 22 70 Fax: +49-921-55 23 15

E-mail: klaus.mueller-hohenstein@uni-bayreuth.de

Keith Goulding

Tel.: +44-1582-76 31 33

Itilier Salazar

Tel.: +56-45-252547 Fax: +56-45-252547

Roberto Carrillo

Tel.: +56-63-22 12 32 Fax: +56-63-21 29 53

Period: January 1995 to December 1997

NEW FOOD PRODUCTS FROM *PROSOPIS* FRUITS IN LATIN AMERICA: EXTENDING USE AND PREVENTING DESERTIFICATION IN ARID ZONES.

Co-ordinator: Consejo Superior de Investigaciones Científicas, Madrid, Spain (Fulgencio Saura Calixto)

Objectives

- Obtain gums, syrups and dietary fibre materials form mesquite pods
- ♦ Carry out physiological studies on the specific properties of dietary fibres rich in polyphenols
- Check the possibility of cultivating *Prosopis* trees in the dry lands of the regions with the lowest annual rainfall of Spain (south-east)

Activities and Results

⇒ Gum from Prosopis seeds.

Thermal and chemical treatments were applied to seeds in order to remove the tegument, followed by splitting and sorting by colours to separate the endosperm or gum from the seed coat and cotyledon. After milling, a powdered galactomannan was obtained. Molecular weight, galactose:mannose ratio, and rheological properties were tested, as well as other physiological properties (water-holding capacity, glucose retention index, fermentability, etc.)

⇒ Syrups and dietary fibres from Prosopis pulp

Syrups to be used as commerical sweeteners were obtained after water extraction of the sugar-rich mesquite pulp in successive steps using a multistage counter-current system, and centrifugation and vacuum concentration of juices. Clarification of these dark-brown products rendered clear solutions. Physico-chemical and nutritional evaluation of syrups was performed.

⇒ After water extraction, the pulp was pressed, dried (until moisture less than 5%) and milled. A dietary material very rich in insoluble dietary fibre was obtained. *In vitro* and *in vivo* studies, both with animals and healthy human volunteers, were carried out. This fibre material showed a strong bulking capacity, with no adverse nutritional effects. No influence on lipid metabolism could be observed.

⇒ Planting Prosopis trees in south east Spain

Prosopis seeds were germinated, and plantlets kept in nursery until their plantation in three locations: Murcia, Andalucia and Valencia. Excellent growth and adaptation to adverse climatic conditions were observed in trees planted in Murcia. Plantations in the other two locations showed good adaptation but not exceptional growth.

Fulgencio Saura Calixto Tel.: +34-91-544 56 07

Fax: +34-91-549 36 27

Gaston Cruz Alcedo

Tel.: +51-74-32 81 71

Fax: +51-74-32 86 45

Expected outcomes and follow-up

- New food products have been developed and presented to consumers and industries in Peru. Their introduction in local and regional markets in Latin America is planned.
- A pilot plant has been designed and set up for the obtention of food products from *Prosopis* fruits. Transfer of the technology to local industries is shortly expected.
- Introduction of Prosopis trees in dry areas of Southern Spain could help to alleviate growing desertification. Plantations will be followed-up to check long-term adaptation and productivity.

Selected publications

Bravo L., Grados N & Saura-Calixto F. 1998. Characterization of syrups and dietary fiber obtained from mesquite pods (Prosopis pallida L). J. Agric. Food Chem. 46 (4).

Grados N. & Cruz G. 1996. New approaches to industrialization of algarroba pods in Peru. In: "Prosopis: Semiarid Fuelwood and Forage Tree. Building Consensus for the Disenfranchised". Felker P. & Moss J. Eds.

Partners

CONSEJO SUPERIOR DE INVESTIGACIONES **CIENTIFICAS**

Instituto del Frío Ciudad Universitaria E-28040 Madrid

Spain

UNIVERSIDAD DE PIURA

Laboratory of Chemistry Avenida Ramón Múgica s/n

Urb. San Eduardo

Piura Peru

GENERAL DEL ALGARROBO DE ESPAÑA S.A.

Carlos Sanjuan Díaz Vereda Real Tel.: +34-96-135 05 51 Fax: +34-96-135 02 54 Correos 1456

E-46184 Valencia

Spain

UNIVERSITY OF EDINBURGH Martin Eastwood

Dept. of Medicine Tel.: +44-131-537 10 00 Western General Hospital Fax: +44-131-537 10 06

Crewe Road

GB-EH4 2XU Edinburgh

United Kingdom

INSTITUTO POLITECNICO NACIONAL Emma-Gloria Ramos Ramírez

Departamento de Biotenología Tel.: +52-5-754 02 00 Avenida del Instituto Politécnico Nacional 2508 Fax: +52-5-752 05 90

Apartado postal 14-740 07300 México DF

Mexico

STD III

Health

Period: April 1992 to March 1995

BITES AND STINGS BY VENOMOUS ANIMALS IN BRAZIL: CLINICAL AND LABORATORY INVESTIGATIONS OF ENVENOMING AND THERAPY

Co-ordinator: Liverpool School of Tropical Medicine, United Kingdom

(R.D.G. Theakston)

Objectives

The aim of the project was to assess the problems caused by venomous bites and stings in Brazil.

Activities

- * Complete monitoring of patients with severe envenoming were carried out. The effect of antivenom in reducing both the extent of swelling and local necrosis was investigated, as was the problem of possible pituitary and adrenal insufficiency caused by pituitary infarction.
- * The use of tourniquets in systemic envenoming was evaluated in 20 patients and 20 controls.
- * The prophylactic use of antimicrobial drugs was investigated in patients with moderate and severe systemic envenoming, to determine whether or not organisms present in the oral cavity of venom or on the gangs of wild snakes result in wound infection in the bitten patient.
- * An investigation of whether routine prophylactic antihistamine prevents both early and late reactions to antivenom was carried out in both moderately and severely envenomed patients in a randomized double blind placebo-controlled trial.
- * Thirty patients with moderate envenoming received half the lowest dose of antivenom given earlier, and 30 received the same starting dose as given in the previous project. Recovery from clinical signs, venom clearance, circulating antivenom levels, coagulation and fibrinolytic, hematological and biochemical profiles were compared.
- * Laboratory studies were carried out to assess the significance of the ELISA method for detection of functional molecules rather than immune complexes.
- * Studies on patients envenomed by scorpions and spiders were carried out in Sao Paulo and Belo Horizonte to investigate the kinetics of envenoming and therapy.
- * The detection of specific venom in lesions caused by *Loxosceles* spider bites was carried out.
- * Investigation of the pathogenesis of envenoming by *Crotalus durissus terrificus* in Sao Paulo and Minas Gerais States was carried out to improve patient treatment.
- * Determination of the importance of snake bite, to assess the traditional methods of treatment and to try and improve the management of severe cases in indigenous Indian and other associated populations.
- * The latest techniques of "molecular genetics" and multivariate analysis of morphological/anatomical features in comparison to venom composition were applied to provide practical guidelines for antivenom manufacturers to ensure adequate neutralizing efficacy of their products throughout Brazil.
- **★** Clone *Bothrops* myotoxins.

Expected outcome

Knowledge of the pathophysiological effects of venom components and establishment of appropriate treatment schemes for patients with envenoming.

Partners

LIVERPOOL SCHOOL OF TROPICAL MEDICINE R.D.G. Theakston

 Venom Research Unit
 Tel: +44-151-708.93.93

 Pembroke Place
 Fax: +44-151-708.87.33

UK-L3 5QA Liverpool

United Kingdom

INSTITUTO BUTANTAN J.L.C. Cardoso

Hospital Vital Brazil Tel: +551-1-211.83.61 Av. Vital Brazil 1500 Fax: +551-1-815.15.05

05504 Sao Paulo

Brazil

UNIVERSIDADE FEDERAL DE MINAS GERAIS C.F.S. Amaral

Hosp. das Clinicas Tel: +553-1-239.71.00 Av. Professor Alfredo Bolena 110 Fax: +553-1-226.82.77

CEP 13013 Belo Horizonte

Brazil

UNIVERSITY OF OXFORD D.A. Warrell

J. Radcliffe Hospital Tel +44-186-522.13.32 Centre for Tropical Medicine Fax: +44-186-522.09.84

OX3 9DU Headington UK-Oxford OXDU United Kingdom

UNIVERSITY OF ABERDEEN R.S. Thorpe

Dept. of Zoology Tel: +44-122-427.20.00
Tillydrone Avenue FAx: +44-122-427.43.96

UK-AB9 2TN Aberdeen

United Kingdom

CENTRE D'ETUDES NUCLÉAIRES DE SACLAY A. Menez

Service de Biochémie des Protéines Tel: +33-1-69.08.60.00

Gif-Sur-Yvette F-91191Saclay

France

Period: April 1992 to March 1995

A SURVEY OF CHAGAS CYCLES IN URUGUAY BY USE OF GENETIC MARKERS WITH SPECIAL EMPHASIS ON REINFESTATION HAZARDS OF DOMESTIC STRUCTURES BY SYLVATIC CYCLES

Co-ordinator: IRD (ex-ORSTOM) Montpellier I, Montpellier, France (J.P. Dujardin)

Objectives

- ♦ Understand why northern and southern areas of Uruguay present different epidemiologically features: domiciliated, more infected insects (*T. infestans*) in the northern departments versus peri-domiciliated, less infected insects in the southern departments: *Triatoma infestans* (Hemiptera, Reduviidae) is almost exclusively domestic in northern departments of Uruguay, such as Artigas, Cerro Largo, Rivera and Tacuarembo, but mainly occupies peridomestic habitats such as chicken coops in the southern departments of Soriano or Colonia. These areas differ in median temperature and humidity, with the northern regions tending to be warmer and drier, but also differ in socio-economic conditions such that rural dwellings in the northern departments are usually constructed of wood and/or adobe blocks, whereas brick and cement houses are more common in Soriano. This parallels higher infection rates of *T. infestans* with *T. cruzi* (causative agent of Chagas disease) in the northern departments. We were interested to examine the environmental and genetic contributions to the observed epidemiologic differences.
- ◆ Understand the reinfestation mechanisms of treated areas by the original vector species (*Triatoma infestans*), or by another one (*T. rubrovaria*). Reinfesting populations may represent hidden survivors recovering from the control treatment or they may be bugs immigrating from untreated foci. Operationally, it is important to distinguish between "survivors" (indicating control failure) and "immigrants" (indicating poor geographic coverage). Moreover, localized domestic invasions occurring in Uruguay were due to *T. rubrovaria*, a little-known species of *Triatominae*, providing a certain imperative to identify bug populations that might present a future risk of domiciliation.

This research programme was thus naturally inserted in the activities of the National Control Programme of Chagas Disease in Uruguay.

Results

1st Objective:

- ⇒ Though they were not distinguishable by isoenzyme electrophoresis, northern and southern populations of *T. infestans* in Uruguay were found to strongly differ at both cytogenetical and morphometrical characteristics. These results were related to the two-ways entry of *T. infestans* in Uruguay. *T. infestans* is believed to have originated from silvatic populations in central Bolivia and to have been dispersed mainly in association with human migrations, particularly during the last century.
- ⇒ Historical reconstruction suggests that it entered northern Uruguay from southern Brazil at around the turn of this century, but it appears to have entered southern Uruguay from Argentina some 50 years earlier since "vinchucas" (the local term for domestic Triatominae in Argentina and Uruguay) are mentioned in southern Uruguay in the chronicles of W.H.

J.P. Dujardin

⇒ Hudson first published in 1865. Biogeographically, the northern and southern departments of Uruguay are separated by the Rio Negro, which was bridged only a few decades ago, so that the apparent cytogenetical and metrical differences between northern and southern populations of *T. infestans* seems to accord both with their different origins and with an ecological barrier between them. In both cases, we can infer development from original founder populations, and assume that these would have differed slightly due to genetic drift which may or may not have been modified by adaptation to the different environments.

2nd objective

- ⇒ The various data obtained cytogenetic, morphometric and isoenzymatic converged on the idea that reinfestant specimens arose from a residual population. Indeed, in case of exchange of individuals between departments, between sectionals or between segments (administrative units in Uruguay), it was unlikely to find such an amount of cytogenetic and morphometric differences between them. Furthermore, when comparing reinfestant specimens with the insects collected before insecticide treatment, it was not possible to detect significant differences. The use of blood meal identification brought further, more defined, information about the mechanisms of reinfestation by *T. infestans*, indicating that the residual population was most probably of peridomestic, rather than domestic, origin.
- ⇒ Bloodmeal identification in *T. rubrovaria* revealed that this species had no host preference, indicating that its trend to domesticity was probably not due to an anthropophily, but rather to habitat convenience. Human blood was found in 10% of *T. rubrovaria* specimens, but in peridomiciliary conditions only, indicating that in limited geographic areas this silvatic species could make the link between the domestic and silvatic cycles of the parasite.

Partners

IRD (EX-ORSTOM), MONTPELLIER I

Labo de Génétique Moléculaire des Parasites et des

Tel: +33-1-48.03.77.77

Vecteurs

Fax: +33-1-48.03.08.29

Avenue Agropolis 911, BP 5045 F-34032 Montpellier 1

France

UNIVERSIDAD DE LA REPUBLICA L. Yarzabal

Instituto de Higiene Tel: +598-247.12.88 Avenida Alfredo Navarro 3051 Fax: +598-280.15.97 11600 Montevideo

Uruguay

UNIVERSIDAD AUTONOMA DE MADRID J.S. Rufas

Departamento de Biología Tel: +34-91-397.40.13 Carretera de Colmenar Viejo Fax: +34-91-397.41.23

E-28049 Madrid

Spain

Period: May 1992 to October 1995

IDENTIFICATION OF CANDIDATE PROTECTIVE MOLECULES OF E. GRANULOSUS AND DEVELOPMENT OF COMBINED SALMONELLA VACCINES

Co-ordinator: Universidad de la República, Montevideo, Uruguay (A. Nieto Cadenazzi)

Objectives

- ♦ Identification of vaccine candidate *E. granulosus* antigens (Ags) through analysis of immune evasion mechanisms as well as isolation of recombinant clones encoding the relevant Ags from cDNA libraries. Ags to be investigated will include *glutathione-S-transferase* (GST) and myosins. Immunogenicity and protection will be tested in animal models.
- ♦ Analysis of the structure of *E. granulosus* glycans and their influence, as well as that of the idiotype network, on the balance between susceptibility and protection to infection.
- ♦ Expression of recombinant antigens in live *Salmonella* vaccines to obtain maximal expression of the recombinant antigens in an integrated and maximally immunogenic form.

Activities

Uruguayan partner (Montevideo:

- * purify the *E. granulosus* metalloproteases;
- * purify anti-complement molecules obtained from *E. granulosus*;
- * identify putative protective antigens from protoscolex (PSC) surface antigens used to protect mice:
- * assay the immunogenicity of those antigens; those exhibiting protective capacity will be cloned in the laboratory of the UK partner (Newcastle);
- * identify and characterise immunogenic parasite glycans and analyze their role in immune evasion as well as that of anti-idiotypes;
- * analyze the influence of *E. granulosus* on Th1/Th2 balance and susceptibility to infection.

UK partner (Newcastle):

- * Optimisation of expression of recombinant antigens in aro and htrA *Salmonella* vaccines. The antigens will be expressed both as the whole protein and as immunogenic peptide fused to LT-B;
- * Testing of the construct in the mouse model for developing humoral and cell-mediated immunity.

The French partner (Paris):

* Participation in collaboration with Prof. Ehrlich's laboratory in the search of genes coding for proteins essential for parasite survival.

Expected outcome

E. granulosus protease clones will become available for use as immunogens and for sequence analysis. Complement activating glycans will be functionally characterised and the *in vivo* role of complement in susceptibility to infection will be tested. Candidate protective molecules and specific antibodies (Abs) will be prepared. Putative protective molecules will be cloned in

Salmonella and tested as immunogens. Optimisation of expression of recombinant antigens in Salmonella vaccines will lead to the development of a putative Salmonella-hydrated vaccine, using the recombinant hydatid antigens which become available.

Results

⇒ Uruguayan partner

E. granulosus metalloproteases (EgMP) cleaving human IgG3 and IgG1 were purified. Abs recognizing the 75kDa EgMP band, were found in sera from infected mice and humans but not dogs. Rabbit anti-EgMP was used to screen a cDNA library. A clone was purified, but no sequence homology was found with any known protease. Complement activation at different steps of the cascade by different parasitic preparations was assayed Cyst fluid (CF) produced the maximum TCC levels. CF derived N-linked oligosaccharide which produce TCC by fluid phase complement activation were identified. In addition, in vivo complement depletion was shown to decrease susceptibility to infection in mice. At least four glucoproteins from the protoscolex (PSC) surface have been identified which are recognised by sera from protected mice and included in ISCOMs which were immunogenic Parasite GST and a candidate protective E. granulosus clones, one intranassally. homologous to tropomyosin (EgDf5) and the other to fatty acid binding proteins (EgDf1) were isolated in Prof. Ehrlich's laboratory in collaboration with Prof. Nieto's laboratory. The role of CD4+ and CD8+ T-cells in immunity as well as the IL profiles they produce during in vitro proliferation were also analyzed in the mouse in collaboration with Dr. Anders Örn (Karolinska Institute, Stockholm). A MAb (E492) was prepared recognizing GaI 1-4Gal in PSC and used to isolate a fraction, containing complement-activating, mitogenic, and immunodominant T-independent glycan Ags. Surface PSC glycans obtained by EndoF treatment, were mitogenic in vitro and produced hypergammaglobulinemia in vivo. They were immunodominant in mouse, eliciting low avidity Abs and an unexpected IgM titer increase after booster. Cyst membranes (CM) glycans were also characterized and found to contain both N-linked and O-linked oligosaccharides which are immunogenic in infected hosts. A MAb (2B5) recognizing the immunodominant Gal-gicNAc-Man motif in N-linked oligosaccharides from CM was prepared. Four major N-linked oligosaccharides were found containing GlcNAc, Man, Fuc, Gal and NeuAc. Their structures were further analyzed by FAB-MS in collaboration with

⇒ <u>Prof. Anne Dell</u> (Imperial College, London). The role in immune regulation of antiidiotypes mimicking CF Ags was analyzed.

⇒ UK partner

A student from Prof. Nieto's laboratory completed his PhD degree in Cambridge performing this research. Methods for the expression of recombinant antigens in *Salmonella* vaccines as fusion proteins to fragment C of tetanus toxin (TetC) were optimised. Preimmunisation with tetanus toxoid did not suppress the response to guest antigens presented as such fusions to TetC. He expressed glycoprotein D of herpes simplex virus in that system and obtained protection of mice from challenge with virus. As fatty acid binding proteins conferred protection from fascioliasis and schistosomiasis, EgDf1 was considered candidate for protection in *E. granulosus*. EgDf1 was cloned and expressed in *Salmonella* and an htrA vaccine expressing it was orally administered to be used for expression of EgDf1 as above and its protective potential in dogs will be tested in Uruguay.

⇒ French partner

Prof. Scazzocchio has participated in collaboration with Prof. Ehrlich's laboratory as described above.

Partners

UNIVERSIDAD DE LA REPUBLICA (URUGUAY)

Fac. Quimica, Cat de Immunologia Alfredo Navarro 3051

11600 Montevideo

Uruguay

UNIVERSITÉ DE PARIS SUD

Centre Universitaire d'Orsay Inst. Génétique et Microbiologique

Batiment 409

F-91405 Orsay

France

UNIVERSITY OF NEWCASTLE

Dept. of Microbiology
The Medical School
Framlington Place

UK-NE2 4HH Newcastle

United Kingdom

A. Nieto Cadenazzi Tel: +598-2-47.43.34 Fax: +598-2-47.43.20

C. Scazzochio

Tel: +33-16-941.63.56 Fax: +33-16-941.78.08

E-mail: scazzocchio@igmors.u-

psud.fr

C.E. Hormaeche

Tel: +44-191-222.77.04 Fax: +44-191-222.77.36

E-mail: c.e.hormaeche@ncl.ac.uk

Period: July 1992 to September 1995

MOLECULAR APPROACH TO ECHINOCOCCUS DEVELOPMENT

Co-ordinator: Universidad de la República, Montevideo, Uruguay (R. Ehrlich)

Objectives

- ♦ Analysis of growth and development processes that take place during the *E. granulosus* life cycle and
- Study of the mechanisms involved in the adaptation to its specific hosts. The leading concept of the proposal was that the knowledge of the regulatory processes controlling *E. granulosus* development, growth and host adaptation could made important contributions to hydatid disease control.
- Furthermore, a complementary objective was proposed: it was focused on the optimisation of the expression of specific parasitic antigens in bacterial vectors, in particular in *Salmonellae*, attempting to contribute to the production of anti-parasitic live vaccines.

Activities

The study of *E. granulosus* growth and development focused on the following aspects:

- * Search for transcription factors able to be involved in the regulation of developmental events during the parasite life-cycle;
- * Characterization of developmentally regulated genes in order to establish initial molecular markers to decipher regulatory mechanisms;
- * Analysis of the parasitic-host adaptive processes through the study of the heat shock response;
- * Study of cytoskeletal protein genes;
- * Cloning and expression of antigen encoding genes;
- * Analysis of the parasite's genome organization;
- * As a complementary objective, the improvement of the expression of parasitic genes in attenuated *Salmonella* have been also undertaken.

Expected outcome

Major contributions expected from this project included:

- ⇒ Contribution to deciphering the basis for the specific host-parasite adaptation and characterising key genetic switches during parasite development;
- ⇒ The improvement of the expression of Platyhelminth genes in *Salmonella*;
- ⇒ Training of Latin American scientist in molecular approaches to parasitic diseases.

Results

In a first step we have completed a great deal of descriptive work, mainly involving isolation, cloning and sequencing of several genes. During a second period, the main effort has been centred on expression studies (characterization of promoters, mapping of transcription start sites, improvement of different approaches to study complex formation between promoters and specific transcription factors, spatial and temporal analyses of gene expression). Concerning molecular studies of development, growth and adaptation of *E. granulosus*, the following work has been carried out by our groups:

- ⇒ Characterization of transcription factors possibly involved in regulation of developmental events during the parasite life cycle: five homcobox- containing genes have been described: Eghbx1-5. The expression of two of these genes has been detected in protoscoteces (Eghbx1-2); in particular Ebhbx1-3 appeared to be expressed specifically in cells associated to calcareous corpuscles;
- ⇒ Isolation of two protoscolex differentiation markers: EgDf1, a gene coding for a protein related to the fatty acid binding proteins family (FABPs) and EgDf5, coding for a protein related to tropom-yosins. The EgDf1 protein could be involved in the binding and transport of lipids from host origin, a function of crucial importance for an organism like *E. granulosus*, unable to synthesize *de novo* most of its own lipids. Proteins related to the FABI's family were also described in *Schistosoma mansoni* and *Fasciola hepatica*; it was reported that both proteins are able to induce significant protection against experimental infection in animal models. The Egdf5 gene appeared to be expressed specifically in cells of the protoscolex suckers;
- ⇒ With the aim of studying the mechanisms of parasitic adaptation to the specific hosts, the heat shock response and its time course in *E. granulosus* has been characterized. Several stress proteins were identified by 2D-electrophoresis and a genomic clone containing the complete coding region of a Hsp70 protein, including the 5 regulatory domain was characterized;
- ⇒ Several genes coding for proteins involved in cytoskeleton organization were characterized; three different actins, the troposyosin-like protein mentioned above, and a gene coding for a putative actin-filament-fragmenting protein.
- ⇒ Two genes coding for enzymes have been characterized a cytocolic malate dohydrogenase gene and a gene coding for a thioredoxin-like protein.
- ⇒ A gene coding for calcium-binding protein (EgCaBP) was isolated and its expression has been focalized at the level of calcareous corpuscles.
- ⇒ Six putative RNA polymerase II transcription regulatory domains have been identified in Porto Alegre and Montevideo labs; they include the proximal promoter domains of EgDf1, Eghbx,1, two actions, malate dehydrogenase and a hsp70 gene. Several targets for general and specific transcription factors were identified and some conserved sequences, that could constitute the binding site for specific protoscolex transcription factors, were detected.
- ⇒ In relation with *E. granulosus* genome organization, a middle repetitive sequence organized like a mobile element has been reported and the structure of a functional rDNA gene and its regulatory domain have been recently established.
- ⇒ Finally, with respect to the complementary objective of the proposal, the UK team developed a system which allows expression of recombinant antigens in live *Salmonellae* as either full length proteins or multiple tandem copies of immunogenic epitopes as C terminal fusions to the immunogenic fragment C of totanus toxin, under the control of the anaerobically inducible nirB promoter. Using this system, a trivalent experimental *S. typhimurium* vaccine has been constructed, which protects mise from typhoid, tetanus and schistosomiasis following a single oral dose of the vaccine. The EgDf1 gene from *E. granulosus* has been

- expressed using the system described above. Preliminary results indicate that the construct is immunogenic in mice.
- ⇒ An important number of publications have been produced, from which several correspond to joint articles. The number of young Latin American scientist trainee within the frame of the project was equally important: 5 PhD have been completed either in the L.A. or in the European laboratories and also in "sandwich" programmes including work carried out in both sides; finally 9M. Sc. degrees were completed in the L.A. laboratories. The collaboration between all the partners has proved very fruitful not only in promoting North-South and South-South transfer of expertise, but also in building up research capability in both DC labs. A multidisciplinary collaboration was established through the interaction with another project centred on immunobiological aspects of hydatidosis (TS3*CT910038). The Latin American partners were also involved in the recent launching of a Network for Research and Training in Parasitic Diseases at the Southern Cone of Latin America. Finally, a FAO Collaborating Centre on Epidemiology, Diagnosis and Control of Echinococcosis/Ilydatidosis has been created in Montevideo, including the partners of projects TS3*CT910038 and 0039.

Partners

INSTITUTO DE BIOLOGIA,

Facultad de Ciencias Sección Bioquimica Tristan Narvaja 1674 11200 Montevideo

Uruguay

UNIVERSIDADE FEDERAL DO RIO GRANDE DO

Centro do Biotecnologia Av. Bento Gonçalves 9500 91500 Porto Alegre

Brazil

UNIVERSITÉ DE PARIS-SUD

Centre universitaire d'Orsay Institut Génétique et Microbiologique Bâtiment 409 F-91405 Orsay

France

UNIVERSITY OF CAMBRIDGE

Dept. of Pathology The Old Schools Trinity Lane UK-CB2 ITN Cambridge United Kingdom

C.E. Hormaeche Tel: +44-1223-322.19 Fax: +44-1223-332.51

E-mail: c.e.hormaeche@ncl.ac.uk

Tel: +598-2-48.86.21 Fax: +598-2-40.99.73

E-mail: ehrlich@genetica.edu.uy

A. Zaha

Tel: +555-1-336.37.77 Fax: +555-1-336.27.79

E-mail: zaha@dna.cbiot.ufrgs.br

Tel: +33-16-941.63.56 Fax: +33-16-941.78.08

E-mail: scazzocchio@igmors.u-

psud.fr

QUANTITATIVE DIAGNOSIS OF SCHISTOSOMA INFECTIONS BY MEASUREMENT OF CIRCULATING ANTIGENS IN SERUM AND URINE

Period: March 1992 to February 1995

Co-ordinator: Rijksuniversiteit Leiden, Leiden, The Netherlands (A.M. Deelder)

Objectives

- ♦ Development and optimization of enzyme-linked immunosorbent assays (ELISA) and reagent strips for the quantitative detection of circulating anodic (CAA) and circulating cathodic (CCA) antigens and other adult worm antigens (CA-2), immune complexes, and for the demonstration of several antigens in one assay.
- ◆ Evaluation of circulating antigen detection systems for use as sero-epidemiological tools in studies of the chemotherapy, immunology and morbidity of *Schistosoma mansoni*, *S. haematobium*, *S. japonicum* and *S. intercalatum* infection.

Activities

- * Monoclonal antibodies directed against schistosome circulating antigens were used in ELISA assays. Once monoclonal antibodies were produced against circulating antigens of *S. japonicum*, an ELISA assay were established and optimized for detection of this species.
- * Appropriate, alternative, simple procedures for pre-treating urine specimens were investigated.
- * The daily fluctuations of antigen concentration in urine and serum were investigated.
- * Reagent strip ("dipstick") assays will be employed in an attempt to develop a simple, field applicable assay.
- * Following training and technology transfer, sero-epidemiological surveys and clinical field trials were conducted.

Expected outcome

- ⇒ Improvement in the sensitivity and specificity of the circulating anodic (CAA) and circulating cathodic (CCA) antigen detection ELISA assays for *Schistosoma mansoni*, *S. haematobium* and *S. japonicum*.
- ⇒ Evaluation of antigen detection assays as sero-epidemiological tools.
- ⇒ The development of a reagent strip assay.
- ⇒ The successful transfer of ELISA, reagent strip and immunochemical expertise to the DC partners.

Partners

RIJKSUNIVERSITEIT LEIDEN A.M. Deelder

Dept. of Parasitology Tel: +31-71-527.68.59 P.O. Box 9605 Fax: +31-71-527.68.50

NL-2300 RC Leiden The Netherlands

LANDESINSTITUT FÜR TROPENMEDIZIN U. Bienzle

Koeningin Elisabeth Strasse 32 Tel: +49-30-303.27.00 D-1000 Berlin Fax: +49-30-303.27.37

Germany

SHANGHAI SECOND MEDICAL UNIVERSITY Z.L. Qian

Dept. of Parasitology Tel: +86-21-328.65.90 South Chongging Road 280 Fax: +86-21-437.48.61

200025 Shanghai China

DR. ALBERT SCHWEITZER HOSPITAL J. Prada

Lab. de Recherche Tel: +241-78.11.45

B.P. 116 Lambarene Gabon

RESEARCH INSTITUTE FOR TROPICAL L.P. Acosta

MEDICINE Tel: +63-2-842.22.45 Dept. Immunology Fax: +63-2-842.22.45

Alabang, Muntinlupa Metro Manila

The Philippines

CENTRO DE PESQUISAS RENE RACHOU A.L. Teles Rabello Lab. de Esquistossomose Tel: +55-31-295.35.66

Av. Augusto de Lima 1715 Fax: +55-31-295.31.15

30190 Belo Horizonte **Brazil**

Ecuatorial Guinea

MEDICAL RESEARCH STATION KUMBA

P. Enyong P.O. Box 55 Kumba

Cameroon COOPERACION TECNICA ESPANOLA BATA P. Simarro

Bata

DIAGNOSTISCH CENTRUM SSDZ N. de Jonge

P.O. Box 5010 Tel: +31-15-60.30.50 NL-2600 GA Delft

Fax: +31-15-56.81.03 The Netherlands

FACTORS AFFECTING WOMEN'S CHOICES OF HEALTH-CARE PROVIDERS FOR THEIR CHILDREN IN RURAL AND SEMI-URBAN GUATEMALA

Period: May 1992 to April 1995

Co-ordinator: Statens Seruminstitut, Copenhagen, Denmark

(S.C. Sørensen)

Objectives

- ♦ Examine:
 - The availability of different categories of health-care providers.
 - Women's choices in providers.
 - The effect of their health-care behaviour on child mortality.
 - Women's expenditure on health-care for children, and
 - the practices and qualifications of lay health-care providers.
- Develop and evaluate a training programme for a group of professionals and lay personnel.

Activities

- **★** Undertaking a survey of availability of health services in each of the selected municipios.
- * Conducting a survey of women's choice of health-care providers for their children. The survey will investigate the factors that influence their decisions of choice and how that choice affects the outcome of a disease. It will pay particular attention to women who have not sought professional care for their children who have subsequently died. This survey will be undertaken on a sample of 500 households and information will be gathered on the last illness episode of under-five children.
- * In-depth study of health-care behaviour of mothers whose children have died. Mothers with children who have died will be identified from the civil registers and 40 most recent cases of mortality that have occurred among children under five will be entered into the study, and a control group selected.
- * A survey on lay practitioners (including "pharmacists") focusing on their educational background, use of modern drugs, preferred treatment for specified diseases and fees charged.
- * An important aspect of the project is the development, implementation and evaluation of a training programme of lay and professional health personnel in dealing with women's role in the health care system.
- * The data from the different surveys were published in a report.

Expected outcome

The study is expected to elucidate the factors which are related to under-utilisation of health services in cases of severe illness resulting in childhood death. In addition, the project is expected to result in the development and evaluation of a training programme for professional and lay-health care providers, to be used in Guatemala and elsewhere.

S.C. Sorensen

M.E. Valenzuela Delgado

Results

The study has, so far, completed four community-based surveys in rural Guatemala with an emphasis on the socio-economic determinants for the utilisation of government health services by women and their children. The results confirm the key role of education of women in improving the health of women and children in rural areas in developing countries.

Partners

STATENS SERUMINSTITUT

Tel: +45-3-268.31.88 Div. of Biotechnology Lab. of Parasitology Fax: +45-3-268.32.28

Artillerivej 5

DK-2300 Copenhagen

Denmark

INSTITUUT VOOR TROPISCHE GENEESKUNDE

P. Van Der Stuyft Dept. of Epidemiology Tel: +32-3-247.66.66 Fax: +32-3-216.14.31 Nationalestraat 155

B-2000 Antwerpen

Belgium

CENTRO DE EDUCACION Y INVESTIGACION EN

SALUD (CEISAR) Tel: +502-9-32.33.87 Apartado Postal 476 Fax: +502-9-32.33.87

Antigua

Guatemala

Period: October 1992 to September 1995

IDENTIFICATION OF A PROMOTER SPECIFICALLY TRANSCRIBED IN THE GUT CELLS OF ANOPHELES MOSQUITOES FOR THE EXPRESSION OF ANTIPARASITIC AGENTS

Co-ordinator: Università di Roma "La Sapienza", Roma, Italy (A. Crisanti)

Objectives

We proposed to perform a series of experiments aimed at the identification of mosquito promoter/enhancer sequences specific for the cells of the intestinal lineage of Anopheles. The candidate genes for conferring a non-vectorial phenotype (anti-gamete/ookinete specific immunoglobulin), against malaria (both human and mouse) was targeted for expression in mosquito intestinal cells by means of a DNA vector containing the specific promoter sequence. The experimental objectives included:

- identification of mosquito genes that are specifically transcribed in the gut cells;
- identification of the upstream regulatory DNA sequences that drive gut specific transcription;
- ♦ transfection of mosquito cell lines with DNA constructs containing a reporter gene under the control of the selected promoter sequences;
- development of a suitable *in vitro* and a laboratory scale assay to determine the tissue specificity of the selected promoter;
- ♦ cloning of the coding sequences for the binding region of Plasmodium gamete/ookinete antibodies. The gut specific promoter was used to develop transgenic and transplanted mosquitoes secreting in the midgut transmission blocking antibodies. The transmission blocking activity of the antibody produced in the mosquito midgut was assayed in the human *P. falciparum* and in the mouse *P. berghei* models.

Activities

* Identification of a promoter sequence specifically transcribed in Anopheles gambiae: gut cells

The genes specifically expressed in the gut cell of the *Anopheles* was isolated from a λ gt 11 cDNA expression library with the help of an antiserum raised against the secretory protein of the gut. The 5' non transcribed promoter region was isolated from a genomic library using specific cDNA clones. Also the coding sequences of the Aedes trypsin gene was used to screen the Anopheles genomic library to search for the corresponding promoter. The transcription start site was identified by primer extension and S1- mapping and the promoter region was subcloned. The promoter was functionally defined by deletion mapping and *in vivo* assay. In addition the putative regulatory transcription sequences was tested for interaction, in gel shift electrophoresis, with protein from *An. gambiae* nuclear extract.

* Cloning of the heavy (H) and light (L) chains of gametocyte monoclonal antibody with blocking activity

Mouse hybridomas screening antibodies that both react with gamete/ookinete antigens and have transmission blocking activity were collected from several laboratories. We used antibodies against both *P. falciparum* and *P. berghei* antigens. The variable domains of the heavy and light chains was amplified from cDNA generated from the secreting cells. The

coding sequences of the variable regions H and L were cloned in a eucaryotic expression vector within the invariant regions of the γ and κ chain respectively and expressed in NSO cells, (Orlandi et al 1989). As control the transmission blocking function of the recombination antibody was tested in the supernatant of transformed NSO cells.

* In vivo activity of the putative An. gambiae gut specific promoter

The upstream sequences of the gut specific transcribed gene were tested on mosquitoderived cell lines for the ability to induce specific transcription and expression. Both a reporter gene (luciferase) and the cloned gamete/ookinete antibody sequence were cloned in a vector, containing long genomic cDNA sequences of *An. gambiae*, downstream of the putative promoter.

Expected outcome

- ⇒ If the product of the transgene is able to interfere with virus and parasite replication, the resulting mosquitoes should display a non-permissive phenotype for disease transmission.
- ⇒ The identification of a gut promoter would be particularly relevant for the generation of transgenic mosquitoes to be used in the genetic control of the wild type trains. In fact, to be successful the product of the transgene should not impair the environmental fitness, the fertility and the behavior of the mosquitoes. This would be better achieved if the expression of the transgene is restricted, by a specific promoter, to the organ (gut) were most parasites and viruses undergo replication.

Partners

IMPERIAL COLLEGE A. Crisanti

Dept. Biology Tel: +44-171-594.54.26 Prince Consort Road Fax: +44-171-594.54.24

United Kingdom

UK-London SW7 2BB

IMPERIAL COLLEGE OF SCIENCE, R. Sinden

TECHNOLOGY & MEDICINE

Dept. of Biology

Prince Consort Road

South Kensington

Tel: +44-171-58.95.11

Fax: +44-171-225.82.40

E-mail: r.sinden@bio.ic.ac.uk

UK-SW7 2BB London

United Kingdom

United Kingdom

FUNDACAO OSWALDO CRUZ R. Galler

Dept. de Entomologia Tel: +552-1-290.75.49 Av. Brasil 4365 Fax: +552-1-590.34.95

21040 Rio de Janeiro E-mail: rgaller@gene.dbbm.fiocruz.br

Brazil

LIVERPOOL SCHOOL OF TROPICAL MEDICINE J. Crampton

 Molecular Biology Group
 Tel: +44-151-708.93.93

 Pembroke Place
 Fax: +44-151-708.87.33

UK-L3 5QA Liverpool E-mail: p.s.craig@biosci.salford.ac.uk

Period: October 1992 to September 1995

SYNTHETIC PEPTIDE ANTIGENS AS A TOOL FOR SPECIES-SPECIFIC SERODIAGNOSIS OF LEISHMANIASIS WITH FIELD APPLICATIONS IN BRAZIL AND COLOMBIA

Co-ordinator: Liverpool School of Tropical Medicine, Liverpool, United Kingdom (M. Hommel)

Objectives

- ♦ The overall objective was to evaluate a series of synthetic peptides, derived from *Leishmania* genes, which can be used, under field conditions, for species-specific serodiagnosis of leishmaniasis. The original rational behind the proposed study was the finding that a synthetic 15 amino-acid peptide, based on the sequence of a *Leishmania donovani* gene, could be used in the laboratory for a specific serodiagnostic test of visceral leishmaniasis.
- The main objectives of the study were to:
 - field-test the existing peptide assay in selected areas of Brazil and Colombia, endemic for visceral leishmaniasis in order to evaluate its predictive value.
 - perform similar studies in areas for (muco-)cutaneous leishmaniasis and Chagas' disease in order to confirm species-specificity.
 - further improve the peptide-carrier construct.
 - use the same rationale and technology to be applied to the *Leishmania braziliensis* complex.
 - include peptide-carrier constructs in assays suitable for use under field conditions.
 - set up a laboratory of molecular biology at the University of Sucre.
 - collect isolates of Leishmania and patient blood and sera from locations in Colombia and Brazil.

Activities

- * Improvement of the methodology for the preparation of peptide-carrier constructs by conjugation of peptides to the human serum albumin carrier using thi-oester heterobifunctional reagents.
- * Design of new mixtures of peptide sequences ("mixotopes") based on consensus and variable motifs of the leishmanial rK39 sequence, an antigen which has proven diagnostic value.
- * Testing the potential use of random peptide phage display libraries as a means for the identification of immunodominant leishmanial peptides.
- * Investigation of the scientific basis for the direct agglutination test using whole leishmanial promastigotes.
- * Collection and PCR characterization of leishmanial isolates from Colombia.
- * Development of an antigen-capture assay for the detection of leishmanial antigens in the urine of patients with visceral leishmaniasis.
- * Collection of serum from patients with clinical visceral leishmaniasis, cutaneous and mucocutaneous leishmaniasis, Chagas' disease, asymptomatic leishmanial infections and a variety of endemic controls in Brazil.

Results

- ⇒ Development of a new, ELISA-based, serological assay for the diagnosis of visceral leishmaniasis using a mixture of synthetic peptides linked to a carrier protein (HSA). Publication of the description of the assay and its performance in scientific literature.
- ⇒ Characterization of new foci of leishmaniasis in Brazil and in colombia (District of Sucre).
- ⇒ Completion of 3 PhD theses on leishmaniasis (1 from a DC student, 2 from EU students); 2 other PhD theses from DC students are still in the process of completion.
- ⇒ Setting up of a laboratory for the study of leishmaniasis and the use of molecular biology methods in Sincelejo, Sucre, Colombia. This laboratory has been given the status of Regional Leishmaniasis Reference Laboratory by the Colombian Health Authority.
- ⇒ Organization in Liverpool of one of the Euroleish Network meetings and editing of the proceedings.

Partners

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

Div. of Molecular Biology & Immunology
Pembroke Place
UK-Liverpool L3 5OA

United Kingdom

CENTRE NATIONAL DE LA RECHERCHE

SCIENTIFIQUE Glycobiologie

Centre de Biophysique Moléculaire

Rue Charles-Sadron

F - 45071 Orléans Cédex 2

France

UNIVERSITY OF KEELE

Dept. of Biological Sciences UK-Keele ST5 5BG

United Kingdom

UNIVERSIDADE FEDERAL DA BAHIA

Hospital Universitario Prof. E. Santos

Rua Joao das Botas

Canela

40140 Salvador

Bahia

Brazil

UNIVERSITY OF SUCRE

Regional Leishmaniasis Reference Laboratory

Sincelejo, AA406

Colombia

M. Hommel

Tel: +44-151-708.93.93 Fax: +44-151-708.87.33 E-mail: mhommel@liv.ac.uk

R. Mayer

Tel: +33-238-51.55.62 Fax: +33-238-69.00.94

E-mail: mayer@cnrs-orleans.fr

R. Maingon

Tel: +44-178-262.11.11 Fax: +44-178-263.00.07 E-mail: bia25@cc.kl.ac.uk

R. Badaro

Tel: +557-1-235.48.66 Fax: +557-1-245.71.10

P. Blanco-Tuiran

Tel: +575-282.12.40 Fax: +575-282.67.15

Period: August 1992 to July 1994

MALARIA PRE-ERYTHROCYTIC STAGES (MPES) EUROPEAN NETWORK ANTIGENS TARGET OF IMMUNE RESPONSES CAPABLE OF INHIBITING P. FALCIPARUM PRE-ERYTHROCYTIC DEVELOPMENT

Co-ordinator: Institut Pasteur, Paris, France (P. Druilhe)

Objectives

- ◆ Development of the immunology of MPES with the aim of developing an effective MPES vaccine.
- Acquisition of an improved knowledge of the biology of MPES.
- ♦ Improved co-ordination and exchanges within and between European and Developing Country teams.

Activities

- * Molecular biology studies of pre-erythrocytic antigens from mostly *P. falciparum* and *P. berghei*, and in part, *P. reichenowi* (identification, characterisation, and production of genes and antigens: LSA1 (a major 200 kDa molecule expressed in liver stages), SALSA (a 70 kDa antigen shared between sporozoite and liver stages), LSA3-729 (a pre-erythocytic-stage-specific molecule expressed in sporozoites and liver stages, DG21 (a sporozoite-specific 78 kDa molecule). Antigenic features of these molecules, conservation of epitopes amongst isolates, epitope mapping; immunogenicity in animals, characterization and prevalence of immune responses in humans and in animals, (mice and primates), identification amongst the remaining series of cloned pre-erythrocytic-stage molecules of those that deserve further detailed studies.
- * Improvement of the reproducibility of liver infections in Aotus monkeys. Immunization and sporozoite challenges of chimpanzees and Aotus with P. *falciparum* antigens of mice and thamnomys, with P. berghei, P. yoelii antigens. Analysis of the immune responses developed by immunized animals, and of the type of defence mechanisms operating. Comparison of the type of immunity induced by antigens and by whole parasites (i.e. irradiated sporozoites) in natural versus artificial hosts.
- * Analysis of naturally occurring immunity to MPES in field conditions, of the mechanisms regulating parasite loads at MPES level, and of the main antigens inducing such mechanisms. Analysis of the artificial immunity induced by injection of y-irradiated sporozoites, and of the mechanisms and antigens responsible for such immunity.
- * Study of the mode of action and the respective importance of antibodies, antibody cell Cupertino, lymphocyte cytotoxicity, and cytokines using *P. falciparum* and human hepatocytes, under *in vitro* conditions or *in vivo* in SCID mice.

Expected outcome

Improved understanding of the human P. falciparum relationship at MPES level, mainly through an analysis of existing regulatory mechanisms developed against those staged by

exposed individuals, and their epidemiological consequences in various areas differing in their vectorial capacity.

Results so far

Molecular biology

Four out of four of the new *P. falciparum* molecules being studied, namely STARP, SALSA, LSA-1 and LSA-3, have been characterised in terms of their full-length DNA sequence and stage-specific expression, and we have initiated the study of three new MPES genes: DG 64, DG 6F and DG 571 (two of them in collaboration with Nijmegen and BPRC). Immunological studies with isolates of *P. falciparum* at the sporozoite stage have shown the consistent expression of those genes, and comparison of sequence data for areas of immunological interest of LSA-1 and LSA-3 have shown a remarkable degree of conservation, in contrast to many other *P. falciparum* antigens. Homologues of these genes have been found in the ape parasite *P. reichnowi* and, for some of them, the sequence (e.g. STARP) determined. Immunological and genetic screening of other plasmodial species led to the identification of an equivalent of LSA-3 in the rodent species *P. yoelii* which, particular, share B- and T-cell epitopes with *the P. falciparum* gene, and open the possibility of performing immunization and challenge with the rodent species in laboratory animals.

For immunization purposes, the genes have been cloned in various types of vectors expressed in prokaryotic and eukaryotic cells, and naked DNA vectors. For instance, a very large range of recombinant-expression systems is now available for LSA-3 as a model system. This, together with the large number of lipopeptides derived from the above molecules, provides a very large range of immunization systems.

Antigenicity studies

Using peptides and recombinants from the four leading molecules, studies in five endemic areas have identified the sequences defining B-cell epitopes, and have showed high to very high sero-prevalences to them (e.g. 97% prevalence to LSA-3 repeats in Senegal, spanning all age groups). Similarly, T-helper-cell epitopes were mapped, and a correspondence between the level of malaria transmission and the proportion of T-cell responders was observed (up to 85% of T-cell responders to most peptides in the Congo region). Many of those epitopes were also found to be able to stimulate the secretion of interferon gamma (the cytokine known to be the most potent in blocking liver-stage development. One LSA-3 peptide induces the secretion of particularly high concentrations of this cytokine. Finally, a very large number of HLA class-1-restricted CTL epitopes were identified in the four genes under study: six in LSA-1, two in SALSA, one in STARP, and eleven in LSA-3.

Immunogenicity and vaccination studies

Chimpanzee and thamnomys were used as model systems to analyze the protection induced per irradiated sporozoites, and the immune response in the 1krad chimpanzee paralleled those recorded in human volunteers immunized in the same manner. However, the CD8 lymphocyte depletion planned in this animal could not be performed. Rodent modelling revealed an inverse relationship between the susceptibility of the host to the parasite and the dose of irradiated sporozoites needed to achieve protection, i.e. protection was very difficult to induce in thamnomys, which is more susceptible than artificial laboratory hosts.

Using the four lead molecules, preliminary immunization attempts were performed in mice of five different H2 haplotypes, with many different synthetic peptides and lipopeptides as well as recombinant proteins, and a large range of adjuvants. One of the most remarkable results was obtained with lipopeptide, which proved able to induce Th and CTL responses without adjuvant, and to increase the immunogenicity to the point of apparently overcoming partially or totally the genetic restriction observed in inbred mice. Therefore, immunizations were performed in chimpanzees, using six lipopeptides injected in PBS, and six non-lipopeptides injected in montanide adjuvant or adsorbed on microspheres. By these means, T-helper-cell responses were induced to all twelve peptides, some of them at very high level (stimulation indices >80). Antibody production was observed towards eleven of the twelve peptides, most of them at very high levels. Moreover, these responses proved to be long lasting, and to be specific to parasite-native proteins. Finally, CTL responses were detected towards six of these peptides. Challenge studies indicated that SALSA and mostly SLA-3 held the best promise in terms of protection.

A large number of immunization schemes were used in mice, with LSA-3 as a model system to assess protection against *P. yoelii* challenge.

Results with QS21, titermax, FCA or FIA were disappointing. To date, the best results have been obtained with lipopeptide or with microsphere immunization, which have the advantage of being effective without adjuvant and to induce a full range of immune responses.

In vitro study of defence mechanisms

The P. falciparum human hepatocyte in-vitro system was used to study defence mechanisms. At very low concentration, antibodies to STARP and LSA-3, and also auto-SALSA antibodies strongly inhibited P. falciparum sporozoite invasion. IgM from irradiated sporozoite volunteers proved more efficient than IgG antibodies. Several attempts to show whether CTL cells could lyse human or chimpanzee infected hepatocytes have been made so far without reaching a conclusive result. However, the conditions necessary to achieve this goal have considerably improved. For instance, a method enabling the raising of CTL-malaria specific CTL lines from healthy volunteers, developed in Oxford, increases greatly the chances of matching the MHC Class-I antigen from the effector cells with that of the target hepatocytes. One drug, already developed and used clinically, proved to be very effective *in vitro upon P. falciparum* liver stages, but not against *P. yoelii* liver stages. G-Oligonucleotide primers derived from LSA-3 were used in a PCR assay, which proved to be the most sensitive diagnostic means available to date to detect very low-grade *P. falciparum* blood infection.

In total, these studies have confirmed the potential of the molecules under study, of which the antigenicity, immunogenicity and conservation among isolates appeared to be remarkable. The vaccination schemes used up to now may not yet be optimal, but they have yielded very encouraging results, and the conditions to assay the efficacy of further immunization schemes have greatly improved.

Partners

INSTITUT PASTEUR

Département Parasitologie Biomédicale Rue du Dr. Roux 28 F-75724 Paris 15

France

P. Druilhe

Tel.: +33-1-45 68 85 78 Fax: +33-1-45 68 86 40 E-mail: druilhe@pasteur.fr

E-mail: medpar.jm@aznvx1.nl

BIOMEDICAL PRIMATE RESEARCH CENTRE A. Thomas

BPRC Tel.: +31-1-584 25 38 Dept. of Parasitology Fax: +31-1-584 39 86

P.O. Box 5815 E-mail: thomas@itri.avg.mbc.tno.nl

NL-2280 HV Rijswijk The Netherlands

IMPERIAL COLLEGE OF SCIENCE, R. Sinden

TECHNOLOGY & MEDICINE Tel.: +44-171-594 54 25 Dept. of Biology Fax: +44-171-594 54 24 Prince Consort Road E-mail: r.sinden@bio.ic.ac.uk

South Kensington UK-SW7 2BB London **United Kingdom**

KATHOLIEKE UNIVERSITEIT NIJMEGEN W. Eling

Dept. of Medical Parasitology Tel.: +31-8-061 36 63 P.O. Box 0009101 Fax: +31-8-054 02 16

NL-6500 HB Nijmegen The Netherlands

UNIVERSIDAD DEL VALLE S. Herrera

Tel.: +57-2-356 56 21 Fundación Centro de Primates AA 25360 Cali Fax: +57-2-358 10 61

Colombia E-mail: soheva@mafalda.univalle.edu.co

MAHIDOL UNIVERSITY A. Asavanich

Fac. of Tropical Medicine – Entomology Tel.: +66-2-246 12 72 Rajvithi Road 420/6 Fax: +66-2-246 83 40

10400 Bangkok **Thailand**

INSTITUUT VOOR TROPISCHE M. Wéry

Tel.: +32-3-247 63 59 **GENEESKUNDE** Fax: +32-3-216 14 31 Nationalestraat 155 B-2000 Antwerpen E-mail: mwery@itg.be

Belgium

KATHOLIEKE UNIVERSITEIT NIJMEGEN R. Konings

Dept. of Molecular Biology Tel.: +31-80-652 25 08 Toernooiveld 1 Fax: +31-80-65 21 12

NL-6525 ED Nijmegen The Netherlands

INSTITUTE OF MOLECULAR MEDICINE

Molecular Immunology Group Tel.: +44-186-522 23 01 J. Radcliffe Hospital Headington Fax: +44-186-522 25 02 E-mail: a.hill@well.ox.ac.uk

A. Hill

UK-OX3 9DU Oxford **United Kingdom**

CENTRE INTERNATIONAL DE RECHERCHE P. Millet

MEDICALE DE FRANCEVILLE Tel.: +241-67 70 92 **BP 769** Fax: +241-67 72 95

Franceville E-mail: Pasmille@club-internet.fr

Gabon

Period: January 1993 to August 1994

COMMUNITY-BASED MALARIA CONTROL UNDER THE GUIDANCE OF HEALTH SERVICES: INTERVENTION STUDY IN ECUADOR AND COLOMBIA

Co-ordinator: Universität Heidelberg, Heidelberg, Germany (A. Kröger)

Objectives

- Describe the epidemiology of malaria in the study areas.
- ♦ Measure the impact of several community-based interventions of malaria control on the incidence of malaria attacks and on case management.
- Identify factors favouring or hindering the protective efficacy of specific interventions.
- Measure different cost aspects of such a programme.

Activities

- * After the baseline study on malaria incidence and a KAP study in three areas of Ecuador and Colombia regarding self-diagnosis and self-treatment of malaria, the study communities were divided randomly into intervention communities and control communities respectively (randomized community trials).
- * The project teams trained staff members of the local health services, who then carried out a series of training workshops in the intervention areas with community representatives and community volunteers.
- * After 8 months of intervention, the research team repeated the measurements, both in the intervention and in the control areas, assessing the malaria incidence and people's KAP regarding malaria prevention and treatment.
- * Before and after the intervention, health services' staff members (in particular, malaria field workers) were observed when carrying out workshops and when doing community health actions. In particular, DDT residual spraying overall costs of the programme were measured.

Results

- ⇒ Between the three study areas of the Pacific Coast, there was considerable variation in the socio-economic characteristics of the populations, accessibility of health services, and ethnomedical practices. The demographic structure, housing conditions, and malaria control through vertical programmes, were similar.
- ⇒ Main malaria vectors were: A. albimanus in Ecuador and A. nuneztovari in Colombia. The monthly incidence rates of malaria episodes during the wet season were 3.5% in Colombia and 7.0% in Ecuador. The main parasite was P. falciparum (92% in Colombia, 86% in North Cost of Ecuador). The remainder was P. vivax. Transmission occurred principally inside or around the houses. Users of (unimpregnated) bed nets had the same incidence of malaria episodes as non-users of bed nets. The impregnation of bed nets with lambdacyhalothrin showed a high (71%) protective efficacy against clinical malaria attacks in Colombia. The study in Borbon (North Coast of Ecuador) showed that intensive residual spraying with DDT had the same protective efficacy against malaria episodes as the

impregnation of bed nets with permethrin. However, the costs of the DDT programme were 3.5 times higher than those of the impregnation programme. In Muisne (Ecuador), the protective efficacy of bed-net impregnation was not increased by the additional breeding of larvivorous fish in all large mosquito-breeding places.

- ⇒ A set of limiting and favourable factors for a community-based programme of bed-net impregnation was identified.
- ⇒ The educational programme in Ecuador had the following impact (expressed in percentage of increase of correct knowledge and practice): improvement of correct knowledge about malaria transmission (30%), symptoms (25%), and the correct doses of chloroquine for adults (25%). The respective values in Colombia were 28%, 38%, and 48%. Taking correct doses of chloroquine during a clinical malaria attack was improved by 20% in Ecuador, and by 46% in Colombia. The factors related to this were analyzed. The community interventions on mosquito breeding places had no clear effect on vector densities and malaria incidence rates. The cost calculations showed that it was feasible to carry out a large scale impregnation programme.

Selected publications

Kröger A., Mancheno M., Alarcón J., Pesse K. 1995. Insecticide-impregnated bed nets for malaria control: varying experiences form Ecuador, Colombia and Peru concerning acceptability and effectiveness. Am. J. Trop. Med. Hyg. 53: 313-322.

Kröger A., Gerdhaus A., Krüger G., Mancheno M., Pesse K. 1997. The contribution of repellent soap to malaria control. Am. J. Trop. Med. Hyg. 56:580-584.

Kröger A., Mancheno M., González M., Meyer R. 1996. Health education for community-based malaria control: an intervention study in Ecuador, Colombia and Nicaragua. Top. Med. Int. Hlth. 1:836-846.

Kröger A., Meyer R., Mancheno M., González M., Pesse K. 1997. Operational aspects of bed-net impregnation for community-based malaria control in Nicaragua, Ecuador, Peru and Colombia. Trop. Med. Int. Hlth. 2:589-602.

Partners

UNIVERSITAET HEIDELBERG

Institut für Tropenhygiene & Oeff. Gesundheitswesen **INF 324**

D-69120 Heidelberg

Germany

MUSEO NACIONAL DE MEDICINA DEL

ECUADOR

García Moreno 524 y Avda. 24 de Mayo

Quito

Ecuador

UNIVERSITEIT ANTWERPEN

Epidemiology and Community Medicine

Universiteitsplein 1 B-2610 Antwerpen

Belgium

UNIVERSIDAD DEL VALLE

Departamento de Medicina Social

CO-A.A.-034406 Cali

Colombia

A. Kröger (now at Liverpool School of

Tropical Medicine)

Tel.: +44-151-708 93 93 Fax: +44-151-707 17 02: Akroeger@liverpool.ac.uk

M. Mancheno

Tel.: +59-3-257 37 92 Fax: +59-2-227 298

A. Meehus

Tel.: +32-3-820 25 59 Fax: +32-3-820 26 40

Socrates Herrera

Tel.: +57-2-558 19 46

Period: October 1992 to September 1995

PHYTOMONAS SPP, TRYPANOSOMES DE PLANTES - RECHERCHES SUR LE METABOLISME, LA VARIABILITE, LA PATHOGENICITE ET L'EPIDEMIOLOGIE, POUR ARRIVER A DES METHODES DE LUTTE NON POLLUANTES

Co-ordinator: CIRAD, Montpellier, France (Michel Dollet)

Objectives

Les trypanosomes de plantes constituent un nouveau domaine de la phytopathologie puisque les recherches ont véritablement débutés dans les années 80. Ce programme consiste à faire progresser les connaissances sur ces microorganismes :

- variabilité,
- pathogénicité,
- ♦ épidémiologie,

de manière à identifier des possibilités de lutte non polluantes qui remplaceraient les actuels épandages d'insecticides.

Activities

- * Réalisation de primocultures cultures in vitro de manière à constituer une large collection d'isolats de trypanosomes de plantes pour étude.
- * Etude du métabolisme des *Phytomonas* afin, d'une part, d'améliorer les conditions de culture in vitro ces organismes se multiplient difficilement dans les conditions actuelles -, et d'autre part, pouvoir intervenir sur ce métabolisme en tant que méthode de lutte possible. (Utilisation des sucres, voies métaboliques, localisation cellulaire des activités enzymatiques) détermination des formes du cycle des *Phytomonas* et rôle de l'AMP cyclique.
- * Variabilité des trypanosomes de plantes à l'aide de différentes techniques : immunofluorescence à l'aide d'anticorps monoclonaux, électrophorèse d'isoenzymes, électrophorèse des fragments de restriction de l'ADN kinétoplastique, caractérisation du marqueur génomique de l'ARNr 16 S, séquençage de minicercles de l'ADNk et utilisation en sonde moléculaire.
- * Pathogénicité des trypanosomes de plantes : réalisation d'élevage d'insectes vecteurs, acquisition ou inoculation des trypanosomes par le vecteur, et transmission à des plantes test. Rôle éventuel de particules virales de trypanosomes dans la pathogénicité.
- * Recherche des réservoirs naturels, des *Phytomonas* phytopathogènes, des hôtes naturels de leurs vecteurs.
- * Mise au point de méthodes de lutte découlant des résultats obtenus dans les différents domaines évoqués ci-dessus. Recherche de variétés résistantes ou tolérantes aux maladies à trypanosomes.

Selected publications

Dollet M. 1994. Identification and characterization of pest organisms; plant trypanosomes case study. In: The identification and characterization of pest organisms. Ed. by D.L. Hawksworth. CAB Intal and the Systemic Association 415426.

Sánchez-Moreno M., Fernández-Becerra C., Entrala C., Opperdoes F.R., Dollet M., Osuna A. 1995. *In vitro* culture of *Phytomonas sp.* isolated from *Euphorbia characias*. Metabolic studies by HNMR, J. Euk. Microbiol. **42(3)**: 314320.

Dollet M., Marche S., Gargani D., Muller E., Baltz T. 1996. Virus of plant trypanosomes (Phytomonas spp). In: Histology, ulstrastructure and molecular cytology of plant-microorganism interaction. Kluwer Academic publishers. 227236.

Partners

CIRAD - CP Michel Dollet

Laboratoire de Phytovirologie des Régions Chaudes

Tel.: +33-67.61.58.79

BP 5035

Fax: +33-67.63.51.00

F-34032 Montpellier

France

CENTRO DE INVESTIGACION EN PALMA DE ACEITE Fany Albanyl

Apartado Aereo 2548 Tel.: +57-1-255.68.75 Villavicencio Meta Fax: +57-1-217.53.47

Colombia

FONDO NACIONAL DE INVESTIGACIONES Asdrubal Díaz

 AGROPECUARIAS
 Tel.: +58-43-83.12.12

 Av. Universidad,
 Fax: +58-43-83.14.23

Vía El Limón Maracay

Venezuela

UNIVERSITE DE BORDEAUX II Théo Baltz

Labo. Immunologie & Parasitologie Moléculaire

Tel.: +33-57.57.16.44

Rue Léon Saignat 146

Fax: +33-57.57.10.15

F-33076 Bordeaux

France

INSTITUT GUSTAVE ROUSSY Guy Riou

Labo. de Pharmacologie Clinique & Moléculaire

Tel.: +33-45.59.47.79

Camille Desmoulins 39

Fax: +33-46.78.92.91

F-4800 Villejuif

France

INSTITUTO DE INVESTIGACIONES EN INGENIERA
GENETICA Y BIOLOGICA
Hector N. Torres
Tel.: +54-1-784.5

 GENETICA Y BIOLOGICA
 Tel.: +54-1-784.55.16

 Velto de Oblogado 2490
 Fax: +54-1-786.85.78

 1428 Buenos Aires
 Fax: +54-1-786.85.78

Argentina

INTERNATIONAL INSTITUTE OF CELLULAR AND Frederik R. Opperdoes MOLECULAR PATHOLOGY Tel.: +32-2-764.74.39

Research Unit for Tropical Diseases Fax: +32-2-762.68.53

Avenue Hippocrate 74 B-1200 Brussels

Belgium

UNIVERSIDAD DE GRANADA Manuel Sánchez Morena Facultad de Granada Tel.: +34-58-24.32.63

Facultad de Granada Tel.: +34-58-24.32.63 Depto. Bioquímica yBiología Molecular Fax: +34-58-24.31.74

Campus Fuente Nueva E-18071 Granada

Spain

Period: January 1992 to December 1995

ANTIMALARIAL AGENTS WHICH ACT BY AFFECTING THE PHOSPHOLIPID METABOLISM OF THE INTRAERYTHROCYTIC PLASMODIUM. DEVELOPMENT OF A PHARMACOLOGICAL MODEL

Co-ordinator: Centre National de la Recherche Scientifique, Montpellier, France (Henri Vial)

Objectives

- ◆ Study novel antimalarial agents that act upon the phospholipid metabolism in the erythrocytic stages of malarial development,
- Develop appropriate pharmacological models.

Activities and results

- * This project aims to find new chemotherapeutic treatments (and, eventually, prophylactic) for malaria. Interruption of phospholipid metabolism of erythrocytic stages of Plasmodium, which is essential for the synthesis of parasite membranes, blocks parasite development. The most promising compound inhibits the choline carrier, a rate limiting in phosphatidylcholine synthesis, a mahor phospholipid in Plasmodium. Compounds such as this step could be effective against parasites resistant to existing antimalarials.
- * The programme has provided insight into the nature and site of the choline transporter, and thus for the creation of new molecules that inhibit plasmodial phospholipid metabolism. The programme has also established the therapeutic doses needed to block the multiplication of Plasmodia and to further develop such drugs that have a maximum therapeutic index..

Selected publications

Elabbadi N., Ancelin M.L., and Vial H.J. 1994. Characterization of phosphatidylinositol synthesis and evidence of a phosphoinositide cycle in Plasmodium-infected erythrocytes. Mol. Biochem. Parasitol. 1994. **63**: 179-192.

Ancelin M.L., Vial H.J., Calas M., Giral L., Piquet G., Rubi E., Thomas A., Peters W., Slomianny C., Herrera S., Louis F. 1994. Present development concerning antimalarial activity of phospholipid metabolism inhibitors with special reference to in vivo activity. Memorio do Instituto de Oswaldo Cruz. 89. Suppl. II, 85-90.

Yeo H.J., Sri Widadda J., Mercereau Pujalon O., and Vial H.J. 1995. Molecular cloning of CTP: Phosphocholine Cytidylyltransferase from Plasmodium falciparum. Europ. J. Biochem. 233: 62-72.

Vial H.J. 1996. Plasmodium phospholipid metabolism, a target for the development of novel antimalarial drugs. Tropical Medicine & International Health. I, A19-A-20.

Vial H.J., Ancelin M.L., Giral L., and Calas M. 1996. Agents antipaludéens et antibabsioses, et compositions pharmaceutiques les contenant. Groupe VIRBAC. **No. 96 09678**, PCT FR97/01336.

Partners

CENTRE NATIONAL DE LA RECHERCHE

SCIENTIFIQUE

URA 1856 – Interactions Membranaires

USTL, Case 107

Place Eugène Bataillon

F-34095 Montpellier

France

UNIVERSITÉ DE MONTPELLIER

Centre d'Etude des Matériaux Organiques et Polymères

Case 018

Place Eugène Bataillon F-34095 Montpellier

France

BIOMEDICAL PRIMATE RESEARCH CENTRE

Medical Biology Laboratoriese

Dept. of Chronis & Infectious Diseases

P.O. Box 5815

NL-2280 HV Rijswijk

The Netherlands

INTERNATIONAL INSTITUTE OF

PARASITOLOGY

395 Hatfield Road

Winches Farm

St Albans

UK-AL4 OXQ Hertfordshire

United Kingdom

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE

Unité 42

Biologie & Biochimie Parasitaires

Domaine du Certia

B.P. 39

F-59650 Villeneuve d'Asq

France

UNIVERSIDAD DEL VALLE

Fundación Centro de Primates

A.A. 25360 Cali

Colombia

ORGANISATION DE LUTTE CONTRE LES ENDEMIES EN AFRIQUE CENTRALE

Laboratoire de Biologie

BP 28

Yaoundé

Cameroon

Henri Vial

Tel.: +33-4-67 14 37 45

Fax: +33-4-67 14 42 86

E-mail: vial@univ-montp2.fr

Louis Giral

Tel.: +33-4-67 14 38 17

Fax: +33-4-67 54 30 79

Alan Thomas

Tel.: +31-15-284 25 38

Fax: +31-15-284 39 86

E-mail: Thomas@bprc.nl

Wallace Peters

Tel.: +44-1727-83 31 51 Fax: +44-1727-86 87 21

A. Camus

Tel.: +33-20 91 14 52

Fax: +33-20 05 91 72

E-mail: vial@univ-montp2.fr

Socrates Herrera

Tel.: +57-2-356 56 21 Fax: +57-2-358 10 61

E-mail: soheva@mafalda.univalle.edu.co

Vincent Mouanda

Tel.: +237-23 22 32

Fax: +237-23 00 61

HEALTH AND THE CURRENT ECONOMIC CRISIS IN BRAZIL: THE IMPACT ON THE HEALTH AND CARE OF MOTHERS AND CHILDREN

Period: January 1993 to December 1995

Co-ordinator: Escuela Andaluza de Salud Pública, Granada, Spain (M.García Calvente)

Objectives

- Describe and document the political, economic and health policy changes in Pelotas, Brazil, in the past decade.
- ◆ Document levels and trends in maternal and child health status and health care provision and utilisation between 1982 and 1992.
- To make policy recommendations based on the research conclusions.

Activities

Phase 1:

- * A study of changes in health policies and health care provision with emphasis on maternal and child care. This study will provide data on recent trends in these areas to document historical changes in the city.
- * Anthropological studies based on interviews with members of different groups involved in health care. The aim here will be to investigate the perception of the population and of the health providers regarding changes in health services.
- * A study on socio-economic trends that is intended to document the political and economic changes which took place during the decade and how these have affected the quality of life.

These Phase 1 studies will result in a detailed description of changes in the health sector and in the perception of the population and providers relative to these changes.

Phase 2:

- * A perinatal study in three maternity hospitals during twelve months.
- * A descriptive infant mortality and nested infant mortality case-control study, to identify all deaths among cohort children and to ascertain causes and compare their characteristics with those of control children from the same birth cohort.
- * A hospital morbidity study to provide data on the causes of all hospital admissions.
- * A follow-up study to trace a 20 per-cent sub-sample of approximately 2000 children at 6-12 months of age and 400 pre-term and/or low birth-weight children.
- * A maternal study on health, fertility and family planning utilisation will provide data on past reproductive history.

Comparison of these data to data collected in a similar way in 1982 to assess changes during the decade.

Expected outcome

Increased understanding of changes in health care in the city of Pelotas in Brazil, and the effects of these changes on the health and care of mothers and children.

Results

- ⇒ Reduction in the number of births: 6.011% in 1982 and 5.04% in 1993, suggesting an increased utilisation of contraceptives or abortions since there was a increase in the number of women of fertile age. A breakdown by socio-economic status shows that the reduction of 707 births in 1993 was not evenly distributed as there were about 1,000 fewer births in the poorest groups and 300 more in the high-income strata.
- ⇒ Important variations in the nutritional status of the mother: in the decade the mean height increased from 156.4cm in 1982 to 159.9cm in 1993, and weight in the beginning of pregnancy was also substantially higher in 1993, 62.1kg compared to 58kg in 1982. Antenatal care attendances also increased in 1993, with a mean of 7.6 attendances compared to 6.6 in 1982 and medical assistance during delivery increased from 61 per cent in 1982 to 88.3 per cent in 1993. Despite these improvements the proportion of low birthweight (<2,500 g) showed a slight increase in the proportion of pre-term births (5.6 and 7.5 per cent, respectively) and intra-uterine growth retardation (15.0 per cent in 1982 and 17.5 per cent in 1993) The reason for these unexpected findings is still being analysed.
- ⇒ Important reduction in perinatal mortality: from 32.2/1000 births in 1982 to 22.1/1000 births in 1993, and a reduction of perinatal deaths was equally observed both in the foetal and in the early neonatal periods. Regarding breastfeeding, increase in the proportion of babies being breastfed in the first months of life. At three months of age, for example, the prevalence of full breastfeeding was 53 per cent in 1993 compared with about 33 per cent in the previous decade. As far as nutritional status at 12 months of age is concerned: changes according to the indicator. Thus, there was a slight increase in the proportion of children with low height for age, 6.1 per cent compared to 5.3 per cent in 1982. Reduction in the prevalence of low weight for age, 5.4 per cent in 1982 and 3.8 per cent in 1993, and of weight for height. Important progress in the infant mortality rates, with a drop from 36.4/1,000 live births in 1982 to 21.1/1,000 in 1993.

Partners

ESCUELA ANDALUZA DE SALUD PUBLICA

Apartado de Correos 2070 E-18080 Granada

Spain

UNIVERSIDADE FEDERAL DO PELOTAS

Caixa Postal 464 96001 Pelotas

Brazil

LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE

Dept. of Public Health and Policy Keppel Street **UK-WC1E 7HT London United Kingdom**

Fax: +34-95-827.05.51

F. Barros

Tel.: +555-3-271.24.42 Fax: +555-3-271.26.45

M. del Mar Garcia Calvente

Tel.: +34-95-827.50.44

P. Vaughan

Tel.: +44-171-927.24.31 Fax: +44-171-637.53.91

Period: February 1993 to January 1997

BIOSYSTEMATICS AND ADAPTIVE TRENDS IN THE GENUS RHODNIUS

Co-ordinator: London School of Hygiene and Tropical Medicine, London, United Kingdom (C.J. Schoffield)

Objectives

The project has addressed a problem of particular relevance to Chagas disease control in Central America, Venezuela, Colombia, Ecuador, Bolivia, Peru, and Brazil, where *Rhodnius* species are important vectors of Chagas disease but, due to morphological similarities between key species, their relative importance and potential for control have been unclear. The project has addressed this problem by:

- Clarifying the taxonomic status of members of the genus *Rhodnius* with reference to type material
- Defining the geographic limits and ecological characteristics of the main vector species.
- ♦ Assessing the evolutionary trends within the genus, especially in relation to progressive adaptation to domestic and peri-domestic environments.

Activities

- * Creation of a network of research partners based in eight Latin American countries, with links to research institutes and control organisations in a further five countries.
- * Through the network, field collections of different *Rhodnius* species have been characterised from localities throughout the range of the genus, using morphometric, morphological, and biochemical techniques, including RAPD and mtDNA sequence analysis.

Results

- ⇒ All species of epidemiological significance have been characterised and established in laboratory colonies, including several related species of potential epidemiological importance. Biosystematic analysis using a large number of morphometric and biochemical characters has provided an outline phylogeny for the group, fully supporting the idea of evolution by radiative adaptation from a discrete source population.
- ⇒ The distribution of *Rhodnius prolixus* the species of greatest epidemiological significance has been clarified. The species now seems to be absent from Mexico, where it had previously been found in abundance in the southern states, and also seems to be of much more restricted distribution in Nicaragua than had previously been thought.
- ⇒ Historical reconstruction of its dispersal supports the idea that Central American strains of *R. prolixus* may derive from an accidental escape of specimens originally collected from houses in Venezuela some 80 years ago, and this interpretation is fully supported by morphometric and genetic comparisons between Central and South American strains. The analysis indicates that Central American strains of *R. prolixus* now have a very limited genetic repertoire and are now confined to domestic and peri-domestic habitats in parts of Guatemala, El Salvador, Honduras, and northern Nicaragua.

These findings lend strong support to the idea that *R. prolixus* could be completely eliminated from Central America.

Follow-up

- The success of this research network had led to its extension to cover further areas of Latin America where Chagas disease is endemic. The extended network, known as ECLAT, now includes 30 research partners in 19 countries, with numerous associates involved in research and control of Chagas disease vectors. It provides technical support and coordination, advanced training, and assistance with field and laboratory work, although most of the research partners also have additional financial support from national sources.
- A key features of the ECLAT network is its ability to address technical problems raised by the vector control services in different areas and to produce detailed operational recommendations in response to control and surveillance requirements (see, for example; contract no. ERBIC18*CT960042).
- The network also provides a forum for improved liaison and discussion between the research community and control service personnel, assisting in the development of new control initiatives such as the recently announced Central American and Andean Pact initiatives for the control of Chagas disease.

Selected publications

Dujardin J.P., Muños M., Chávez T., Ponce C., Moreno J., Schofield C.J. 1998. The origin of *Rhodnius prolixus* in Central America. Medical & Veterinary Entomology. **12**: 113-115.

García A.L., Carrasco H.J., Schofield C.J., Valente S.A., Frame I.A., Stothard R., Miles M.A. 1998. Random amplification of polymorphic DNA as a tool for taxonomic studies of triatomine bugs (*Hemiptera: Reduviidae*). Journal of Medical Entomology. 35: 38-45.

Schofield C.J., Dujardin J.P., Jurberg J. 1996. Proceedings of the International workshop on population biology and control of *triatominae*. Santo Domingo de los Colorados, Ecuador. INDRE Mexico City. 116 pp.

Schofield C.J., & Dujardin J.P. 1997. Chagas disease vector control in Central America. Parasitology today. 13: 141-144.

Solano P., Dujardin J.P., Schofield C.J., Romaña C., Tibayrenc M. 1996. Isoenzymes as a tool for identification of *Rhodnius* species. Research and Reviews in Parasitology. **56**: 41-47.

Partners

LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE

Department of Infectious and Tropical Diseases

Keppel Street

UK-London WC1 E7HT United Kingdom

ORSTOM MONTPELLIER

Lab. de Génétique des Parasites et des Vecteurs Avenue Agropolis 911 F-34032 Montpellier 1

France

INSTITUTO OSWALDO CRUZ

Depto de Entomología C.P. 926

21045-900 Rio de Janeiro

Brazil

C.J. Schofield

Tel.: +44-171-927 23 40 Fax: +44-171-636 87 39

E-mail: C.J.Schofield@lshtm.ac.uk

J.P. Dujardin

Tel.: +33-1-48 03 77 77 Fax: +33-1-48 03 08 29

E-mail: jpdujard@mail.entelnet.bo

J. Jurberg

Tel.: +55-21-290 93 39 Fax: +55-21-590 97 41

E-mail: galvao@gene.dbbm.fiocruz.br

Period: September 1992 to August 1995

VISCERAL LEISHMANIASIS: EPIDEMIOLOGY AND DISEASE CONTROL

Co-ordinator: London School of Hygiene and Tropical Medicine, London, United Kingdom (M.A. Miles)

Objectives

- Establish research facilities at the University of Teresina and a training programme for local staff
- Perform a thorough comparison of diagnostic serology and diagnostic parasitology for Brazilian and European canine and human visceral leishmaniasis, incorporating innovative diagnostic procedures.
- Assess aminosidine (paromycin) for the treatment of canine visceral leishmaniasis.
- ♦ Identify asymptomatic dogs and people and determine whether such carriers can act as a reservoir of infection.
- ◆ Recommend and implement improved strategies for disease control based on research findings from the programme.

Activities

- * Comprehensive epidemiological data will be assembled from the records held at the Ministry of Health and the University at Teresina. A thorough comparison of the latest appropriate technologies for the diagnosis of canine VL will be undertaken with a minimum sample size of 100 dogs assembled at the Centre for Zoonoses.
- * A colony of *Lutzomyia longipalpis* will be established at the University of Teresina; flies will be infected by feeding on dogs with heavy skin infections of *L. chagasi* and the infections will be transmitted to an experimental group of animal imported from a non-endemic area.
- * The chemiluminescent probe will be tested for its ability to detect *L. donovani* in experimentally infected and wild-caught *LU. longipalpis*, and compared with detection by microscopy. A prototype diagnostic field kit will be assembled.
- * Using dogs with moderately severe VL (without severe wasting) the efficacy of aminosidine treatment, using various regimes, will be investigated. The infection will be monitored using sequential bone marrow and skin biopsy techniques.
- * Improved serological techniques will indicate potential asymptomatic human carriers of VL and detailed epidemiological information on suburban visceral leishmaniasis will be available as a result of this study. This epidemiological analysis will be used to recommend improved methods for disease control.

Expected outcome

- ⇒ A detailed epidemiological description of visceral leishmaniasis will become available as a result of this project.
- ⇒ The chemiluminescent DNA Probe will be evaluated in the field, and aminosidine trials will have been conducted in dogs.
- ⇒ Conclusions be drawn on the transmissibility of the disease from asymptomatic carriers.
- ⇒ Recommendations will be made on the best diagnostic procedures that are currently available and on improved strategies for disease control.

Results

- ⇒ Data assembled include: incidence of human VL (1981 1994); incidence of human VL by age and by sex; suburban distribution of human VL.; suburban distribution of canine seropositivity; records of suburban and periurban sandfly species; suburban distribution of insectivide spraying.
- ⇒ Clinical, parasitological and serological diagnostic methods have been compared with a cohort of more than 200 naturally infected dogs, and an *L. donovani*-complex specific DNA probe assessed. A DNA-based diagnostic kit was described. An *L. donovani* complex specific colorimetric (visual) PCR assay was developed.
- \Rightarrow The *L. donovani*-complex specific probe was shown to be an effective tool for detecting *L. chagasi* infections in wild caught sandflies.
- \Rightarrow L. chagasi was highly transmissible from dog to dog by Lutzomyia longipalpis, infectivity to sandflies was compared with clinical status.
- ⇒ A cohort of dogs infected experimentally by sandfly bite was established, and parasitological positivity, serological conversion and transmissibility of infection followed.
- ⇒ A trial of aminosidine for treatment of canine VL was performed: clinical recovery, limited cure, and some adverse effects were obtained.
- ⇒ A combination of serology and a gamma interferon capture assay detected putative asymptomatic VL among families with index clinical cases. Carrier status is under investigation (in collaboration with Dr. Carlos Henrique Costa). Distribution of selected human genotypic markers within the study cohort have been determined (Oxford, UK).

Results on the diagnosis and transmissibility of canine VL question the efficacy of serological surveys and killing of dogs as efficient means of VL control.

Partners

LONDON SCHOOL OF HYGIENE AND

TROPICAL MEDICINE

Dept. of Medical Parasitology Keppel street

UK-London WC1E 7HT

United Kingdom

UNIVERSIDADE FEDERAL DO PIAUI

Dept. de Parasitologia e Microbiologia

Campus da Ininga

Teresina, Piaui

Brazil

M.A. Miles

Tel.: +44-171-927.23.40

Fax: +44-171-636.87.39

E-mail: m.miles@uk.ac.lshtm

J.A. Fonseca de Castro Tel.: +558-6-232.14.17 Fax: +558-6-232.28.12

GROUPE HOSPITALIER PITIE-SALPETRIERE

Boulevard de l'Hôpital 47

F-75013 Paris

France

UNIVERSIDADE DO PORTO

Fac. de Farmacia - Microbiologia

Rua Anibal Cunha 164

P-4000 Porto

Portugal

FUNDACÍON JIMENEZ DÍAZ

Clínica de la Concepcion Div. Enf. Infecciosas

Avenida Reyes Católicos 2

E-28040 Madrid

Spain

L. Monjour

Tel.: +33-1-45.83.46.84 Fax: +33-1-43.29.70.93

M. Cabral

Tel.: +351-2-200.43.87 Fax: +351-2-200.39.77

M. Gorgolas

Period: September 1992 to December 1993

REGULATION OF SEXUAL DEVELOPMENT IN MALARIA PARASITES AND THE DESIGN OF LOGICAL INTERVENTION STRATEGIES

Co-ordinator: Imperial College of Science, Technology & Medicine, London, United Kingdom (R.E. Sinden),

Objectives

Through collaborative studies and associated training programmes, the project aimed to investigate the genetic, molecular, and biological regulations of sexual development of *Plasmodium*. Through the information gained, logical intervention strategies would be investigated.

Activities

Through mutual exchanges of personnel and reagents between the participating laboratories we have integrated the particular expertise of each laboratory in a series of studies, many of which have been published. The diverse methodologies used have been described in these publications and are therefore not repeated here.

Results

⇒ Genetic regulation of sexual development

By comparing the chromosomal location of a large number of genes in different strains of the four rodent species, our data indicated that there is very little gene re-assortment between non-homologous chromosomes. The different chromosomes appear to form stable linkage groups of specific genes in all species. We have initiated a collaboration with the University of Sao Paulo to investigate the genome organization of *P. vivax*. We tested small filters -Plasmodipur; Euro-Diagnostica (The Netherlands) - for removal of white blood cells (wbc) from P. vivax infected blood. These filters effectively removed wbc, while the different developmental stages of the parasites were not trapped in the filters. The older blood stages of P. vivax (trophozoites, schizonts and gametocytes) could easily be separated using Nycodenz density gradient centrifugation from uninfected erythrocytes. parasites have been successfully used for separation of the chromosomes in pulsed field gel To elucidate the mechanism(s) responsible for chromosome-size electrophoresis. polymorphism occurring during mitotic multiplication of *Plasmodium* parasites, the possible correspondence between the appearance of karyotype variants, and the loss in the ability to undergo gametocyte differentiation, we characterised a gametocyte-defective clone (HPE) of P. berghei that emerged during asexual multiplication of the gametocyte producer It exhibited a large subtelomeric deletion of chromosome 5. falciparum the effect of a terminal deletion on chromosome 9 (reported to be associated with impaired gametocyte production) on stage specific control of gene expression in sexual differentiation was investigated. Differences in the sexual/asexual pattern of expression of the gametocyte-specific gene Pfg27 were found both at the level of the protein and of mRNA species between the line harbouring the deleted chromosome 9, its parental line 1776, and line 3D7. There is evidence that all genes known so far, which are involved in sexual differentiation and expressed almost exclusively during and after gametocytogenesis,

are clustered on chromosome 5 of rodent parasites. These genes are -tubulin-1, Pbs21, C-type rRNA, and two other characterized genes. To provide evidence of the genetic diversity of the "Pbs21 gene" within other rodent malaria species, attempts were made to clone the equivalent gene from different species. The *P. yoelii* equivalent was cloned and sequenced. Screening of two Ig11 genomic libraries of *P. vivax* with Pbs21 probes resulted in a number of positive clones between 1 and 6 kb in size but none of these appear to be the Pbs21 homologue.

⇒ Molecular regulation of sexual development

To select novel P. berghei genes specifically expressed in sexual forms, we devised a subtraction strategy using gametocyte-producer and gametocyte-less clones. A labelled cDNA enriched for sequences selectively expressed in the gametocyte-producer clone 8417HP was obtained after subtraction with a large excess of mRNA prepared from the non-producer clone K173 and used to screen a P. berghei genomic library. Among the positive clones, a novel gene that maps to chromosome 5 at a subtelomeric position was selected. Northern analysis using stage-specific RNA preparations from pure cultured sexual forms demonstrated that production of the Pbs21 transcript was initiated in gametocytes; yet translation is evident only after gametogenesis and the transcript is considered to be translationally repressed. Preliminary evidence indicates that the start site of transcription lies - 350nt upstream of the translational start site, and that processing of the transcript occurs at the 3' end of the mRNA molecule. To find regulatory elements for the expression of Pbs21, two larger cDNA clones (1.1 and 1.25 kb) encoding the Pbs21 gene have been sequenced; 639bp of the region upstream the Pbs21 gene have been described. In situ detection of mRNA was used to analyze the expression pattern of mRNAs for a number of sexual stage-specific transmission-blocking antigens, including Pbs21, Psf25, Pfs28 and Pfs230, throughout gametocytogenesis of P. berghei and P. falciparum. The initiation of transcription of these mRNAs occurs in a staged series following commitment to sexual development. Pbs21, Pfs25, and Pfs28 mRNAs accumulate in gametocytes in the absence of detectable translation products (collaboration with NIH, Bethesda) suggesting that posttranscription mechanisms operate to regulate the translation of the protein (see above). We have developed probes which allow the demonstration of transcriptional activity of the two classes of rRNA gene in the highly developed model available in the laboratory. The probes detect the external transcribed spacer (ETS) of the two types of rRNA unit and demonstrate not only transcription but also the degree of conservation between the genes comprising the two types of rDNA unit. To identify cdc2 products in P. berghei extracts, immunoblot assays were conducted using a commercial monoclonal antibody directed against the highly conserved domain PSTAIRE. A protein of 30kDa was detected in young trophozoites only. We were able to amplify a 1 kb fragment of a gene, showing a high homology to cdc2, in 5 Plasmodium-species: P. knowlesi, P. berghei, P. vinckei, P. chabaudi and P. voelii. These fragments were cloned and sequenced. In cooperation with the University of Sao Paulo, Brazil, the same fragment of the P. vivax gene was also cloned and its DNA-sequence determined. In the 1 kb fragment of all species under study, three introns are present at conserved loci. By comparing these introns with respect to a number of characteristics, we were able to draw some conclusions on intron-organisation and evolution within the genus Plasmodium.

⇒ Biology of sexual regulation

Mechanisms of transmission blockade in infected hosts. The natural decline of infectivity of gametocytes three days post infection is not antibody mediated since it could be demonstrated that the pattern of infectivity was exactly the same in severe combined immunodeficient mice (scid) as in their intact Balb/c congenic partners. The resulting inhibition of the parasites' sexual cycle within the mosquito occurs within one hour of the

mosquito feed. To date, there is no significant evidence that nitric oxide or its derivatives are involved in the blockade of either P. berghei or P. vinckei infections. Studies were carried out to test cryopreservation efficacy of sexual stages of P. vivax malaria parasite from blood from patients. Zygotes were obtained in vitro, and unfrozen and cryopreserved blood infectivity was tested by An. albimanus infections. The proportion or recovery was similar to that obtained in cryopreserved asexual stages of the parasite.

⇒ Development of logical intervention strategies

Studies on the expression and immunogenicity of recombinant Pbs21 expressed in a baculovirus system revealed that:

- Expression of the recombinant protein in insect larvae results in higher yields than expression in in vitro systems.
- The protein is indistinguishable from native protein by means of conformationdependent antibodies.
- Deletion of the putative signal sequence prevented protein expression on the cell surface.
- Transmission-blocking activity induced by the full length protein in mice was higher than 90%.

We have evidenced that the protein has either a novel type of GPI anchor, or is an acylated membrane protein. Neither PIPLC treatment nor nitrous acid de-amination had any effect on the molecule, but with hydroxylamine treatment cleavage of the membrane anchor was obtained. Infected blood erythrocytes obtained from P. vivax-infected patients, in their original plasma or plasma obtained from uninfected normal donors, were offered to An. albimanus and transmission blocking activity was estimated by comparison of the infection rates obtained with the 2 preparations. Protein extracts were prepared from purified P. vivax gametocytes and used for immunoblot assays of sera with transmission-blocking activity. Several protein bands were identified. The most frequently observed were protein bands of 113, 103, 94, 85, 68, 47, 41, 37 and 31 KDa.

R.E. Sinden

C. Janse

Partners

IMPERIAL COLLEGE OF SCIENCE.

TECHNOLOGY & MEDICINE Tel.: +44-171-594.54.24 Dept. of Biology Fax: +44-171-594.54.24 Prince Consort Road E-mail: r.sinden@bio.ic.ac.uk

South Kensington UK-London SW7 2BB

United Kingdom

RIJKSUNIVERSITEIT LEIDEN

Tel: +31-7-127.68.42 Dept. of Parasitology Postbus 9605 Fax: +31-7-127.68.50

NL-2300 RC Leiden The Netherlands

ISTITUTO SUPERIORE DI SANITA M. Ponzi

Tel.: +39-06-444.02.70 Labo. di Biologia Cellulare Viale Regina Elena 299 Fax: +39-06-444.00.18

I-00161 Rome

Italy

CENTRO DE INVESTIGACION DEL PALUDISMO

M.H. Rodriguez Dept. of Immunoparasitology Tel.: +52-96-26.22.19 Apartado Postal 537 Fax: +52-96-26.57.82

Tapachula 30700, Chiapas E-mail: nrodriguez@hotmail.com

Mexico

Period: December 1992 to November 1993

CELL MEDIATED IMMUNITY TO SCHISTOSOMES. EVALUATION OF MECHANISMS OPERATING AGAINST LUNG STAGE PARASITES, WHICH MIGHT BE EXPLOITED IN A VACCINE

Co-ordinator University of York, York, United Kingdom (R. Wilson)

Objectives

Evaluate cell mediated immune responses to lung stage parasites of *Schistosoma mansoni* in mice and in infected humans.

Activities

- * Secreted and soluble antigens derived from schistosomula, cultured *in vitro* for eight days, will be used to expand T-cell clones and lines generated from lymph node populations recovered from mice shortly after intradermal vaccination with day 8 attenuated schistosomula.
- * Of the phenotypic and functional assays to be employed, proliferation and interferon gamma production by clones or lines when co-cultured with live lung-stage schistosomula are considered most important. Clones which meet these criteria will be tested *in vivo* for the ability to mediate delayed type hypersensitivity responses and reduce maturation of parasite infections relative to irrelevant T-cell clones.
- * Following clinical and epidemiological investigations, including assessment of resistance to reinfection after chemotherapy, lymphocytes will be collected from the peripheral blood of patients from Bela Fama and the profile of their cytokine production (IL2, IL3, IL4, IL5 and Interferon gamma) in response to the same larval antigens will be described.

Expected outcome

- ⇒ The establishment of T-cell clones which meet the criteria of proliferation and interferongamma production, and the measurement of human cytokine profiles in response to lung stage antigens.
- ⇒ Development of a longer-term project.

R. Wilson

Partners

UNIVERSITY OF YORK

Dept. of Biology
Heslington
Tel.: +44-190-443.28.30
Fax: +44-190-443.28.60

UK-York Y01 5DD United Kingdom

CENTRO DE PESQUISAS RENE RACHOU R. Correa-Oliveira

Lab. de Esquistossomose

Av. Augusto de Lima 1715

Tel.: +55-3-12.95.35.66

Fax: +55-3-12.95.31.15

Brazil

INSTITUT PASTEUR LILLE A. Capron

Centre d'Immunologie & Biologie Parasitaire

Tel.: +33-3-20.87.79.62

Rue du Professeur A. Calmette 1

Fax: +33-3-20.87.78.88

F-59019 Lille

France

Period: December 1992 to November 1995

RECOMBINANT ANTIGENS AS SEROLOGICAL TOOLS FOR SPECIFIC AND SENSITIVE TEGUMENTARY AND VISCERAL LEISHMANIASIS DIAGNOSIS

Co-ordinator: Universidad Peruana Cayetano Heredia, Lima, Peru (Ysabel Montoya)

Objectives

Develop rapid, sensitive and highly specific test based on recombinant peptide antigens for the improved diagnosis of visceral Leishmaniasis (VL) and American tegumentary leishmaniasis (ATL).

Activities

- * Sera from patients co-infected with VL and HIV were followed by Western blot using L.(L) infantum total proteins by ELISA using rK-39 recombinant protein.
- * Construction and screening of *L.(L)infantum* cDNA libraries using sera from patients co-infected with VL/HIV.
- * Selection and characterisation of the candidate recombinant proteins for L.(L.) infantum and L.(V) peruviana.
- * Serological assessment of the diagnostic potential of selected L.(V.) peruviana recombinant proteins in terms of specificity, sensitivity and predictive value.
- * L(V.) peruviana synthetic peptides derived after their DNA sequencing from the recombinant protein selected were assessed with ATL and VL sera.
- * DNA sequencing of novel genes

Results

- ⇒ Development of an improved serodiagnostic test in terms of greater specificity, sensitivity and predictive value over conventional tests using recombinant proteins.
- \Rightarrow Four novel DNA sequences from L.(V) peruviana genes: histone H2B, Hsp70,citochrome oxidase, protein acid ribosomal P2b gene have been sent to the Genebank.
- ⇒ DNA sequencing of two novel genes from L.(V.)braziliensis; histone 3 and protein acid ribosomal P2b, gene have been reported to the genebank.
- \Rightarrow Three (L>) infantum conserved genes have been DNA sequenced, Hsp70 family.
- ⇒ One PhD, one MSc and seven Licenciate of Biology theses were obtained by Peruvian students. One PhD thesis was obtained in Spain.

Selected publications

Montoya Y., Leon Talledo M., Nolasco O., Padill, Munos-Najar U and Barker, D.C. 1997. Recombinant antigens for specific and sensitive serodiagnosis of Latin American tegumentary leishmaniasis. Trasactions of the Royal Society of Tropical Medicine and Hygiene. 91:674-676.

Canavate C., Montoya Y., Barker D. C, .Alvar J. 1995. Antigenos recombinantes aplicados al diagnostico de la leishmaniasis visceral. .IV Congreso Ibero de Parasitología. Spain.

Montoya Y., Arevalo J., Warner J. & Barker D.C. 1993. Identification of a B-cell epitope from L(V>) peruviana recognized by the sera of Andean cutaneous leishmaniasis patients. Transactions of Royal Society of Tropical Medicine and Hygiene Meeting. Edinburgh, Scotland.

Montoya Y., Arevalo J., Gómez Llanos Cuentas A. and Barker D.C. 1993. Genes coding for antigens recognised by sera from Andean cutaneous leishmaniasis patients from Peru. Archives de l'Institut Pasteur, Tunis, 70:397-403.

Partners

UNIVERSIDAD PERUANA CAYETANO HEREDIA

Inst. de Medicina Tropical A. von Humboldt

P.O. Box 4314 Lima 100

Peru

INSTITUTO DE SALUD CARLOS III

Centro Nacional de Microbiología Servicio Parasitología Carretera Majadahonda Pozuelo km 2 E-28220 Majadahonda, Madrid

Spain

UNIVERSITY OF CAMBRIDGE

MRC Outstation of NIMR Molteno Lab. of Pathology Tennis Court Road GB-CH2 1QP Cambridge

United Kingdom

Ysabel Montoya

Tel.: +51-1-481 51 77 Fax: +51-1-481 51 77

E-mail: ymontoya@ins.sld.pe

J. Alvar

Tel.:+34-916-38 00 11 Fax: +34-916-38 03 41 E-mail: jalvar@iscii.es

D.C. Barker

Tel.: +44-1223-33 37 37 Fax: +44-1223-33 37 37

E-mail: dcb12@mole.bio.cam.ac.uk

Period: October 1992 to September 1996

CLONAL VARIABILITY OF THE PARASITE AS A PREDICTIVE TOOL FOR DIFFERENT CLINICAL MANIFESTATIONS IN TEGUMENTARY LEISHMANIASIS OF PERU AND BOLIVIA

Co-ordinator: Instituut for Tropische Geneeskunde "Prins Leopold", Antwerpen, Belgium (D. Le Ray)

Objectives

Identification of molecular marker(s) correlating with mucosal compromise of New-World tegumentary leishmaniasis.

Activities

- * Selection of patients with active cutaneous or mucocutaneous lesions in two Amazonian regions situated in Bolivia (Ivirgarzama Health District, Cochabamba Department) and in Peru (Pilcopata, Madre de Dios/Cuzco).
- * Parasite isolation before chemotherapy.
- * Analysis of genetic heterogeneity among sylvatic isolates, using Multi-locus Enzyme Analysis (MLEE). Random Amplification of Polymorphic DNA (RAPD), and PFG karyotyping.
- * Comparison with genetic data previously obtained on isolates from the Peruvian Andes (L. (V.) peruviana, never associated with mucosal compromise).
- **★** Interpretation of genetic polymorphism in terms of population and evolutionary genetics.

Results

- ⇒ Implementation of a field laboratory at the Pilcopata Health Post for *in vitro* cultivation, PCR tests, and PC-data entering.
- ⇒ Isolation of 167 *Leishmania* stocks (Bolivia: 79; Peru: 88), all with well documented clinical records, from cutaneous (n=128) and mucosal cases (n-39).
- \Rightarrow L. (V.) braziliensis was the most abundant among the sylvatic stocks (90%). L. (V.) guyanensis and L. (V.) lainsoni were also encountered (respectively 3 and 7%); RAPD was developed and allowed for the first time discrimination of all species in subgenus Viannia, including L. (V.) peruviana. There was a highly signification correlation between MLEE and RAPD genetic distances.
- ⇒ Specific chromosomal-size differences (PFG) were correlated with severity of the lesions (size of cutaneous lesions, potentiality of mucosal compromise) and proved to be due to rearrangement of essential genes (gp63, rDNA, and mini-exon).
- ⇒ The dynamics of these genes led to the development of two PCR-based characterisation methods combining digestion with restriction enzymes (PCR-RFLP) and targeting respectively gp63 and rDNA loci.

⇒ Clonality appears to be the principal reproduction mode in the populations under survey (linkage unbalance of RAPD data), but in rare cases sexual exchange might occur (putative hybrids in the Andean valley of Huanuco). In addition, pseudo-sexual phenomena could be present.

Selected publications

Dujardin J.C., Llanos-Cuentas A., Cacéres A., Arana M., Dujardin J.P., Guerrini F. Gómez J., Arroyo J., De Doncker S., Jacquet D., Hamers R., Guerra H., Le Ray D. & Arevalo J. 1993. Molecular karyotype variation of Leishmania (Viannia) peruviana evidences geographical populations in Peru along a north-south line Ann. Trop. Med. Paras. 87:335-347.

López M., Inga R., Cangaplaya M., Echevarria J., Llanos-Cuentas A., Orrego C. & Arevalo J. 1993. Diagnosis of Leishmania, using the polymerase chain reaction: a simplified procedure for field work. Am. J. Trop. Med. Hyg.

Tibayrenc M., Ben Abderrazak S., Guerrini F., & Bañuls A.L. 1993. Leishmania and the clonal theory of parasitic protozoa. Archs. Inst. Pasteur Tunis. 70:375-382.

Victoir K., Dujardin J.C., De Doncker S., Barker D.C., Arevalo J., Hamers R., and Le Ray D. 1995. Plasticity of gp63 gene organization in Leishmania (Viannia) braziliensis and L. (V.) peruviana. Parasitology. 111: 265-273.

Dujardin J.C., Bañuls A.L., Llanos-Cuentas A., Alvárez E., De Doncker S., Jacquet D., Le Ray D., Arevalo J., and Tibayrenc M. 1995. Putative Leishmania hybrids in the Eastern Andean Valley of Huanuco, Peru. Acta Tropica. **59**: 293-307.

Partners

INSTITUUT VOOR TROPISCHE D. Le Ray

Tel.: +32-3-247 63 55 GENEESKUNDE "PRINS LEOPOLD" Lab. of Protozoology Fax:+32-3-247 63 62 E-mail: dleray@proto.itg.be Nationalestraat 155

B-2000 Antwerpen

Belgium

UNIVERSIDAD PERUANA CAYETANO J. Arevalo

HEREDIA Tel.: +511-4-81 51 77 Fax: +511- 4-81 51 77 Inst. de Medicina Tropical "Alexander von Humboldt" E-mail: labc@upch.edu.pe

Dept. de Bioquímica Apartado postal 4314

PE-100 Lima

Peru

UNIVERSIDAD MAYOR DE SAN SIMON H. Bermúdez

Tel.: +591-42-515 43 Facultad de Medicina Centro Universitario de Medicina Tropical Fax: +591-42-515 43

Avenida Aniceto Arce E-mail: cumetrop@pino.cbb.entelnet.bo

Casilla 3119 Cochabamba

Bolivia

IRD (EX-ORSTOM) MONTPELLIER M. Tibayrenc

Laboratoire de Génétique des Parasites Tel.: +33-6-61 74 97 Fax: +33-6-54 78 00 **BP 5045**

France

Period: September 1993 to August 1995

RISK OF REINFESTATION FROM WILD FOCI OF TRIATOMA INFESTANS IN BOLIVIA, A COUNTRY OF THE SOUTHERN CONE PROGRAMME

Co-ordinator: ORSTOM Montpellier, Montpellier, France (J.P. Dujardin)

Objectives

- ♦ Evaluate the epidemiological importance of wild populations of *Triatoma infestans* (Hemiptera, Reduviidae). This species is the principal vector of *Trypanosoma cruzi*, causative agent of Chagas disease, throughout the seven southernmost countries of Latin America (Argentina, Bolivia, Brazil, Chile, Paraguay, Peru, Uruguay). In these countries it has become the primary target of Chagas disease vector control programmes.
- ◆ Determine the invasive capacity of silvatic *T. infestans*: do they represent a risk for reinfestation?

Activities

- * Using field experiments and laboratory studies, we studied the connections between domestic and wild *T. infestans*.
- * Throughout most of its wide distribution, *T. infestans* seems to be exclusively domestic and peridomestic, occupying cracks and crevices in rural dwellings and domestic animal enclosures. True silvatic colonies are known only from the Cochabamba region of southern Bolivia, where the insects can be found amongst rockpiles in association with wild guineapigs. The original silvatic focus, some 15 Km south of Cochabamba (Cercado province), was first described in 1946.
- * A genetic interpretation of electrophoretic data has so far not revealed differences between the silvatic population and nearby domestic populations so that the degree of isolation between them is unclear. However, in order to apply adequate control and surveillance measures, it is important to understand the relationships between these ecotopes. Control of Chagas disease vectors relies primarily on spraying infested dwellings with pyrethroid insecticides. After the initial intervention however, it is important to continue entomological surveillance so that any new infestations can be selectively retreated.
- * Laboratory studies scored different population markers with the idea that, if not panmictic, the ecotopes under study should show some genetic differentiation. Isoenzyme electrophoresis and cytogenetic studies comparing C-banding polymorphism failed to detect significant differences between ecotopes, whereas random amplified polymorphic DNA (RAPD) evidenced different band frequencies. In accordance with this latter genetic marker, morphometric analysis revealed also head and wing differences. The post-ocular region was repeatedly larger in silvatic specimens, either nymphs, males or females, in samples collected at various times (1983, 1992, 1995 and 1996).
- * Field experiments explored the dispersive behavior of wild *T. infestans* in Jamach'Uma (Cochabamba, Bolivia). This locality is a small village surrounded by silvatic foci of *Triatoma infestans*. The first experiment used "sentinel henhouses". Artificial, adobe made henhouses were constructed each 100 meters from Jamach'Uma to the wild focus. Though hens are very attractive animals for *T. infestans*, none were found colonizing these

- henhouses during a six months survey. Hens were then replaced by rodents, and monthly vigilance was continued for eight months. Again, no *T. infestans* were found, though another species (*T. sordida*) invaded these artificial structures.
- * The second field experiment simulated a control programme in Jamach'Uma. In December 1992, infestation by a few nymphs of *T. infestans* was found again which was sprayed in October 1993. They were compared at seven head metrics with 36 fifth instar domestic nymphs coming from Jamach'Uma before treatment, and with two sets of nymphs originating from the surrounding silvatic foci: 8 specimens collected in 1992 and 9 specimens collected in 1995. The results were interpreted in terms of the possible mechanisms of reinfestation whether there was a residual population or reinvasion from surrounding silvatic foci. Metric comparisons strongly supported the hypothesis of infestation resulting from a residual population surviving the insecticide spraying. It is not possible to definitively rule out the idea that some of the infestant nymphs are of silvatic origin, mixed with a residual population. Three arguments were consistent with the hypothesis of no regular migrants, or exceptional migrants, between Jamach'Uma and the wild focus: the delay (ten months) between insecticide spraying and the reinfestation, the stage (fifth nymphs) of the infestant specimens and their metric characteristics.
- * On the basis of these laboratory and field data, the silvatic focus of *T. infestans* in Bolivia does not appear to represent a serious obstacle to the application of the Southern Cone Programme in Bolivia.

Partners

ORSTOM. MONTPELLIER 1

Labo de Génétique Moléculaire des Parasites et des Vecteurs Avenue Agropolis 911, BP 5045 F-34032 Montpellier 01

France

BRITISH MUSEUM OF NATURAL HISTORY

Division of Medical & Veterinary Entomology

Cromwell Road London SW7 5BD

United Kingdom

UNIVERSIDAD MAYOR DE SAN SIMON

Centro Univ. de Medicina Tropical

Avenue Aniceto Arce

CAS. 3119 Cochabamba

Bolivia

J.P. Dujardin

Tel.: +33-14-803.77.77 Fax: +33-14-803.08.29

C. Schofield

Tel.: +44-171-938.89.16 Fax: +44-171-938.93.95

H. Bermudez Tel.: +59-1-21.545

Fax: +59-1-042.31.690

Period: September 1992 to August 1995

EXPERIMENTAL STUDY OF THE IMPACT OF POPULATION CLONAL STRUCTURE ON RELEVANT MEDICAL AND BIOLOGICAL PROPERTIES OF TRYPANOSOMA CRUZI

Co-ordinator: ORSTOM, Montpellier, France (Michel Tibayrenc)

Objectives

- ♦ Extensive population genetic analyses have shown that the populations of *T. cruzi*, the agent of Chagas disease, are subdivided into natural clones, stable in space and time. The major clones refer to certain clones that are much more frequently sampled than others; it is suspected that their medical and epidemiological significance is considerable.
- ♦ The goal of the present study was to compare some relevant medical properties such as virulence and resistance to drugs of the major *T. cruzi* clones.

Activities

- * Studies involved a limited sample of 16 laboratory-cloned stocks representing three major clones selected according to their genetic relationships, ascertained by multilocus isoensyme electrophoresis. Each major clone in the sample was represented by several stocks with extremely variable origins (host, place of isolation). Stocks pertaining to these three clones were studied in order to consider possible interactions between two (or more) different clones. Such mixed infections seem to be common in natural cycles in both triatomine bugs as well as in patients. The impact of clone interactions in a given host could have an important impact on Chagas' pathogenesis. To follow the behaviour of such mixed infections, we used the PCR KDNA probes specific for the major clones. Specific study areas included:
- * Differentiation in axenic culture medium, which were estimated from the percentage of trypomastigote forms at given times.
- * Differentiation of epimastigote forms to infective metacyclic trypomastigote forms were monitored every day, following morphological changes in a Thomas chamber, in order to obtain at least 20% of metacyclic trypomastigotes.
- * Generation of tissue culture trypomastigotes; study of *in vitro* infectivity: experimental mouse infections.
- * Histopathological studies of the following organs in mice: heart, brain, liver, spleen, ganglions skeletal muscle, and colon.
- * Drug-sensitivity studies were carried out both on *in vitro* and *in vivo* models, using drugs currently applied in the treatment of Chagas' disease: 5-nitrofuran and 2-nitroimidazole.
- * Statistical analysis of the results was carried out using commercial software.

Expected outcome

The goal of the project was to define the medical implications of the considerable genetic variability of *T. cruzi*.

We proposed a general model of parasitic protozoa population structure that strongly suggests that many parasites (e.g. *T. brucei* and various species of Leishmania) have typical clonal population structures like *T. cruzi*. Hence, the approach and experimental design proposed could be the basis for further studies involving other parasites.

Results

- ⇒ A set of 21 parasites stocks representing four major natural clones (clonal genotypes that are widespread and constitute most part of the stocks isolated from chagasic patiens) have been selected on the basis of genetic characterization invloving 15 isozyme loci.
- ⇒ Since the beginning of the project, the following goals have been reached:
- ⇒ Improved genetic characterization of the 21 stocks: a more accurate picture of the actual genetic variability of our sample has been provided by: isozyme 15 23 increasing the number of loci from to - using random primer amplification of polymorphic DNA or RAPD.
- ⇒ During biological characterization of the 21 stocks, the following main parameters were screened:
 - virulence on Balb/C mice
 - in vitro culture kinetics (pure clones and mixtures of clones), epimastigote/ trypomastigote transformation rate, *in vitro* drug sensitivity, transmissibility by the vector *Triatoma infestans* (pure clones and mixtures of clones).
- ⇒ All these parameters have been quantified. A highly significant correlation was found beetween biological variability and genetic diversity: the stocks that are genetically closely related have a strong statistical tendency to have similar biological behaviours, while the opposite is true for the distantly related clones. Major clones tend to behave like distinct taxa for these biological parameters. The stocks attributed to the clonal group 19/20 generally grow faster, transform more actively into trypomastigotes, are more virulent to mice and less sensitive to drugs. Moreover, in experiments dealing with mixtures of clonal genotypes (a situation that is quite frequent in chagastic patients), we noted in some cases, indications for interactions between clones. For instance in mice, the mixture of a strongly virulent clone and a poorly virulent one proved to be more virulent than the more virulent clone. We proposed the hypothesis that mixtures of clonal genotypes in the same patient could play a role in Chagas pathogenicity.
- ⇒ Complementary analyses from anatomopathology and in vivo experiments on three different mouse strains confirmed considerable biological diversity among *T. cruzi* stocks pertaining to the different major clones.

Conclusions

- Most of the work outlined at the start of the project has been completed, together with additional experiments on *T. cruzi* transmissibility by *Triatoma infestans*, and the biological behaviour of mixtures of clones.
- All results fully confirmed the working hypothesis of the project, i.e. that clonal diversity of *T. cruzi* has a major impact on this parasite's biological diversity, including medically relevant parameters such as virulence, resistance to drugs, and transmissibility by triatomine bugs.

Selected publications

De Lana M., Pinto A., Da S., Barnabé C., Quesney V., Noël S. and Tibayrenc M. Trypanosoma cruzi: compared vectorial transmissibility of three major clonal genotypes by Triatoma infestans. Exp. Parasitology. In press.

Laurent J.P., Barnabé C., Quesney V., Noël S. and Tibayrenc M. 1997. Impact of clonal evolution on the biological diversity of Trypnosoma cruzi. Parasitology. 114: 213-218.

Pinto A., Da S., de Lana M., Bastrenta B., Barnabé C., Quesney V., Noël S. and Tibayrenc M. Trypanosoma cruzi: impact of clonal evolution of the parasite on its biological and medical properties. Exp. Parasitol. In press.

Revollo S., Oury B., Laurent J.P., Barnabé C., Quesney V., Carrière V., Noël S. and Tibayrenc M. Trypanosoma cruzi: impact of clonal evolution of the parasite on its biological and medical properties. Exp. Parasitol. In press.

Partners

ORSTOM - MONTPELLIER 1

Labo, de Génét. Des Parasites et des Vecteurs BP 5045

F-34032 Montpellier 01

France

UNIVERSIDAD AUTONOMA DE MADRID

Unidad de Parasitología Carretera de Colmenar Viejo

E-28049 Madrid

Spain

UNIVERSIDAD DE CHILE

Depto. de Bioquímica 70086 Santiago 7

Chile

Michel Tibavrenc

Tel.: +33-467-61 74 97 Fax: +33-467-54 78 00

E-mail:

michel.tibayrenc@cepm.mpl.orstom.fr

Dediego

Tel.: +34-91-397 53 11 Fax: +34-91-315 00 75

A. Solari

Tel.: +56-2-737 00 81 ext. 5724

Fax: +56-2-735 55 80

E-mail: ngalanti@med.uchile.cl

Period: January 1994 to December 1996

FIELD EVALUATION AND FURTHER CHARACTERIZATION OF AN INVASIVE SPECIFIC MONOCLONAL ANTIBOBY AGAINST ENTAMOEBA HISTOLYTICA

Co-ordinator: London School of Hygiene and Tropical Medicine, London, United Kingdom (D. Warhurst)

Objectives

- Application and development of techniques for the distinction of *Entamoeba histolytica* and *E. dispar*, with a view to clarifying the epidemiology of amoebiasis in different areas of the world, and focussing the treatment effort.
- ◆ Training and transfer of technology to enhance research potential of scientists from countries with endemic diseases.

Activities

- * Training visits.
- * Collaboration
- * Joint publications

Results

- ⇒ A colorimetric PCR technique (Solution Hybridisation Enzyme-Linked Assay) (SHELA) has been developed for differentiation of faeces containing *E. histolytica* and *E. dispar*. A comparison of the zymodeme of isolate cultures with SHELA results on cultures in Bangladesh was in agreement with the detection of *E. histolytica* in 23/23 cases (13 zymodeme 2 and 10 zymodeme 14). However, three cultures identified as zymodeme 1 were tested, and 2 reacted in the SHELA as *E. histolytica* while the other one reacted as *E. dispar*. It is clear that more testing of non-pathogenic material from Bangladesh is needed to determine whether this degree of non-agreement is significant, since it has not been seen in materials from other areas. It is encouraging to note that zymodeme 14 reacts as well in PCR-SHELA as zymodeme 2.
- ⇒ The parallel examination of the original faecal specimens using the *Entamoeba* and *E. histolytica*-specific ELISA technique of Petri and colleagues gives some contradiction with zymodeme and with the PCR-SHELA. The common occurrence of apparently mixed infections is notable. However, given that the original faeces are being examined and culture is inevitably selective, this is not so much of a problem as the rather low sensitivity of the immunological technique for the detection of *E. Histolytica* itself. To investigate this, further 40 more faecal specimens from Bangladesh are being tested in the UK laboratory and will be compared with the results of the cultures and of the Petri ELISA.
- ⇒ Improvements to the protocol and kit for the PCR-SHELA have been developed, using a modified system names Semi-Nested PCR-SHELA. This has been successful for both amoebiasis and malaria contexts. The advantage of the technique is that the labelled internal probe, which normally needs to be added to the PCR product after the reaction, is

incorporated in the sealed tube and acts as a primer of a PCR nest, and as the detector for the 1st and 2nd products of the PCR.

⇒ All that needs to be done at the end of the single PCR run is to dilute the product in buffer and apply it to the micro-titer plates for the avidin capture and digoxigenin enzymatic detection procedure. This substantially reduced the time taken for the technique.

Selected publications

McNerney R., Aguirre A., West B., Stoker N., Miles M., and Wilson S. 1995. Customizing PCR detection. Presented at "Nucleic acid-based technologies: current challenges. Future strategies and end-user perspectives". Cambridge Health Institute, San Francisco. May 1995.

González Ruíz A., Haque R., Rehman T., Aguirre A., Hall A., Guhl F., Warhurst D.C., and Miles M.A. 1994. Diagnosis of amoebic dysentery by detection of *Entamoeba histolytica* faecal antigen by an invasive strain-specific, monoclonal antibody-based enzyme-linked immunosorbent assay. Journal of Clinical Microbiology. 32: 964-970.

Aguirre A., Warhurst D.C., Guhl F., and Frame I.A. 1995. Polymerase chain reaction-solution hybridization enzyme-linked immunoassay (PCR-SHELA) for the differential diagnosis of pathogenic and non-pathogenic *Entamoeba histolytica*. Trans. R. Soc. Trop. Med. Hyg. 89: 187-188.

Partners

LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE

Dept. of Medical Parasitology

Keppel Street

UK-London WC 1E 7HT

United Kingdom

HOSPITAL CLINICO Y PROVINCIAL DE

BARCELONA

2182 Villaroel 170 E-08036 Barcelona

Spain

UNIVERSIDAD DE LOS ANDES

Depto de Ciencias Biológicas Carrera 1 Este N. 18A-10 4976 Santa Fé de Bogotá

Colombia

INTERNATIONAL CENTRE FOR DIARRHOEAL

RESEARCH

P.O. Box 128 1000 Dhaka

Bangladesh

UNIVERSITY OF LEIDEN

Lab. for Parasitology Medical faculty P.O. Boc 9605 NL-2300 RC Leiden The Netherlands D. Warhurst

Tel.: +44-171-927 23 41 Fax: +44-171-636 87 39

E-mail: d.warhurst@lshtm.ac.uk

M. Corachan

Tel.: +34-93-45 46 000 ext. 2182

Fax: +34-93-45 15 272

F. Guhl

Tel.: +57-1-286 75 93 Fax: +57-1-284 18 30

E-mail: fguhl@uniandes.edu.co

R. Haque

Tel.: +880-260 01 71 78 Fax: +880-288 31 16

E-mail: rhaque-cholera@external.ait.ac.th

A.M. Polderman Tel.: +31-71-527 68 45 Fax: +31-71-527 68 50

E-mail: parasito@rullf2.leid.nl

Period: January 1994 to December 1996

ROLE OF INSECT HOST DEFENCES IN TRYPANOSOME DEVELOPMENT IN CHAGAS' DISEASE VECTORS WITH EMPHASIS ON THE ACTIVITY OF IMMUNE DEPRESSION AGENTS

Co-ordinator: University College of Swansea, Swansea, United Kingdom (N. Ratcliffe)

Objectives

- Determine the presence and role of insect vector immune defence factors in insect-parasite interactions.
- Determine the effect of parasites on the vector immune defence reactions.

Activities

Year 1

- * Lectin staining.
- * Hemolymph and crop lectins purification initiated.
- * Infectivity studies on different parasite strains.

Year 2

- * Lectin staining.
- * Hemolymph and crop lectins purification.
- * Effect of immunosuppressive agent.
- * Prophenoloxidase.
- * Blocking experiments commenced.

Year 3

- * Lectin staining.
- * Blocking experiments.
- * Test pure lectin against parasites.

Exchange of scientists and training.

Expected outcome

- \Rightarrow To learn how *T. cruzi* and *T. rangeli* evade the normal insect defence mechanisms and colonize the host.
- ⇒ To discover vector molecules responsible for transformation of the parasites from one stage to another.
- ⇒ Eventually to show whether compounds that induce immune-depression in the vectors can facilitate the control of Chagas' disease transmission.

Partners

UNIVERSITY COLLEGE OF SWANSEA

School of Biological Sciences Singleton Park

UK-SA2 8PP Swansea

United Kingdom

FUNDACAO OSWALDO CRUZ

Dept. de Entomologia Av. Brazil 4365 21045-900 Rio de Janeiro

Brazil

RUHR UNIVERSITAET BOCHUM

Dept. Special Zoology & Parasitology

D-44780 Bochum

Germany

N. Ratcliffe

Tel.:+44-179-229.54.54

E. De Souza Garcia

Tel.:+21-2-90.75.49

G. Schaub

Tel.:+49-23-470.04.563

Period: January 1994 to December 1996

IMMUNOLOGICAL CORRELATES OF RESISTANCE AND SUSCEPTIBILITY TO INFECTIONS WITH GASTRO-INTESTINAL NEMATODES IN NORTH EAST BRAZIL

Co-ordinator: University of Nottingham, Nottingham, United Kingdom (D. Wakelin)

Objectives

The overall objective of the proposal was to make a detailed study of the immune responses to infection with gastro-intestinal nematodes and to identify causal correlates of resistance and susceptibility to these important parasites. The specific objectives were to:

- ♦ Determine the prevalence and intensity of gastro-intestinal nematode infections across an appropriate age range in populations living in communities where these parasites are endemic.
- Follow the patterns of reacquisition in these populations after effective chemotherapy.
- ♦ Identify and characterize individuals showing resistance or susceptibility to infection and reinfection
- ♦ Analyze the antibody, cellular responses to each infection, correlate these with parameters of resistance and susceptibility, and identify target antigens of the parasites concerned.

Activities

Infections with the major gastro-intestinal nematodes of man are endemic in the Recife area of N.E. Brazil, a pilot study showing high prevalence in poor urban and rural communities, and the excellent laboratory facilities at CPq AM, Recife offer a unique opportunity to examine the parasitology and immunology of these infections. Collaboration with the laboratories in Nottingham and Marseille provides an unrivalled combination of expertise in the immunoparasitology of helminth, specifically intestinal nematode, infections. The proposal is to carry out a detailed study of immune (serological, cellular and cytokine) responses in individuals of known infection/reinfection status. The data obtained will make it possible to correlate resistance or susceptibility to infection with the capacity to mount particular responses, and throw light on those mechanisms which regulate the development and expression of host protective immunity. In this context definition of T helper subset responses, and of target parasite antigens are seen as key priorities.

Expected outcome

- The project has provided the first detailed survey of intestinal nematode infections in N.E. Brazil. Extensive clinical data on the surveyed communities have been collected and are being analyzed. The populations have been extensively surveyed, blood and stool samples have been taken on several occasions. It is clear that the parasites *Ascaris*, Hookworm and *Trichuris* have high prevalence, particularly in children.
- Worm burdens: particularly in the case of *Ascaris*, can reach very high levels and are therefore likely to cause a number of clinical problems. The populations have been treated with anthelmintic and the patterns of reinfection followed. Lymphocytes and sera from

individuals shown at each survey to be repeatedly heavily of lightly infected are being analyzed for antibody and cytokine responses in order to look for immunological correlates of resistance and susceptibility. The data collected have already contributed to increased public health awareness of the importance of intestinal nematode infections in the Recife area. The research capabilities of the Brazilian partner have been considerably strengthened. Surveys carried out in poor urban and rural areas in the Recife area showed a high prevalence of gastrointestinal (GI) nematode infections.

In the urban area Ascaris lumbricoides and Trichuris trichiura were the commonest species (57 and 62%), whereas in the rural area hookworm (Necator) was commonest (79%). Infections were present in all age groups, but were most prevalent and most intense in children below 16 years. Only Ascaris infections occurred at very high intensity, faecal egg counts of more than 20,000 eggs per gram being recorded. The study groups have all received chemotherapy, and this proved largely successful in eliminating infection, but with time since treatment levels of infection are again rising. Sera taken before the first chemotherapy have to date been analysed for total and parasite specific IgE responses, as this isotype is considered to give the greatest degree of parasite specificity. High levels of total and parasite specific IgE have been recorded in individual infected with Ascaris and Although the first result was unexpected, high anti-Trichuris IgE with *Trichuris*. responses were not. Assays for IgG isotypes are now in progress, and it is hoped soon to have data on cytokine responses from individuals who have consistently shown either high or low worm burdens. All of these data will then be analysed for association with level of, and predisposition to, infection.

Partners

UNIVERSITY OF NOTTINGHAM

Dept. of Life Sciences University Park **UK-NG7 2RD Nottingham**

United Kingdom

CENTRO DE PESQUISAS AGGEU MAGALHAES

Av. Moraes Rago Caixa Postal n □ 7472 50670-420 Recife

Brazil

CNRS

Lab. d'Immunogénétique Parasitaire Parc Scientifique de Luminy

Case 906

F-13288 Marseille 9

France

H. Coutinho

D. Wakelin

Tel.:+551/81/271.40.00

Tel.:+44/160/251.32.32

A. Dessein

Tel.:+33/561/691.269.400

E-mail: alain.dessein@medecine.univ-

mrs.fr

Period: January 1994 to March 1996

REGULATION OF SEXUAL DEVELOPMENT IN MALARIAL PARASITES AND THE DESIGN OF LOGICAL INTERVENTION STRATEGIES

Co-ordinator: Imperial College of Sciences, Technology, and Medicine, London, United Kingdom (R. Sinden)

Objectives

Through collaborative studies and associated training programmes, the project aimed to investigate the genetic, molecular and biological regulation of sexual development of *Plasmodium*. Though the information gained logical intervention strategies would be investigated.

Activities

Through mutual exchanges of personnel and reagents between the participating laboratories we have integrated the particular expertise of each laboratory in a series of studies, many of which have been published. The diverse methodologies used have been described in these publications and are therefore not repeated here.

Results

⇒ Expression and immunogenicity of recombinant transmission-blocking antigens

A preliminary comparative study assessing the immunogenicity of full length Pbs21 and Pbs21 lacking the anchor region has shown that antibodies reactive to native Pbs21 were induced in both groups of immunized mice, however pronounced differences in the titre of antibody responses in Western blot analyses and in the transmission-blocking activity of immune sera were observed. Three recombinant baculovirus containing the full length coding region of Pfs28, the P. falciparum homologue of Pbs21, were purified and patterns of protein expression in insect cells was determined by Western blot analysis, and optimal conditions for antigen production were determined. The immunogenicity of the recombinant protein will be tested in immunization experiments and compared to recombinant Pfs28 expressed in yeast (obtained from NIH, Bethesda). A plasmid for DNA vaccination containing the Pfs28 gene was constructed. Plasmid mediated protein expression will be tested using a mammalian cell system. A novel P. berghei sexual stage specific protein was identified. Native protein was purified by electroelution. Preliminary data suggest that the protein is expressed in zygotes and ookinetes starting approximately 6 h after activation of gametocytes. Immune sera against the protein and monoclonal antibodies are currently being developed to further characterize the protein and to screen an ookinete specific cDNA library.

\Rightarrow rRNA regulation

In situ hybridization confocal laser scanning microscope studies on the regulation of rRNA during sexual development are described elsewhere in the report. The identification of proteins that are phosphorylated/dephosphorylated. The phosphorylating and H1 kinase activities of extract preparations of *P. chabaudi* and *P. berghei* parasites were analyzed

along the erythrocytic cycle. In experiments using P. berghei extracts, histone was intensively labelled in young trophozoite extracts; this activity decreased in mature trophozoites and disappeared in schizonts. Labelling of non-histone proteins was parasite stage specific: a band of >200 kDa was phosphorylated in young trophozoites, a band of 45kDa was labelled in mature trophozoites and a 40 kDa protein was phosphorylated in schizonts. Quantitative analysis of ³²P-ATP incorporation was carried out in *P. chabaudi*. Major histone kinase activity occurs in mature trophozoites. In the absence of histone, no incorporation of ³²P- was detected in schizonts. When H1 histone was added, stimulation of the phosphorylation occurred in all asexual parasite stage extracts. Experiments to study phosphorylation in P. berghei sexual stages have produced contradictory results mainly because of asexual stage contaminations. We have standardized purification techniques for micro- and macro- gametes, zygotes and ookinetes and are currently using these preparations. cdc-2 like kinase activity; and expression of cyclin during the different phases of the parasite life cycle. The peptide sequence reported for a highly conserved region of the cyclin molecule of several species, between positions 201 and 335, named the "cyclin box" and the codon usage of P. falciparum were used for PCR-amplification of P. chabaudi DNA. The products obtained were cloned in the Small site of pBluescript plasmid for their characterization. The sequencing and analysis of the inserts obtained are in progress. Preliminary comparisons of the 400 bp band indicated sequence homology with human G protein coupled receptor; human gene 1AC; and several anonymous sequences of the P. falciparum genome (including genomic clone 0433). The amino acid sequence shared homology with yeast cell division control protein 10 (20% in a 38 aa strand); mouse tyrosine receptor FLT4 (66% in a 10 aa strand), a putative serine/threonine kinase R107.4 (83% in a 6 aa strand) and a similar degree of homology (40% in 18 aa strands) with zinc fingers of rat, mouse and human. We are currently sequencing the other clones.

⇒ Molecular karyotype changes related to gametocytogenesis in P. berghei and in P. falciparum

In P. berghei several sexual-specific genes have been characterized, which map to chromosome 5. Moreover, rearrangements which affect this chromosome correlate with defects in the gametocytogenesis. Its structural organization has been studied in detail in collaboration with the University of Leiden. A long-range map of chromosome 5 from the gametocyte-producer clone 8417HP, taken as a reference clone, has been constructed and genes hybridizing to it positioned. Subtelomeric portions of this chromosome have been studied in more detail. They are characterized by the presence of a region, extending 60 kb at most, shared by both the extremities and symmetrically located. This region is involved is most large-scale rearrangements affecting this chromosome. In P. falciparum the role of the terminal portion of chromosome 9 in gametocyte differentiation has been investigated. By analyzing a synchronous parasite population of line HB3, heterogeneous for the size of chromosome 9, it was shown that the small fraction of full-length chromosome 9 was preferentially retained in those parasites developing into gametocytes. Studies on isogeneic parasite lines (derived from isolate 1776) differing for the size of chromosome 9 demonstrated that parasites harboring the deleted forms do not enter the earliest detectable step of sexual differentiation. This suggests a role of functions encoded in that region of chromosome 9 in the regulation of early events of sexual differentiation.

⇒ Regulation of sexual/asexual gene expression

A novel gene family, which maps to the terminal portions of *P. berghei* chromosome 5 (one member was selected by subtraction procedures), has been characterized. It contains three partially homologous genes which share the N-terminus of the deduced proteins. The genomic region of one of these three genes is involved in large scale subtelomeric

rearrangements observed in two characterized gametocyte-defective mutants. A *P. berghei* gene (pbB7) conserved within the Plasmodium genus is also being characterized The coding sequence exhibits significant blocks of similarity with a class of nucleosome assembly proteins. The nuclear localization of pbB7 gene product has been demonstrated both in *P. berghei* and *P. falciparum* using specific monoclonal antibodies. A significant difference in the size of the corresponding transcripts has been observed when comparing sexual and asexual parasites. Introns have been detected positively and a possible mechanism of alternative splicing is under investigation. In order to describe the promoter of Pfg27 gene of *P. falciparum* and its regulation, a structural and functional analysis was undertaken on the genomic region upstream the gene which is active in early stages of gametocytogenesis. Northern blot analysis, RNAse protection and nuclear "run-off" experiments on sexual and asexual stages permits us to state that the expression of this gene occurs at the level of transcription initiation. The gene is transcribed in the first 2 to 3 days of sexual differentiation, while it stops afterward.

⇒ Genetic transformation

- The successful development of a drug selectable system for the genetic transformation of the rodent malaria parasite, *Plasmodium berghei*, based upon the donation of drug resistance to the antimalarial drug pyrimethamine. A copy of the homologous dhrf/ts gene containing a Ser/Asn110 mutation has been engineered into *E. coli* plasmids creating transfection vectors. A series of vectors have been constructed that are designed to integrate in a site specific fashion into the parasite genome.
- The use of the system to transform and select transformed parasites that maintained the vectors as episomes. The further characterization of the biological properties of the plasmid DNA maintained in the transformed parasites.
- The successful and site specific introduction of foreign DNA into subtelomeric regions of three *P. berghei* chromosomes demonstrating that subtelomeric structures can support expression of RNA polymerase II transcribed genes.

⇒ Gene mapping

Collaborative studies revealed that the location and linkage of genes on chromosomes of rodent malaria parasites are highly conserved. The link between chromosome 5 and sexual development has been investigated. In different non-gametocyte producing parasite clones a specific rearrangement in the subtelomeric regions of this chromosome has been observed and genes involved in sexual development appear to cluster on this chromosome. In one of our collaborations a long range restriction map of the chromosome has been produced and the size reduction shown to consistently involve rearrangements in a single region of the chromosome. A YAC library of a gametocyte producing parasite clone has been produced and to date YACs covering 60% of chromosome 5 have been isolated.

⇒ Gene expression

The cloning and mapping of the 5' regions of model genes has resulted in identification of the promoter regions of both A-type rRNA genes and the Pbs21 gene. The latter was shown by *in situ* mRNA hybridization on bloodstage parasites to be transcribed only in female gametocytes. Transient transfection technology for the functional analysis of the structure of these promoters is under development. The precise pattern of expression of the stage specific rRNA genes has been determined throughout most of the *P. berghei* life cycle (collaborations with Imperial College). In collaboration with University of Sao Paulo, the cell cycle gene crk2 has been cloned and characterized from a number of different malaria species (*P. berghei*, *P. knowlesi* and *P. vivax*) as have the genes encoding the ribosome associated EF-1 alpha protein. The genetic and biochemical characterization of crk2 is in hand. This collaboration also initiated studies on the organization of the genome of *P. vivax* involving a 6 week visit of a student from USP.

Partners

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY & MEDICINE

Dept. of Biology Prince Consort Road South Kensington

UK-London SW7 2BB

United Kingdom

RIJKSUNIVERSITEIT LEIDEN

Dept. of Parasitology

Postbus 9605 NL-2300 RC Leiden

The Netherlands

ISTITUTO SUPERIORE DI SANITA

Labo. di Biologia Cellulare Viale Regina Elena 299

I-00161 Roma

Italy

CENTRO DE INVESTIGACION DEL PALUDISMO

Dept. of Immunoparasitology

Apartado Postal 537

Tapachula 30700, Chiapas

Mexico

R. Sinden

Tel.: +44-171-594.54.25

Fax: +44-171-594.54.24 E-mail: r.sinden@bio.ic.ac.uk

C. Janse

Tel.: +31-71-27.68.42

Fax: +31-71-27.68.50

M. Ponzi

Tel.: +39-06-444.02.70

Fax: +39-06-444.00.18

M. Rodriguez

Tel.: +96-26.22.19 Fax: +96-26.57.82

E-mail: nrodriguez@hotmail.com

Period: December 1993 to December 1995

REDUCING MATERNAL MORTALITY AND MORBIDITY IN BOLIVIA: APPROPRIATE BIRTH PRACTICES IN THE FORMAL AND INFORMAL SYSTEMS OF PERINATAL CARE

Co-ordinator: Dublin University, Dublin, Ireland (B. Bradby)

Objectives

- ♦ Identify culturally appropriate practices and technologies of birth for women in highly traditional rural (Quechua-speaking), modernising rural (Aymara-speaking) and urban marginal (rural migrants).
- Study the range of factors which prevent childbearing women from participating in formal health care services.
- ♦ Produce baseline data on knowledge and practices in relation to pregnancy and birth, which can then be monitored and updated.

Activities

The project carried out data collection on childbirth practices, and on complications of pregnancy and birth, that laid the basis for identifying the factors and circumstances that have such an adverse effect on the reproductive health of women. Existing knowledge was based almost entirely on statistics from the formal health care system. However, in rural Bolivia, 80% of births take place outside this system, and the project has elaborated methodologies that will allow data to be collected from the informal sector of birth care, and collated with similar data from the official care sector. Three case study localities have been identified, with differing socio-economic characteristics:

- * Highly traditional rural (Quechua-speaking)
- * Modernising rural (Aymara-speaking)
- * Urban marginal (rural migrants)

In each area, the project will work through local health personnel and through local research organisations which have themselves built up good networks in urban and rural communities. The baseline data collected will enable women and health care personnel to initiate concrete actions at the local level to improve service delivery in ways that are appropriate to the social and cultural circumstances of women and their caregivers.

The project involves six partner institutions, three from Bolivia, and three from Europe, in a complex pattern of co-operation, using specific professions and skills developed in the different contexts, which must be used together if such a project is to be successful. These include anthropology, linguistics, medicine, and midwifery, as well as popular-educational and communications skills, necessary for adequate dissemination in non-literate cultures. The project includes a training element, both for local fieldworkers, in methods of qualitative and quantitative data collection and analysis, and for community promoters, who will attend short orientation courses on the aims of the project and in communication skills.

Expected outcome

• It is hoped that in relation to the problem of maternal mortality, the qualitative study will lead to greater understanding of the reasons for under-utilisation of existing maternity services in Bolivia, and to recommendations for ways of decreasing cultural barriers to service delivery. It is also hoped that the findings will help programmes for training traditional birth attendants to develop in ways that are culturally appropriate, and which can ultimately empower, rather than deskill, local people.

• The baseline data collected during the quantitative phase of the fieldwork should enable women and health care personnel to initiate concrete actions at the local level to improve service delivery in ways that are appropriate to the social and cultural circumstances of women and their caregivers. The baseline study will also enable local networks of statistical collection to be put in place so as to enable to monitoring and updating of the practices and problems encountered in the study.

Results obtained

- ⇒ The project's objectives were to identify appropriate birth practices for rural and migrant women in Bolivia, and to look at the factors leading to under-use of existing health services, in the light of concerns about rates of maternal mortality which are high by international standards.
- ⇒ The team of three Bolivian non-governmental organisations and two European institutions carried out studies in rural and peri-urban areas, using a combination of qualitative methods and a questionnaire survey.
- ⇒ Part II of the report documents traditional understandings of birth and of birth care, setting fertility and birth within the complex cosmic vision of the relationships between earth and sky. Principles such as upright positions in birth and the clothing and warmth of the mother relate to these understandings of rain, earth, sun and regeneration. The metaphors are particularly elaborated around the placenta, and birth is seen as a dual process, involving the birth of both baby and the placenta, its "soul". Hospital birth is then approached through the eyes of these traditional understandings. Fear of the Caesarean structures and migrant women's approach to hospital birth, leads to both passive resistance to hospital procedures by giving birth alone, and to active negotiation with hospital staff for other kinds of "help". The traditional prioritising of care in the birth of the placenta carries through into women's expectations of attention in hospital.
- ⇒ Part III of the report examines quantitative data from the project in relation to international health planners' agendas. It looks at the emergence of maternal mortality as a global problem in the last decade, and presents the current situation in Bolivia. It reviews the biomedical arguments on risk factors, and discusses four principal causes of illness and death in childbirth. The view of traditional birth attendants in international programmes is examined in the light of the Bolivian government's training programmes. The results of a questionnaire administered to 298 women are assessed in terms of the effectiveness of reported practices from the points of view of women themselves and of current international recommendations.
- ⇒ Finally, there is an assessment of data on obstetric practices collected from institutional medical personnel, which are evaluated for their effectiveness in preventing complications and in addressing women's needs.
- ⇒ The project's recommendations fall into five areas: furthering dialogue between traditional and biomedical services; arresting the decline of traditional midwives; allaying cultural

fears of hospital birth; systemic response to emergency care; and further research, including a large-scale study of different systems of placental management.

Partners

DUBLIN UNIVERSITY, TRINITY COLLEGE,

B. Bradby

Dept. of Sociology

Tel.: +351-1-702.12.96

Dublin 2

Ireland

CENTRO DE INVESTIGACION, EDUCACION Y S. Rance

SERVICIOS Tel.: +591-239.00.11

Arturo Costa de la Torre 1322

Casilla 9935 La Paz

Bolivia

INSTITUTO DE LENGUA Y CULTURA AYMARA Y. Yapyta

Casilla 2681 Tel.: +591-234.31.95

La Paz Bolivia

TALLER DE INVESTIGACION Y FORMACION P. Nina

ACADEMICA Y POPULAR Tel.: +591-642.22.53

Calle Argentina 37

Sucre **Bolivia**

UNIVERSITY OF ST. ANDREWS T. Platt

Dept. of Social Anthropology Tel.: +44-133-46.29.79

St. Salvator's Building

North Street

UK-KT17 9AL St. Andrews

United Kingdom

Period: January 1994 to December 1995

RAPID DETECTION OF MULTIDRUG-RESISTANT MYCOBACTERIA

Co-ordinator: Institut Pasteur, Paris, France (Stewart Cole)

Objectives

- Elucidation of the molecular bases of drug-resistance in *Mycobacterium tuberculosis*.
- Development of rapid methods for detection of drug resistance.

Activities

- ★ Development of a standard protocol for performing polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) analysis of genes associated with resistance to isoniazid, rifampicin and streptomycin. Prospective study of drug resistance in which the results obtained by PCR-SSCP were compared with those obtained by the proportion method.
- * Implementation of molecular detection strategies in clinical and reference laboratories.

Results

- ⇒ Resistance to isoniazid and rifampicin results from alterations to key chromosomal genes and can be readily detected by means of DNA sequencing or PCR-SSCP analysis of selected mutational hotspots. A standardized PCR-SSCP protocol for the detection of isoniazid and rifampicin resistance was developed and optimized. A blind, prospective, longitudinal study was then conducted in which the results obtained by PCR-SSCP of cultured samples of *M. tuberculosis*, from ± 100 specimens obtained from recent tuberculosis cases, were compared with the drug susceptibility patterns established by the generally accepted reference technique, the proportion method.
- ⇒ In the case of rifampicin, excellent sensitivity and specificity were observed, and the results were concordant for 99% of the samples. Furthermore, identical results were obtained by a second-generation molecular test for drug susceptibility employing solid-phase reverse hybridization. For 87% of the strains, good agreement was seen between the isoniazid resistance profiles predicted by PCR-SSCP and those determined microbiologically. The difference between the two data-sets can probably be explained by the existence of an additional minor resistance mechanism that has not yet been uncovered.
- ⇒ In summary, the molecular methods developed and evaluated during this project proved robust, reliable and, above all, considerably quicker as they allow resistance patterns to be determined in 2 days. This compares very favourably with the two-four weeks required for conventional microbiological procedures.

Selected publications

Takiff H.E., Salazar L., Guerrero C., Philipp W., Huang W.M., Kreiswirth B., Cole S.T., Jacobs Jr. W.R. & Amalio Telenti. 1994. Cloning and nucleotide sequence of *M. tuberculosis gyrA* and *gyrB* genes, and detection of quinolone resistance mutations. Antimicrobial Agents and Chemotherapy. 38, 773-780.

Takiff H.E., Cimino, M., Musso M.C., Weisbrod T., Delgado M.B., Salazar L., Bloom B.R. and Jacobs W.R. 1996. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in *Mycobacterium smegmatis*. Proc. Natl. Acad. Sci. USA, **93**, 362-366.

Salazar L., Fsihi H., de Rossi E., Riccardi G., Rios C., Cole S.T. & Takiff H. 1996. Organization of the origins of replication of the chromosomes of *Mycobacterium smegmatis*, *Mycobacterium leprae and Mycobacterium tuberculosis* and isolation of a functional origin from *M. smegmatis*. Mol. Microbiol. **20**, 283-293.

Telenti A., Honoré N., Bernasconi C., March J., Ortega A., Heym B., Takiff H.E. and Cole S.T. 1997. Genotypic assessment of isoniazid and rifampin resistance in *Mycobacterium tuberculosis*: a blind study at reference laboratory level. Journal of Clinical Microbiology. **35**, 719-723.

Partners

INSTITUT PASTEUR Cole Stewart

Unité de Génétique Moléculaire Bactérienne Tel.: +33-1-45 68 84 46 28, rue du Dr. Roux Fax: +33-1-45 68 89 53

F-75724 Paris

France

INSTITUTO DE SALUD CARLOS III Arturo Ortega-Calderón Centro Nacional de Microbiología Tel.: +34-1-314 08 07

Servicio de Parasitología

Servicio Delgado 10-12

Fax: +34-1-314 08 07

Fax: +34-1-733 66 14

E-28029 Madrid

Spain

INSTITUTO VENEZOLANO DE Howard Takiff

INVESTIGACIONES CIENTIFICAS
Centro de Microbiología y Biología Celular
Tel.: +58-2-572 74 46
Fax: +58-2-572 74 46

Laboratorio de Genética Molecular Carretera Panamericana - km 11

Apartado 21827

Altos de Pipe, EDO. Miranda

Venezuela

UNIVERSITAET BERN Amalio Telenti

Institute for Molecular Microbiology Tel.: +41-31-648 7017 Friedbuehlstrasse 51 Fax: +41-31-260 063

CH-3010 Bern Switzerland

Period: January 1994 to December 1996

MOLECULAR TECHNIQUES FOR VECTOR AND PARASITE IDENTIFICATION APPLIED TO A PILOT VECTOR CONTROL STUDY OF LEISHMANIASIS

Co-ordinator: University of Keele, Keele, United Kingdom (Rhaiza D.C. Maingon)

Objectives

The overall goal is to use previously established molecular techniques to investigate the potential preventive value of permethrin-impregnated curtains from reducing man-biting sandfly rates in a pilot control study in a selected highly endemic focus of cutaneous leishmaniasis. The present study is a pre-requisite for further intervention vector control trials aimed at reducing the incidence of the disease in areas of domestic transmission.

Specific objectives:

- ♦ Determine the vectorial capacity of anthropophilic sandfly species in two ecologically different regions (Lara and Miranda states).
- Gather epidemiological information in the Guayamure/Rio Claro of Lara and Miranda state, using molecular techniques combined with classical field methods.
- Evaluate the efficacy of permethrin-impregnated curtains against endophilic phlebotomine sandflies with respect to a reduction of biting rates in a highly endemic pilot area in Lara and Miranda states.

Activities

- * Extensive field work indicated a high level of endophilic transmission of cutaneous disease in El Ingenio (Miranda state) and to a lesser extent- in Guyamure and Rio Claro villages in Lara state (Venezuela). El Ingenio village consists of 54 house with a population of 254 inhabitants of predominant agricultural occupation. This, and other features such as high prevalance of cutaneous cases or long-term surveillance of these villages made them suitable to investigate the efficacy of insecticide-impregnated curtains in reducing intra-domiciliary sandfly number and their biting rates.
- ▶ During the first year, the entomological analysis of the densities and sandfly species inside vs. outside house in El Ingenio, provided the base-line data for selecting the study and control houses for a pre-pilot vector control trial. This aimed to gain an insight into the relative value of all variables involved in an effective trial. Deltamethrin at a dose of 15 mg/m² was used to soak curtains (6 mm mesh size).
- * A number of issues related to the El-Ingenio trial have been examined to identify specifically the cause(s) for the apparent lack of vector control:
 - Sandfly trapping methods used for monitoring the trial
 - Variables affecting sandlfy susceptibility to a number of insecticides such as insecticide source, insecticide concentration, curtain fabrics, and curtain mesh size
 - Changes in the local sandfly population density and/or sandfly behaviour

 Changes in the community behaviour, particularly of those people living in the selected houses.

Results

- ⇒ The vectorial capacity of anthropophilic sandflies in El Ingenio and Altagracia de Orituco (North-central Venezuela) has been partially elucidated. Since dissection to find out natural infection rates is currently being carrie dout, it will be important to implement the PCR technique qith pooled sandflies (of a given species, i.e. *ovallesi* with *Le. Braziliensis* specific primers MpL 1 and MP 3 H).
- ⇒ Epidemiological information int eh Rio Claro and Guayamure foci of Lara and Altagracia de Orituco (Guarico state) a,d El Ingenio (Miranda state) has used classical and molecular techniques except in the northern region. Implementatin of human DNA detection by PCR in sandfly bloodmeals would enhance the sensitivity of ELISA detection.
- ⇒ For evaluating the efficacy of permetrin-impregnated materials against endophilic sandflies, a second three-way trial is required, comparing both vector control methods: insecticide-impregnated curtains with insecticide wall-spraying inside houses in El-Ingenio. Due to weather pattern changes, there has been a very reduced number of sandflies in both places throughout 1995. The three-way trial is scheduled to take palce as soon as the sandfly density increases.

Partners

UNIVERSITY OF KEELE

Dept. of Biological Sciences

Centre for Applied Entomology and Parasitology

Keele

GB-ST5 5BG Staffordshire

United Kingdom

UNIVERSIDAD DE CARABOBO

Ciencias Salud

La Morita 4944

Apa'rtado 4876

Maracay – Edo Aragua

Venezuela

ISTITUTO SUPERIORE DI SANITÀ

Labo. di Biologia Cellulare

Viale Regina Elena 299

I-00161 Roma

Italy

LIVERPOOL SCHOOL OF TROPICAL MEDICINE

Parasite and Vector Biology Division

Pembroke Place

Liverpool L3 5QA

United Kingdom

Rhaiza D.C. Maingon, R. Ward, A. Wheele

Tel.: +44-1782-62 11 11

E-mail: bia25@keele.ac.uk (R. Maingon) bia40@keele.ac.uk (R. Ward)

old to to keepe de de la contra (14. Ward)

D. Feliciangeli-Pinero, J. Arrivillaga

Tel.: 58-4-333 36 56

M. Maroli

Tel.: +39-6-499 03 02

H. Townson

Tel.: +44-151-708 93 93

UNIVERSIDAD DE VENEZUELA

BIOMED

San Nicolas a Providencia Area Hospital Vargas, San José

YV-4043 Caracas

Venezuela

UNIVERSIDAD LISANDRO ALVARADO

Facultad de Medicina Laboratorio de Parasitolog ùia Barquismeto, Edo Lara

Venezuela

N. Rodríguez

Tel.: +58-2-81 46 30 Fax: +58-2-861 12 58

E-mail: nrodriguez@hotmail.com

R. Bonafante Garrido

Period: October 1993 to September 1995

ORAL VACCINE AGAINST CHOLERA WITH "BUILT-IN" ADJUVANTICITY

Co-ordinator: Istituto Ricerche Immunobiologiche Siena, Siena, Italy (S. Rappuoli)

Objectives

- ◆ Development of new vaccines against diarrhoeal diseases (such as cholera and enterotoxigenic *E. coli*), based on the immunization with live-attenuated strains of *V. cholera* and *Salmonella* expressing non-toxic derivatives of cholera and heat-labile toxins.
- To further increase the immunogenicity of the antigens expressed, *in vivo*, by the attenuated strains, we have engineered the *Salmonella typhimurium* strain to express a peptide derived from IL-1β peptide that has been proposed to be a good adjuvant.

Activities

* Design, construction, purification and characterization of LT and CT mutants

Heat-labile toxin (LT) is a bacterial protein with ADP-ribosylating activity, produced by enterotoxigenic E. coli strains, structurally and functionally related to Cholera toxin (CT). These two toxins share 80% sequence homology and the same 3D structure. LT and CT are organized as AB₅ hexamers, where the homopentameric B subunit binds the receptor on the membrane of eukaryotic cells, while the A subunit is responsible for the ADP-ribosylation of the α subunit of G_s a GTP-binding protein. Using the known 3D structure of LT and computer modelling analysis, we have identified residues previously not known to be important for enzymatic activity, and provided the rationale to probe their function by changing them by site-directed mutagenesis. We have generated a number of different mutants of LT and CT, expressed them in E. coli and V. cholera strains, respectively, purified and characterized. Some of them have been found to be completely devoid of enzymatic activity, both, in vivo and in vitro. We have analyzed the biochemical and immunological properties of the non toxic mutants to define the influence of the mutations in the A subunit on the assembly, stability and immunogenicity of each of the mutant We have obtained mutants in which the amino-acid substitution had not affected the toxicity; mutants in which aminoacid substitutions had dramatically reduced the toxicity and mutants in which the substitution had prevented the formation of the A/B holotoxin. By the study of the biochemical and immunological properties of the nontoxic mutants, we have found that, single amino-acid substitions in the A subunit may affect not only the enzymatic activity, but may also have profound effects on the ability to form the AB₅ structure, on the stability during long-term storage, and on the trypsin sensitivity and immunogenicity of the assembled mutant molecules. Among the non toxic mutants tested, the CT-K63 and the analog LT-K63 mutants, proved to be non toxic, well assembled, stable to trypsin treatment, and able to induce neutralizing antibodies against both the A and B subunit. This property suggests that the A subunit plays an important role in protective immunity and raises the possibility of using these molecules to improve vaccines against LT and cholera.

* Expression of CT-K63 in a Vibrio cholera attenuated strain: IEM101

The *V. cholera* IEM 101 strain is an attenuated EI Tor strain isolated in China. This strain does not contain the genes encoded by the entire virulence cassette. IEM 101 has been used both in rabbits and humans to study its immunogenicity and toxicity. In rabbits, IEM 101 was able to induce protection against the challenge with a virulent strain after immunization with a single dose. In humans it has been shown to be safe, able to colonize the gut and to induce a strong immune response. We have studied the ability of IEM 101 to produce, correctly assemble and secrete into the supernatant the wild-type CT as well as the CT-K63 mutant protein, and we have tested the toxicity, *in vivo*, of the recombinant strains. The results showed that IEM 101 was able to produce and secrete into the supernatant, the wild-type toxin, as well as the mutant toxin. The results of the toxicity *in vivo*, in a Rabbit ILeal Loop assay showed that IEM 101 expressing wild-type CT was able to induce fluid accumulation, while IEM 101 expressing CT-K63, did not. The insertion of the mutated gene into the chromosome of IEM 101 is underway.

* The interleukin-1 β peptide

The nonapeptide sequence VQGEESNDK, corresponding to the aminoacids 163-171 of IL-1β, and the pentapeptide GEESN, has been reported to retain the immunoenhancing properties and to be devoid of proinflammatory activity of the entire IL-1\beta molecule. To increase the ability of Salmonella strains to induce immunity against recombinant antigens, we have engineered the strain to express this peptide, derived from IL-1, using as carrier proteins the flagellin of Salmonella, LamB and MalE of E. coli. The level of expression of the recombinant proteins and the immunogenicity induced by the recombinant strains, or by the purified protein, has been evaluated. The results showed that all the recombinant proteins maintained their functionality and that the amount of each of the native proteins produced were comparable to that of the corresponding chimera proteins. The recombinant strains were used to immunize (i.p.) BALB/c mice. The results showed that the presence of the nonapeptide in the flagellen expressed by Salmonella led to an increase in immunogenicity of about 2.5-fold, confirming previous data obtained with the purified protein. In the case of LamB, the immune response induced in mice immunized with Salmonella strains carrying the recombinant LamB gene was similar to that induced in mice immunized with the strain carrying the native LamB gene. In the case of malE, the presence of the nonapeptide had a weak immunadjuvant effect, which could only be detected using low doses of antigen, and a low-responder strain of mice. With higher doses or after a booster, and with a high-responder mouse strain, no difference could be seen.

* Expression of LT-K63 in attenuated Salmonella typhimurium straius

Four attenuated *S. typhimurium* strains of different serotypes, three of them carrying the virulence plasmid and one which does not contain the virulence plasmid, have been used for the expression of the LT-K63 mutant protein. The gene coding for LT-K63 has been cloned in different plasmids with low, moderate, medium and high copy numbers. The correlation between the copy number of the different plasmids combined with the presence of the virulence plasmid, and the *in vitro* expression level of LT-K63 has been evaluated. The recombinant strains have been used for oral immunization in mice and the immunoresponse induced has been assessed. The results showed that the different *Salmonella* strains were able to produce, assemble and secrete the mutant protein into the periplasm. The *in vitro* expression level of LT-K63 showed a good correlation with the copy number of the different plasmids used, so that the amount of LT-K63 produced was higher when the high copy number plasmid was used. The results of the immunogenicity experiments showed that after a single oral immunization, the mice immunized with the strain carrying the virulence plasmid and expressing the highest level of LT-K63 mount a high anti-LT IgG

S. Newton

M. Hofnung

response in the sera, as well as an IgA response in the mucosa, starting from the second week after immunization.

Partners

ISTITUTO RICERCHE IMMUNOBIOLOGICHE R. Rappuoli

SIENA Tel.: +39-57-729.33.73

Via Fiorentina 1 I-53100 Siena

Italy

UNIVERSIDADE DE SAO PAULO

Av. Prof. Lineu Prestes 1374 Tel.: +551-1-818.74.08 005508-900 Sao Paulo

Brazil

INSTITUT PASTEUR

Dept. Parasitologie Biomédicale Tel.: +33-1-45.68.88.30

Rue du Dr. Roux 25 F-75724 Paris 15

France

Period: February 1994 to January 1997

EPIDEMIOLOGICAL, CLINICAL AND SERO-VIROLOGICAL STUDIES OF HEPATITIS C IN GABON AND BRAZIL

Co-ordinator: Institut de Médecine et d'Epidémiologie Africaines/INSERM U13, Paris, France (Bernard Larouzé)

Objectives

- ♦ Evaluate the importance of hepatitis C virus (HCV) in terms of public health in two countries with different levels of endemicity in order to design preventive strategies.
- ♦ Collect information on the variability of HCV strains and serological patterns in order to improve diagnostic procedures and contribute to vaccine design.
- ♦ Describe the distribution of HCV infection, identify risk factors, and study transmission modes.
- Investigate relationships with chronic liver diseases and hepatocellular carcinoma.
- ♦ Compare the structures of HCV strains circulating in these countries and related serological patterns
- Investigate serological cross-reactions with related viruses.

Activities

In order to evaluate the importance of hepatitis C virus (HCV) in terms of public health in two countries with different levels of endemicity (Gabon: high level; Brazil: low level), we studied, in each country, the distribution of hepatitis C infection in different geographical settings in general and high-risk populations. Additional studies will be dedicated to risk factors in a community-based study in Gabon where the prevalence of antibody to HCV is much higher (7%) than in Brazil (1-2%). As a complement of this last study, a clinical and virological study of anti-HCV positive subjects was performed in order to evaluate the clinical impact of HCV infection. In addition, case-control studies in Gabon and Brazil allowed the determination of risk for cirrhosis and HCC attributable to HCV. From the same material, sero-virological studies of HCV will be designed using PCR techniques to compare the structures of HCV strains circulating in these countries and related serological patterns, and to investigate serological cross-reactions with related viruses. These studies provided information to elaborate prevention strategies (including HCV blood screening in blood banks), to improve serodiagnostic techniques, and to contribute to the development of future HCV vaccines.

Expected outcome

⇒ By knowing the epidemiology and clinical impact of HCV in Gabon and Brazil, and after the interpretation of the sero-virological studies, much will be gained in terms of introduction of mandatory testing in blood banks and immunoprophylaxis when a vaccine becomes available. These studies will provide a basis for decision-making by health authorities from these countries and from countries with similar HCV patterns. Insight into HCV prevention would complement the effort developed in Africa and in Brazil (programme developed by the Federal Government) to control HCV infection.

Bernard Larouzé

Tel.: +33-1-40 36 37 51

Fax: +33-1-40 36 16 99

⇒ The sero-virological studies will allow the design of serological tests adapted to the regional variability of HCV strains and taking eventually into account cross-reactivities with related viral agents? These tests will be used for epidemiological investigations. clinical diagnosis and, if the health authorities decide to screen blood donors, will be used for this purpose. In the long run, results of the sero-virological studies will contribute to the design of anti-HCV vaccines. The implementation of this protocol will be based on a scientific network, which will reinforce links between participants and improve their scientific skills.

Partners

INSTITUT DE MEDECINE ET D'EPIDEMIOLOGIE AFRICAINES /INSERM U 13

Hôpital Bichat 46 rue Henri Huchard F-75019 Paris

France

UNIVERSITA DEGLI STUDI DI MILANO M. Colombo

Istituto di Medicina Interna Tel.: +39-02-55 03 54 31

Via Pace 9 I-20122 Milano

F-75730 Paris cedex 15

Italy

INSERM U.370 C. Brechot

CHU Necker Tel.: +33-1-40 61 56 41 Rue de Vaugirard 156 Fax: +33-1-40 61 55 81

France

INNOGENETICS N.V. G. Maertens

Viral Diseases Dept. Tel.: +32-9-241 07 11 Industriepark Zwijnaarde 7/4 Fax: +32-9-241 09 07 B-9052 Gent E-mail: geertmae@mail.com

Belgium

ARISTOTELIAN UNIVERSITY OF THESSALONIKI

A. Antoniadis School of Medicine Tel.: +31-99 13 46 Dept. of Microbiology Fax: +31-20 03 92

Greece

ESCOLA PAULISTA DE MEDICINA C. Granato

Tel.: +55-11-572 63 48 Disc. Doenças Infecciosas

Rua Napoleão de Barros 715

GR-54006 Thessaloniki

7 Andar

04023 São Paulo

Brazil

UNIVERSITE DE LIBREVILLE J. Perret

Faculté de Médecine Tel.: +241-77 24 17

Département de Parasitologie, Mycologie et Médecine Tropicale B.P. 794

Libreville

Gabon

Period: January 1994 to August 1998

ANALYSIS AND CHARACTERIZATION OF PHOSPHOFRUCTOKINASE AND PYRUVATE KINASE OF *LEISHMANIA*, POTENTIAL TARGETS FOR NEW DRUGS

Co-ordinator: Christian de Duve Institute of Cellular Pathology (ICP), Brussels, Belgium (P. Michels)

Objectives

- ♦ Study the structure and kinetics of phosphofructokinase (PFK) and pyruvate kinase (PYK) of *Leishmania*, key enzymes in the metabolism of the parasite, and determine differences with the corresponding mammalian enzymes.
- ♦ Design and synthesize selective inhibitors of the *Leishmania* enzymes, based on their differences with the mammalian enzymes

Activities

- * Cloning and sequence determination of the *Leishmania* PFK and PYK genes.
- * Overexpression of the *Leishmania* enzymes in bacteria (*Escherichia coli*) or yeast (*Hansenula polymorpha*).
- * Purification of the recombinant enzymes.
- * Kinetic analysis of the purified enzymes.
- * Structure modelling of the *Leishmania* enzymes, using the X-ray coordinates of the crystal structures of homologous enzymes.
- * Structure-function analysis of residues potentially important for inhibitor design by sitedirected mutagenesis.
- * Crystallization trials of recombinant Leishmania PFK and PYK.
- * Synthesis of potentially selective inhibitors of *Leishmania* PFK and PYK.

Results so far

- ⇒ Leishmania PFK and PYK genes have been cloned and characterized.
- ⇒ Leishmania PFK and PYK have been overexpressed in Escherichia coli, purified and kinetically characterized.
- ⇒ Well-diffracting crystals of *Leishmania* PYK have been obtained and are being used for resolution of the enzyme's three-dimensional structure.
- ⇒ Fructose analogues have been synthesized that inhibit *Leishmania* PFK.

Follow-up

- Resolution of the three-dimensional structure of *Leishmania* PFK and PYK.
- Design and synthesis of highly selective and potent inhibitors of the *Leishmania* enzymes.

• Use of inhibitors selective for *Leishmania* PFK and PYK for the development of compounds with antiparasitic activity.

Selected publications

Michels et al. 1997. The glycosomal ATP-dependent phosphofructokinase of *Trypanosoma brucei* must have evolved from an ancestral pyrophosphate-dependent enzyme. Eur. J. Biochem., **250**, 698-704.

P. Michels

Ernest et al., 1998, Protein Expression and Purification, in press.

Partners

CHRISTIAN DE DUVE INSTITUTE OF

CELLULAR PATHOLOGYResearch Unit for Tropical Diseases

Tel: +32-2-764.74.63

Fax: +32-2-762.68.53

Avenue Hippocrate 74 E-mail : michels@trop.ucl.ac.be
B-1200 Brussels

Belgium

UNIVERSITY OF EDINBURGH L. Gilmore

Department of Biochemistry

George Square

GB-Edinburgh EH8 9XD

Tel: +44-131-650.37.28

Fax: +44-131-650.37.11

E-mail: lag@holyrood.ed.ac.uk

United Kingdom

YV-1041 A Caracas

UNIVERSIDAD CENTRAL DE VENEZUELA J. Ramírez

Instituto de Biología Experimental

Grupo de Genética Molecular

Apartado Postal 47525

Tel: +58-2-751.05.44

Fax: +58-2-753.58.97

E-mail: jramirez@neblina.reacciun.ve

Venezuela

France

UNIVERSITE PAUL SABATIER M. Willson

Groupe de Chimie Organique et Biologique

Tel: +33-561-55.68.07

Route de Narbonne 118

Fax: +33-561-25.17.33

F-31062 Toulouse Cedex E-mail: willson@iris.ups-tlse.fr

Period: June 1993 to May 1996

CHARACTERIZATION OF THE IMMUNE RESPONSE AGAINST TRYPANOSOMA CRUZI ANTIGENS (GP 50/55 AND URINARY ANTIGEN) INVOLVED IN IMMUNOPATHOLOGY AND THEIR POTENTIAL USE IN DIAGNOSTICS

Co-ordinator: Universidad Autónoma de Madrid, Madrid, Spain (M. Fresno)

Objectives

- ♦ Improve the understanding of the immune responses involved in protection and pathology in Chagas' disease in order to help control it.
- ♦ Characterize two antigens that may be involved in pathology and also may be good candidates for diagnostic.
- Study the cellular immune response against both antigens.
- Study the potential use of these two antigens as diagnostic tools.

Activities

- * Functional and biochemical characterization of the *T. cruzi* antigen GP 50/55 which shares an epitope with a lymphocyte activation antigen and induces crossreactive antibodies in Chagasic patients which suppress lymphoid activity.
- * Functional and biochemical characterization of a T. cruzi 80 kDa urinary antigen (UA).
- * Cloning of the genes coding for the GP 50/55 and the UA proteins.
- * Testing the reactivity of chagasic sera from patients with different clinical status, with purified natural or recombinant GP 50/55 and the UA proteins.
- * Testing the reactivity of chagasic sera from patients with different clinical status, with purified natural or recombinant GP 50/55 and its possible relationship to differential diagnostic.
- * Studying the cellular immune response to *T. cruzi* and the role *in vivo* and *in vitro* of several cytokines. A special interest will be devoted to the study of the humoral and cellular response against the GP 50/55 protein and its role in pathology.
- * Developing simple and highly sensitive methods for detection of parasite circulating antigens in urine to improve Chagas' disease diagnosis and follow-up of treated patients.

Results

⇒ We have investigated the biochemical and functional properties of *T. cruzi* GP50/55, a glycosyl-phosphatidylinositol (GPI)-anchored membrane antigen. Some of the properties (e.g. molecular mass, susceptibility to degradation) were reminiscent of those displayed by the *T. cruzi* lysosomal cysteine proteinase (GP57/51). A 50-52 kDa proteinase activity, specifically inhibited by thiol protease inhibitors, was immunoprecipitated with monoclonal antibodies (mAb) to GP50/55 (mAb C10), migrating slightly faster than the enzyme precipitated by mAbs to GP57/51. Moreover, the GP50/55 antigen detected by mAb C10 is expressed in the parasite membrane whereas the GP57/51 is not. The protein GP50/55 has been purified to homogeneity. We have found that the cystein protease activity copurifies

with the GP50/55 protein (defined by reactivity with our monoclonal antibodies). However, the cysteine protease may be in fact a protein very tightly bound to GP50/55.

- ⇒ This has led to the identification of a mucin-like protein complex of 30,40 and 50kDa (AgC10) as the one recognized by mAb C10. The aminoacid composition and the structure of sugar chains have been elucidated. The epitope recognized by Mab C10 has been defined as well.
- ⇒ This purified protein is able to suppress the immune response against *T. cruzi* and selectively alters the production of tumor necrosis factor (TNF) but not interlukin 1 (IL-1) by macrophages. These strategies may contribute significantly to the survival of the parasite.
- ⇒ On the other hand, the amino acid sequence of the N-terminal portion of an 80-kDaTrypanosoma cruzi urinary antigen (UAg) affinity purified from the urine of infected dogs showed high degree of homology with human and dog transferrins. Whereas polycolonal antibodies were unable to discriminate between the parasite antigen and transferrin, some MAbs specifically and selectively recognized an 80kDa UAg but not host transferrin, and also reacted against a *T. cruzi* lysate.
- ⇒ Immunoprecipitation analysis showed that UAg specific antibodies bind to several trypanosome antigens including an 80 kDa polypeptide co-migrating with UAg. This UAg is a form of the host transferrin taken up and modified by the parasite. The nature of this modification is under investigation.
- ⇒ In agreement with those results it was not a surprise that we were unable to isolate the cDNA clone for a transferrin related UAg, by immunoscreening with polyclonal antibodies to transferrin and by PCR with degenerate oligonucleotides of conserved regions of transferrins. However, we succeeded to isolate a series of clones expressing the C-terminus portion of the tubulin protein of *T. cruzi*. This finding was also supported by immunoprecipitation experiments showing that the anti-UAg antibodies referred above (used for screening of library) were capable of recognizing tubulin. Simultaneously, we have determined the existence of a 50-55 kDa tubulin as a minor component of the purified UAg preparation, therefore secreted in the urine of infected dogs. This recombinant antigen can therefore be used in the development of urine tests for diagnosis.
- ⇒ We have found that 100% of all human chronic chagasic sera reacts with this AgC10 complex which underlines the importance of this antigen as a potential candidate for diagnostics. Moreover, we have found that AgC10 induces cross-reactive antibodies that react with a 70kDa protein of lymphocytes. By screening of a human T-cell cDNA library with human chagasic sera, we isolated a couple of cDNA clones. One of those human clones (Cha 9.1.2) have homology with the repetitive region of the *T. cruzi* antigen SAPA, thought to be involved in the evasion of immune response. This clone is recognized by a large percent of chagasic sera having cardiomyopathy. We have mapped to this site the reactivity of all autoantibodies in the chagasic sera.
- ⇒ Those results further expand our previous work, indicating that sera from chagasic patients recognize antigens present in human T and B lymphocytes. Moreover, the characterization of autoantibodies against lymphocytes may lead to the definition of a prognostic antigen for predicting the outcome of the disease.

M. Fresno

Partners

UNIVERSIDAD AUTONOMA DE MADRID

Cons. Sup. de Investigaciones Científicas

Tel.: +34-91-397.84.13

Centro de Biologia Molecular Fax: +34-91-397.47.79

Canto Blanco E-mail: MFRESNO@mvax.cbm.uam.es Madrid
Spain

GESELLSCHAFT FÜR BIOTECNOLOGISCHE

J. Mc Carthy

GENE EXPRESSION
Mascheroeder Weg 1
D-3300Braunschweig

Germany

HOSPITAL DE NIÑOS S. Grisntein

Lab. de Virologia Gallo 1330 Buenos Aires 1425

Period: August 1994 to July 1997

STUDIES ON HUMORAL AND CELLULAR IMMUNE RESPONSES IN HUMANS TO PREVIOUSLY DEFINED MALARIA VACCINE CANDIDATES

Co-ordinator: Institut Pasteur, Paris, France (L. Pereira da Silva)

Objectives

Identification of B and T cell epitopes present in recombinant *P falciparum* antigens recognised by the human immune system in relation to naturally acquired protective immunity; search for human genetic factors (in particular HLA) involved in the development of immunity to malaria infection.

Activities and Results

* Field studies on anti-disease and anti-parasite premunition

Our analysis of the protective role of parasite antigens is based essentially on the comparative studies of immune responses in protected and susceptible individuals exposed to malaria infection. This is performed by a longitudinal clinical-parasitological survey with a permanent follow-up of human populations from endemic areas of Senegal and Brazil: a) inhabitants of two villages (Dielmo and N'Diop) in the holo- and hyper-endemic area in Senegal and b) the Candeias, Urupa and Porto Chuelo sites in Rondonia, Brazil (hypoendemic malaria with epidemic episodes). Previous studies from various research groups (including our own) have been done using the criteria of age to define the development of premunition. However, the field studies developed by our groups in Senegal and Brazil, in the last year show the limitation of these simplified criteria. The following recent results illustrate these limitations and make a case for a more precise definition of premunition. Our longitudinal survey allows a comparative clinical and parasitological analysis of the populations from N'Diop and Dielmo villages, which are situated only 5 km apart in the Side Saloum area of Senegal. The presence of a permanent stream running through Dielmo provides permanent breeding sites for Anopheles mosquitoes and an intense and perennial malaria transmission (around 200 infective bites per person per year). In N'Diop transmission occurs intensively only in the rain season (around 20 infective bites per year concentrated in the four months rainy period). The annual incidence of malaria attacks as well as parasite index differs considerably in both villages: adults from N'Diop present a higher number of malaria attacks; children under 5 years old from Dielmo present twice as many malaria attacks than children from N'Diop. However, in N'Diop children over 5 continue to present a high frequency of malaria attacks until they are 12 - 14 years old. Another interesting observation concerns the evolution of clinical immunity: it is accepted that premunition is characterised by a decrease in the number of malaria attacks. We tried to verify if this age dependent immunity corresponds also to a decrease in intensity of symptoms in immune adults. However, detailed studies of symptoms and quantified signs (temperature, sudoresis, vomiting) indicates that the only clear difference is found in the duration of the symptoms. Other observations concern the non-specificity of clinical immunity conferred by malaria parasites. In Dielmo it is observed that clinical attacks by P malariae are quite rare in spite of the high prevalence of parasites of this species in the blood of children. In Rondonia, Brazil, where clear premunition was not observed in various cross-sectional surveys. Interference between P falciparum and P vivax infections is also observed. In the light of these and other observations, the immune status (level of clinical and anti-parasite immunity) is now defined individually, in relation to the evolution of the infection in the child or in the adult (asymptomatic or symptomatic; stable or unstable parasitemia) in the periods preceding and succeeding the time when samples of sera and/or cells are taken for analysis.

* HLA typing

Following previous analysis of HLA, class I antigens typing of Dielmo habitants we have performed analysis of HLA-A, B, C, DR and DQ in 116 habitants of Dielmo from the Serere ethnic groups. No statistically significant differences were observed in the frequency or distribution of the 25 different alleles identified in the Dielmo Serere in relation to the results described by other authors concerning the Mandinka groups from Senegal and Serere and the Mandinka groups of the Gambia.

* Immunological studies in the endemic areas

In the last year we have concentrated our studies in Dielmo on characterisation of the isotope specific antibody responses against total and specific P falciparum antigens. This was justified by previous results showing the protective antibodies are not neutralising antibodies, but are cytophilic antibodies (bind to Fc receptors of macrophages). The antiparasite activity depending on mechanisms of ADCI and/or opsonization/phagocytosis. Serum samples from three cross-sectional surveys in the Dielmo village (145 habitants of all age groups) were used for analysis of antibody isotypes. In a first approach, total antigen of P falciparum was used for measuring total anti-malarial antibodies of the IgM and IgG class and of IgG sub-classes in a ELISA assay. Adults had higher levels of specific antibodies than children. With IgM, IgG2 and IgG3 accounting for the difference. Differences in antibody levels were significant for IgG1, IgG2, IgG3 and IgG4 between the lowest and the highest transmission seasons (while infective bites/person/night increased around 20 fold). No particular isotype distribution pattern could be found to be associated with any given parasitemia level. The relationship between the OD values of each isotype and the risk of clinical malaria attack (in the period following the serum sampling was tested using a Poisson regression model. Only the IgG3 OD increases were found to be associated with a significant reduced risk of malaria attack. These seroepidemiological data suggest that, whereas the total IgG specific activity is not indicative of any given level of protection against malaria, the level of IgG3 was significantly associated with the relative susceptibility to clinical malaria attacks. The analysis of antigen specific IgG3 levels is underway. Preliminary data indicate an increase in anti R45 and anti MSP-3 antibodies of the IgG3 isotope in individuals with reduced risk of malaria attacks. Studies are also in progress on the measurement of antibodies against the different fragments of the C terminal part of the MSP-1 antigens concerning the 42 Kd and 19 Kd processing of products. MSP-1isolated and characterised by the MRC laboratory. The Rondonia samples show an increase in the level of antibodies against EB200 (Pf332) and Pf72 antigens as a function of age and exposure to malaria infection. However, no correlation could be observed with any premunition. Isotype analyses are now in progress.

J.L Sarthou - C. Roussilhon - C. Rogier -

L. Pereira da Silva

A.M. de Aguirra Massola

Partners

INSTITUT PASTEUR

Unité de Parasitologie Expérimentale

Tel: +33-1-45.68.86.27

28 rue du Dr. Roux

Fax: +33-1-40.61.31.85

28 rue du Dr. Roux F-75724 Paris Cedex 15

France

INSTITUT PASTEUR DAKAR

Unité d'Immunologie A. Dieye
BP 220 Dakar Tel: +221-23.51.81

Senegal Fax: +221-23.87.72

ORSTOM DAKAR J.F. Trape

Laboratoire de Paludologie Tel: +221-32.09.62 Dakar Fax: +221-32.16.75

Senegal

London

NATIONAL INSTITUTE FOR MEDICAL A. Holder

RESEARCH Tel: +44-181-959.36.66 Mill Hill Fax: +44-181-913.85.93

United Kingdom

UNIVERSIDADE DE SAO PAULO

Departamento de Parasitologia Tel: +55-11-815.07.36 Cidade Universitaria Fax: +55-11-815.04.27

Sao Paulo **Brazil**

Period: August 1993 to July 1996

CONTROL OF TAENIA SOLIUM CYSTICERCOSIS THROUGH SPECIFIC DIAGNOSIS, SYSTEMATIC EPIDEMIOLOGY AND DEVELOPMENT OF A RECOMBINANT VACCINE

Co-ordinator: University of Edinburgh, Edinburgh, Scotland (L.J.S. Harrison)

Objectives

Taenia solium cysticercosis is responsible for serious public health problems, in addition to creating financial losses to pig producers in countries where the parasite is endemic. While control of the parasite can be achieved to some extent through improvements in public health, sanitation and pig management/husbandry practices, the development of reliable and sensitive diagnostic procedures would greatly assist control through facilitating the execution of reliable epidemiological surveys. Such surveys not only form the basis for pinpointing and evaluating control measures, but are also essential for the design of environmentally appropriate control strategies, including the introduction of a recombinant vaccine. The proposal therefore aims 1) to improve diagnosis of human and porcine cysticercosis 2) to conduct epidemiological surveys as a prelude to selecting appropriate study areas for assessing control via drug treatment and 3) select potentially protective antigens, for use in the design of a recombinant vaccine in a second phase of this project proposal. Of particular importance will be the detection of neurocysticercosis in man. Specific objectives were:

- ◆ Transfer established diagnostic procedures from Europe to Mexico, via a training programme.
- ◆ Conduct epidemiological surveys for porcine and human cysticercosis: the former in order to identify areas for control (e.g. by drugs such as praziquantel) and the latter as a guide to appropriate medical treatment.
- ♦ Clone, sequence and express metacestode excretory/secretory proteins of diagnostic potential.

Activities

- * To transfer established procedures from Europe to Mexico via a training programme. A Mexican student will be trained in the use of a monoclonal antibody based antigen detection ELISA assay developed in UK. The assay will then be transported to Mexico where it will be standardised for use in the detection of human and porcine cysticercosis followed by epidemiological studies. A follow up visit by a member of the European component is then to be carried out to Mexico once the student has returned to the laboratory.
- * Existing DNA probes for the differentiation of *T. solium* and *T. saginata* will be sequenced and developed into a PCR diagnostic test for use in the field.
- * To conduct epidemiological studies for porcine and human *T. solium* infection. The immediate objectives of this study are to carry out a survey in pigs reared under different management systems, comparing the results obtained with the ELISA assay with the presently used meat inspection procedures and detailed tongue examinations in pigs. At the same time studies will be conducted to determine the efficiency of the assay and to determine sero-prevalence in hospital patients.

* To clone, sequence and express potentially protective oncospheral genes. Due to the known extensive cross reactions between T. solium and T. saginata, and to the hazards of working with T. solium oncospheres, the identified potentially protective oncospheral antigens will be cloned from (λ -Zap (Stratagene)) cDNA libraries of T. saginata oncospheres.

* To clone sequence and express excretory/secretory proteins of diagnostic potential. The first activity, which was already achieved, was to identified the protein antigens which were to be cloned; the second to prepare or collect suitable serum samples for use in the primary and secondary screening of the cDNA library; the third activity is to prepare a cDNA library from *T. saginata* metacestodes. Finally, any identified clones from this library and the library prepared from *T. saginata* oncospheres will be recloned into a suitable vector for more efficient expression. Clones first identified using the *T. saginata* system will be subject to secondary screening in order to identify that sub-set is also reactive with *T. solium*.

Results

⇒ Training

The newly prepared HP10 monoclonal antibody reagents were titrated and standardise prior to shipment. The Mexican student trained in the conduct of the ELISA assay and lyophilised reagents were transported back to Mexico, lyophilised for use in the screening work. DNA probes were grown up and sent to Spain for sequencing and further analysis.

⇒ Epidemiological studies for porcine and human T. solium infection

A collection of sera from pigs and human either T. solium infected or non-infected were collected in order to evaluate the sensitivity and specificity of the diagnostic ELISA assay. A group of 293 sera from non-infected (49) and experimentally infected pigs (244) were obtained (from pigs experimentally infected and maintained in the Veterinary School in UNAM). Pigs lightly or heavily infected were bled at different times during the infection and, after the number of cysticerci were determined in a representative sample of each pig (to obtain sera from rustically bred pigs), we examined different slaughter houses near Mexico city, and identified one in Zacatepec, Morelos, which introduces a considerable amount of rustically bred pigs from the states of Puebla and Morelos (Mexico). This is of a special interest considering that this is the population exposed to the higher risk to the infection. With the support of the authorities of this abattoir, we collected 200 ml of sera for each pig and also their tongues. Tongues were maintained in formol saline and the parasite number determined by slicing the tongue to count all the cysts present. Cysticerci collected were conserved for confirmation by an immunopathologist. In addition, a panel of 32 sera from a slaughter house in which only pigs from technified farms were included were used to test serological assays, sera from rustically bred pigs from Tianguizolco, Guerrero. A panel of 43 sera from Tianquizolco were collected. These 43 pigs were randomly selected and completely necropsied to determine the presence of cysticerci or other disease. A collection of 112 CSF were obtained from the Institution Nacional de Neurologia y Neurocirugia, Mexico, D.F. For each patient the diagnosis was confirmed based on the clinical examination, nuclear magnetic resonance and tomography. The pathology and type of infection was also recorded. Finally we prepared a collection of human sera from a neurological institution (Instituto Nacional de Neurologia y Neurocirugia, D.F.). For this, we collected 392 sera from patients that consulted the institution for the first time. For each the sex, age, clinical diagnosis, AIDS, NMR, TC, and other pathology and infections were recorded. All the results obtained in the evaluation of the assays based on the detection of antigen HP10 and antibodies against vesicular fluid antigens indicate that both assays are appropriate to cysticercosis diagnosis in pigs maintained in technified conditions. However, both assays showed a lower specificity and sensitivity for the detection of cysticercosis in

rustically bred pigs and infected humans. Several clones have been identified and sequenced from the *T. saginata* oncospheral library including the gene encoding the principal 18kDa secreted antigen of activated oncospheres of *T. saginata*. The sequence and immunogenicity of *T. saginata* ferritin has been established. Various expression systems have been examined with a view to selecting the most promising for the larger scale expression of *T. saginata* proteins. The selected systems are now functional in the IAH Pirbright laboratory, where preliminary experiments have been initiated.

- ⇒ For the cloning, sequencing and expressing of excretory/secretory proteins of diagnostic potential, groups of calves were infected with *T. saginata* metacestodes in order to produce 4 week old metacestodes. These were extracted and used in the preparation of a □ZAP (Strategene) cDNA libraries on three separate occasions. Libraries are constructed according to routine procedures. Metacestodes of this age have been shown to produce diagnostically important excretory proteins. The intention is to use these protein antigens as the trapping layer in ELISA assays designed to detect anti-parasite antibody in the serum of infected cattle.
- ⇒ The initial extraction and preparation of the RNA was conducted at CTVM while the cDNA preparation and titration of the resultant libraries was conducted at IAH Pribright. Once the libraries were prepared they were screened with sera in Madrid.

Partners

UNIVERSITY OF EDINBURGH

CTVM Roslin, UK-EH25 9RG Midlothian, Scotland

United Kingdom

INSTITUTO DE SALUD CARLOS III

Servicio de Parasitologia Centro Nacional de Microbiologia Carretera de Majadahonda-Pozuelo Majadahonda 28220 Madrid **Spain**

INSTITUTE FOR ANIMAL HEALTH

Department of Immunology Pirbright Laboratory Ash Road, Pirbright, Woking UK-Surrey GU24 ONF United Kingdom

UNIVERSIDAD NACIONAL DE MEXICO

Dept. of Immunology Instituto de Investigaciones Biomedicas A.P. 70228 04510 Mexico, D.F. **Mexico** Leslie JS Harrison

Tel: +44-131-650.62.17 Fax: +44-131-445.50.99

E-mail: leslie.harisson@ed.ac.uk

T. Garate

Tel: +34-1-638.00.11 Fax: +34-1-639.18.59 E-mail: tgarate@isciii.es

RME Parkhouse

Tel: +44-1483-23.24.41 Fax: +44-1483-23.24.48

E-mail: chris.chrisholm@bbstc.ac.uk

E. Sciutto

Tel: +52-5-550.39.82 Fax: +52-5-550.00.48

E-mail: edda@sedvase1.dgsca.unam.mx

Period: October 1994 to September 1997

INTEGRATION MULTIDISCIPLINARY STUDY OF HUMAN FASCIOLIASIS IN THE BOLIVIAN NORTHERN ALTIPLANO

Co-ordinator: Universidad de Valencia, Valencia, Spain (S. Mas-Coma)

Objectives

Characterization of human fascioliasis in the Bolivian Northern Altiplano (in humans endemic with very high prevalence rates, very high altitude) in preparation for control measures.

Results

- ⇒ The endemic zone appears to be isolated between the Lake Titicaca and La Paz: about 250,000 people live in the zone, more than 2 million people in the neighbourhood, and a large livestock population is at risk;
- ⇒ The parasite has developed several strategies to adapt to the altitude conditions, which favour transmission.
- ⇒ Drinking water is an important additional mode of infection.
- ⇒ The transmitting snails proved to belong to only one species: the European species *Lymnaea truncatula*, imported by European settlers.
- ⇒ Sheep and cattle are the main reservoirs, because of their high prevalence rates and degree of intensity. Pigs and donkeys, with high prevalence rates and intensity, also represent efficient reservoir. Other potential definitive hosts present (goats, horses, llamas, alpacas, wild lagomorphs, and rodents) are not active transmission agents.
- ⇒ Man has proved to be a very effective and viable definitive host (human isolates show very high transmission rates at molluscan level) with very high prevalence rates (maximum prevalence rates of 68.2% in schoolchildren and 65.4% in total population according to coprological-method calculations, which can be increased by 20% according to immunological-method calculations). Very high individual infection levels (more than 1000 eggs/g faeces are common in children; sometimes up to 5.064 eggs in extreme cases), with up to 12 different protozoan species and 5 helminth species concomitantly affecting fascioliasis-infected children, including well known pathogens, like *Entamoeba histolytica*, *Cryptosporidium sp.*, *Giardia intestinalis*, *Ascaris lumbricoides*, or *Trichuris trichiura*.
- ⇒ Andean inhabitants have several customs related to transmission (eating aquatic or semi-aquatic vegetables by adults; swallowing or chewing of aquatic plants stems and roots by children; defecating outdoors; family tradition of breeding own livestock including sheep, cattle, pigs and donkeys; a custom of great social settledness among Aymara Indians, life in dispersal communities).
- ⇒ Control measures used normally against human fascioliasis are not sufficient in the Bolivian Altiplano and must be enlarged. Human fascioliasis must no longer be

considered merely as a secondary zoonotic disease but be included in the list of important human parasitic diseases.

Selected publications

Estebán J.G., Flores A., Aguirre C., Strauss W., Angles R., and Mas-Voma S. 1997. Presence of very high prevalence and intensity of infection with *fasciola hepatica* among Aymara children from the northern Bolivian Altiplano. Acta Tropica. **66**: 1-14.

Estebán J.G., Flores A., Angles R., Strauss W., Aguirre C., and Mas-Coma S. 1997. A population-based coprological study of human fascioliasis in a hyperendemic area of the Bolivian Altiplano. Tropical Medicine and International Health. 2(7): 695-699.

Bargues M.D., Mangold A.J., Muñoz-Antoli C., Pointier J.P., and Mas-Coma S. 1997. SSU rDNA characterization of lymnaeid snails transmitting human fascioliasis in South and Central America. Journal of Parasitology. **83(6).**1086-1092.

O'Neill S.M., Parkinson M., Strauss W., Angles R., and Dalton J.P. 1998. Immunodiagnosis of *Fasciola hepatica* infection (fascioliasis) in a human population in the Bolivian Altiplano, using purified cathepsin L cysteine proteinase. American Journal of Tropical Medicine and Hygiene. In press.

Mas-Coma S., Rodríguez A., Bargues M.D., Valero M.A., Coello J.E., and Angles R. 1997. Secondary reservoir role of domestic animals other than sheep and cattle in fascioliasis transmission in the Northern Bolivian Altiplano. Research and Reviews in Parasitology. 57(1): 39-46.

Mas-Coma S., Estebán J.G., and Bargues M.D. 1998. A new classification of epidemiological situations of human fascioliasis. Bulletin of the World Health Organization. In press.

Partners

UNIVERSIDAD DE VALENCIA

Departamento Parasitología Facultad Farmacía Avenida Vicente Andrés Estelles s/n E-46100 Burjassot

Spain

DUBLIN CITY UNIVERSITY

Parasitology Unit School of Biological Sciences

Glasnevin Dublin 9 Ireland

UNIVERSITE DE PERPIGNAN

Département de Biologie Animale Avenue de Villeneuve F-66860 Perpignan cedex

France

INLASA

División de Prasitología y Mycology

Pasaje Rafaél Subicta 1889 Miraflores

La Paz **Bolivia**

S. Mas-Coma

J.P. Dalton Tel.: +353-1-704 54 07 Fax: +353-1-704 54 12

Tel.: +34-96-386 42 98 Fax: +34-96-386 47 69

E-mail: s.mas.coma@uv.es

J. Jourdane

Tel.: +33-4-68 66 20 50 Fax: +33-4-68 66 22 81

E-mail: jourdane@univ-perp.fr

R. Angles Riveros Tel.: +59-2-22 66 70

Fax: +59-2-22 82 54

E-mail: reangles@mail.entelnet.bo

Period: September 1994 to August 1997

GENETIC AND IMMUNOLOGICAL FACTORS IN HUMAN RESISTANCE TO SCHISTOSOMA MANSONI

Co-ordinator: INSERM U399, Marseille, France (A. Dessein)

Objectives

- ♦ Determine to which extent genetic factors control susceptibility to infection and to disease in subjects living in an endemic area (Brazil) and in subjects who recently migrated from a non-endemic area of *S. mansoni* (Kenya).
- Identify and characterize the mode of action of susceptibility genes.
- Evaluate two schistosome antigens as vaccine candidates.
- Develop a strong group of immunology at the Faculty of Medicine of Uberaba.
- Strengthen the expertise of the group of Salvador in the field of schistosomiasis.

Activities

- * Epidemiological studies to evaluate the weight of environment and behaviours on infection and morbidity.
- * Search by segregation analysis of gene(s) with a major effect on infection and morbidity.
- * Mapping of these genes by linkage analysis using the microsatellite method.
- * Analysis of the anti-parasite immune response of susceptible and resistant subjects to uncover an immunological deficit in genetically susceptible individuals.
- * Analysis of the lymphokine production pattern of T-lymphocytes in subjects with various degree of fibrosis.
- * Purification, cloning and production of the active antigen in F28 fraction. Mapping of antigenic determinants of Sm37.
- * Evaluation of the cellular and antibody response of resistant and susceptible subjects to recombinant protein and to peptides.

Expected outcome

- ⇒ The demonstration that genetic predisposition to infection and disease accounts, to a large extent, for the heterogeneous distribution of clinical phenotypes in endemic area of *Schistosoma mansoni*.
- ⇒ The demonstration that such a genetic predisposition results from the action of a few genes (major genes) controlling infection and regulating Symmer's fibrosis.
- ⇒ The identification of immune mechanisms that play a critical role in human defences against S. mansoni.

Progress toward vaccine through the identification of:

- ⇒ The protective immune mechanisms to be stimulated by the vaccine;
- ⇒ The immunological deficit that must be "overcome" by the vaccine in genetically susceptible subjects;
- ⇒ Vaccinating antigens.

- ⇒ Strengthening of research capabilities of two Brazilian laboratories: This project is based on a long standing collaboration between our groups; it is grounded on observations made by us in Brazil on a major gene in human resistance to *S. mansoni* and on the immunological mechanisms that are critical to human resistance to infection.
- ⇒ A similar immunological approach has been taken in Kenya, interactions between the partners will allow the determination of whether the observations on the genetic control of resistance can be extended to another endemic area. This project has a major training component for young scientists.

Results

- ⇒ Evidence has been obtained by segregation analysis for the existence of a major gene or a major locus in the control of infection intensities.
- \Rightarrow This major gene (Sm 1) has been located on chromosome 5q31-33.
- ⇒ Analyses of the immune response of homozygote resistant and susceptible subjects have demonstrated differences in lymphokine production. Resistance is associated with a Th0/2 type lymphokine production and susceptibility is associated with a Th0/1 type of lymphokine production pattern.
- ⇒ The active molecule in F-28 has been purified and cloned. It is referred to as Sm10. Antigenic determinants have been mapped on Sm37.
- ⇒ Cellular and antibody response to these antigens are being evaluated in resistant and susceptible subjects.

Partners

INSERM U399 A. Dessein

Faculté de Médecine Tel: +33-4-91.83.44.52-53 Dept. Immun. and Gen. of Parasite Diseases Fax: +33-4-91.79.60.30

27 bd Jean Moulin E-mail: alain.dessein@medecine.univ-mrs.fr

F-13385 Marseille Cedex 5,

France

UNIVERSIDADE DA BAHIA, E.M. Carvalho

Hospital E. Santos Tel: +55-7-12.37.73.53 Lab. Immunologia Fax: +55-7-12.45.71.10

Rua Joa das Botas s-n Canela Salvador 40000 Bahia,

Brazil

FACULDADE MEDICINA TRIANGULO MINEIRO A. Prata

Dept. Tropical Medicine Tel: +55-3-43.12.10.80 Caixa Postal 118 Fax: +55-3-43.12.66.40

38001 Uberaba - MG,

Brazil

UNIVERSITÉ PARIS VI. PITIÉ-SALPÉTRIÈRE L. Abel

Dept. Biostatistics and Medical Informatics

Tel: +33-5-45.86.56.84

91 bd de l'Hôpital

Fax: +33-5-45.86.56.85

F-75013 Paris, E-mail: abel@biomath.jussieu.fr

France

INSERM U155

Université de Paris VI Genetic Epidemiology Château de Longchamps Bois de Boulogne F-75016 Paris,

France

KENYA MEDICAL RESEARCH INSTITUTE

Biomedical Sciences Research Centre Mbagathi Road, P.O. Box 54840 Nairobi,

Kenya

CAMBRIDGE UNIVERSITY

Microbiology and Parasitology Division Tennis Court Road Cambridge CB2 1QL, United Kingdom J. Feingold

Tel: +33-5-45.20.77.91 Fax: +33-5-46.47.95.01

K. Gachuhi

Tel: +254-2-72.25.41 (ext 243) Fax: +254-2-71.51.05-72.00.30

A.E. Butterworth

Tel: +44-1223-33.37.41 Fax: +44-1223-35.34.92

200

IMMUNE RECOGNITION OF A NOVEL 45KDA ANTIGEN, SPECIFIC TO MYCOBACTERIUM LEPRAE, AND EVALUATION AS A POTENTIAL VACCINE CANDIDATE

Period: January 1995 to June 1997

Co-ordinator: London School of Hygiene and Tropical Medicine, London, United Kingdom (H.M.Dockrell)

Objectives

- ◆ Compare T cell recognition of the 45kDa antigen in leprosy patients, contacts and controls.
- ♦ Identify immunodominant epitopes in the 45kDa antigen recognised by T cells
- ♦ Investigate whether immune recognition of the 45kDa antigen identifies leprosy patients at risk of developing reactional complications

Activities

- * Preparation of a panel of 45kDa reagents, including recombinant 45kDa antigen and overlapping peptides spanning its sequence.
- * Establishment of a functional cellular immunology laboratory at Centro Medico, Mexico City, allowing the assessment of T cell immunity in leprosy, and training of Mexican scientists in appropriate methodology.
- * Assessment of lymphocyte transformation and cytokine secretion induced by the 45kDa antigen in T cells from 59 leprosy patients, 20 leprosy contacts and 17 endemic controls in Mexico. Isolation of human T cell lines recognising the *M. leprae* 45kDa antigen from an UK BCG vaccinated donor.
- * Mapping of immunodominant epitopes in the 45kDa antigen, recognised by sera from leprosy and tuberculosis patients, using synthetic peptides. Comparison of anti-45kDa antibodies in leprosy patients with or without a history of erythema nodosum leprosum.
- ★ Exchange visits between scientists in London and Mexico totalling 38 men-weeks.

Results

- ⇒ Proliferation responses to the *M. leprae* 45kDa antigen were higher in tuberculoid leprosy patients (92.8% positive) than in lepromatous leprosy patients (60.6%); responses were also much higher in household leprosy contacts (88.2%) than in endemic controls (10%). Mexican tuberculosis patients did not show positive lymphocyte proliferation to the *M. leprae* 45kDa antigen, although positive responses were detected in UK BCG vaccinated controls.
- ⇒ Interferon-γ production was also induced by the 45kDa antigen (tuberculoid leprosy>lepromatous leprosy>contacts>endemic controls), and by T cell lines recognising the 45kDa antigen, isolated from an UK BCG vaccinated donor.

- ⇒ Antibodies to the *M. leprae* 45kDa antigen were present in sera from 71% of the leprosy sera; although none of the control sera from the same leprosy endemic area were positive, antibodies were detected in 33% of pulmonary tuberculosis sera. Epitope mapping using synthetic peptides identified both leprosy specific and cross-reactive epitopes in the 45kDa antigen which were recognised by IgG antibodies.
- ⇒ These results suggest that the 45kDa antigen is an immunodominant leprosy antigen, which contains both leprosy-specific and cross-reactive T and B cell epitopes.

Follow-up

Professor F. Vega-Lopez's laboratory in Mexico is now a partner in a new EU contract (ERBIC18*CT97-0235) investigating mechanisms of protective immune responses to pathogenic mycobacteria, which started in November 1997.

Publications

Dr Gabriela Jimenez Diaz. 1997. Reconocimiento del antigeno de 45kDa de *Mycobacterium leprae* por anticuerpos de pacientes con lepra. Post-graduate thesis in Dermatology. Universidad Nacional Autonoma de Mexico.

Rafael Mondragon-Gonzalez. 1998. Reconocimento immune de un nuevo antigeno de *Mycobacterium leprae* por cellulas de pacientes con lepra y controles endemicos sanos Master in Science thesis submitted to Universidad Nacional Autónoma de Mexico.

Partners

LONDON SCHOOL OF HYGIENE & TROPICAL MEDICINE

Dept. of Clinical Sciences

Keppel Street London WC1E 7HT United Kingdom

RIJKSUNIVERSITEIT LEIDEN

Dept. of Immunohaematology & Blood Bank

University Hospital Building 1E3-Q P.O. Box 9600

Leiden

The Netherlands

INSTITUTO MEXICANO DEL SEGURO SOCIAL

Dept. de Dermatologia & Micologíia Medical

Ave. Cuauhtemoc 330 Colonía Doctores México D.F.

Mexico

H.M. Dockrell

Tel: +44-171-927.24.66 Fax: +44-171-637.43.14

E-mail: h.dockrell@lshtm.ac.uk

R.R.P. De Vries Tel: +31-71-26.38.00

Fax: +31-71-21.67.51 E-mail: pdvries@ab.dlo.nl

F. Vega-Lopez

Tel: +52-5-761.03.52 Fax: +52-5-761.03.52

Period: October 1994 to September 1997

CELL MEDIATED IMMUNITY TO SCHISTOSOMES: EVALUATION OF MECHANISMS OPERATING AGAINST LUNG STAGE PARASITES, WHICH MIGHT BE EXPLOITED IN A VACCINE

Co-ordinator: University of York, York, United Kingdom (R. Wilson)

Objectives

- ♦ Identify and clone the antigens mediating lung phase immunity to *Schistosoma mansoni* in mice vaccinated with irradiated cercariae.
- ♦ Use the recombinant antigens for evaluation of T cell responses in mice exposed to the irradiated vaccine, and for protection experiments.
- ♦ Examine the responses of peripheral blood lymphocytes from human patients with different clinical forms of schistosomiasis, to recombinant lung stage- antigens.
- ♦ Analyze selected lung stage antigens at the molecular level by mapping B and T cell epitopes using synthetic peptide constructs.

Activities and Results

* Molecular Biology of Schistosome Antigens

Experimental work performed during this project has sought to use several different techniques to pinpoint potential vaccine antigens. This has involved the identification of cDNAs encoding such molecules, their sequence analysis, and the subsequent production and purification of recombinant proteins in E. coli. A secondary aim has been to identify and subsequently characterize genes expressed uniquely by lung-stage schistosomula using the technique of RAP-PCR. We have also investigated the possibility of identifying cDNAs encoding putative transmembrane or secretory proteins from expressed sequence tags produced as part of the schistosome genome project. Serum raised in rabbits against proteins released by lung-stage schistosomula during in vitro culture has been used to screen both lung-stage and adult worm DNA libraries. A novel clone coding for a protein of Mr 16.4kDa (A26) has been identified, sequenced, expressed in a pET vector, and purified. monospecific serum has been produced against the recombinant A26 protein and used to identify the "native" parasite protein by probing Western blots of soluble preparations of cercariae (SCAP), lung-stage schistosomula (SLAP) and adult worms (SWAP). Preliminary results indicate that a protein of approximately 31kDa is detected in all three preparations, but appears to be most abundant in cercariae. The same screening procedure also identified three previously described vaccine candidates, paramyosin, myosin and calpain, the last of which we are pursuing further. In addition to the clones identified by screening lung-stage and adult worm DNA libraries with sera raised against lung-stage proteins, secretory proteins from other life-cycle stages have been sought. A schistosome calcium-binding protein and a 21.7kDa antigen have been identified from a cercaria DNA library, plus a putative cytochrome C and four unknown clones. Screening of an adult worm library with antibodies directed against released proteins resulted in the isolation of another four unknown clones, plus previously sequenced S. mansoni HSP70, cathepsin and a known, secretory protein, LGG. A number of the unknown clones have been sequenced more extensively and

such proteins may have potential use as markers of disease progression in human patients, and will enable the immunogenicity of proteins released at different life-cycle stages to be compared in various assays. The contribution of the Lille Pasteur Institute group to the project has involved the subcloning and expression of cDNAs encoding some of the proteins potentially involved in the protective immune response directed against lung schistosomula of *S. mansoni*, namely calpain, the tegumental antigens Sm22.6 and Sm21.7, and a DNA encoding an *S. mansoni* homologue of mammalian epididymal secretory protein I. Attempts to express these four cDNAs are currently underway in Lille but significant difficulties have been experienced with all of the clones. A variety of vectors are therefore being tried to circumvent the problems. In a new departure, the lung stage library constructed in York has been transferred to our partners in Belo Horizonte for screening with sera from patients in the acute phase of the disease and five clones (HL-1 to HL-5) were obtained. All five have been sequenced and expressed in either pET or pQE vectors and are now at the purification stage.

* Assessment of immunogenicity

Now that we have developed a panel of recombinant proteins representative of molecules released by parasites at various stages throughout the life-cycle, the immunogenicity of each can be assessed. Since parasite-specific Th1 cells play a pivotal role in the effector response in once-vaccinated mice, most attention will focus on assays of T cell proliferation and cytokine production. The secretion of cytokines by cells recovered from the lungs of mice 17 days post-vaccination will be our main indicator of protein immunogenicity since it is this sub-set which is responsible for challenge parasite elimination. In particular, we shall be seeking proteins which stimulate high levels of IFN production. We are also developing an in vivo assay of antigen reactivity, by injecting recombinant proteins into the pinnae of mice previously exposed to the irradiated vaccine to measure delayed-type hypersensitivity responses. In collaboration with our Brasilian partners, we are currently testing the ability of peripheral blood mononuclear cells (PBMC) from patients with different clinical forms of schistosomiasis to proliferate in vitro in response to each recombinant protein. recombinant antigens have been tested so far; all elicited responses above background but considerably lower than those to SWAP and SEA preparations (this is not unusual with recombinants and represents an obstacle to their evaluation as vaccine candidates by direct probing of human responses). In an alternative screen, we are using an ELISA to determine total IgG responses to each recombinant of patients in the various clinical categories of schistosomiasis, as an indicator of preceding T helper cell responses.

* Human schistosomiasis in Brazil

Field surveys of schistosomiasis in the vicinity of Belo Horizonte have continued, concentrating on the district of Sabara. Stool sampling of 1413 residents revealed an overall prevalence of 27%, with a mean egg count of 58 epg (range 5 - 633). Of these infected individuals, only 12% presented egg counts above 500 epg which might be considered a heavy infection; few showed evidence of advanced hepato-splenic disease. For this reason, we have continued our studies of human responses to *S. mansoni* in an endemic area of Northern Minas Gerais state, centered on Corrego Bernardo, using a field laboratory in the city of Governador Valadares. Both cellular and humoral responses to SLAP, SWAP, and SEA have been evaluated. *In vitro* stimulation of PBMC with SLAP leads to a significant proliferative response in patients with the different clinical forms of the schistosomiasis, except in hepatosplenic individuals. Neutralisation of cytokines in PBMC cultures reveals that the proliferative response to SLAP is differentially regulated from that to SEA and SWA, with no effect observed following the addition of antibodies to IL-4, IL-5 and IL-10. On the other hand, addition of anti-IFN□ antibodies to the PBMC cultures readily decreased the proliferative response to SLAP as it did for SWAP and SEA. Special emphasis has been given to the development of methods for the intracytoplasmic

staining for cytokines that would allow for their simultaneous identification together with the cell type secreting them, using flow cytometry. Initial intracytoplasmic staining data was obtained for IL-2, IL-4, IL-5 and IFN□ in PBMC. Patients were divided into IgE^{hi} and IgE^{lo} groups on the basis of their serum responses to SWAP. The results demonstrate that the IgEhi group had a significantly higher frequency of IL-4 and IL-5 positive cells than the IgE^{lo} group. The frequency of IFN□ positive cells was the same in both groups but, whilst in the IgE^{hi} group the ratio for IFN \(\textstyle / \textstyle L-4\) was 13, in the \(\textstyle \textsty correlate IL-4 directly and IFN inversely with serum IgE levels. It is important to note that in this study all patients were age-matched, thus no influence of age can be attributed to the Furthermore, all individuals were from the same area and to date, the observed results. differences in the two groups of patients cannot be attributed to different levels of water contact. We have also demonstrated that exposed, "normal endemic" individuals have a high IgE antibody response which is elevated only to schistosomula tegumental antigens. We have previously demonstrated that PBMC from "normal endemic" individuals secrete significant levels of IFN when stimulated in vitro with SWAP or SEA. The data obtained with the intracytoplasmic staining for cytokines demonstrated that infected patients with low levels of anti-SWAP IgE have the highest frequency of INF positive cells. We have postulated that the effective immune response to a S. mansoni infection is multifactorial and that it is sitedependent, i.e. different compartments may develop distinct effector responses to the invading parasite. In this context, it is possible that the early attrition may be mediated by IgE antibodies and the later, as the parasite migrates through the lungs, the immune effector mechanism becomes mainly IFN -dependent. The correlation between the intracytoplasmic staining of cytokines and development of resistance to infection, or pathology is not yet adequate to determine whether there is a cause/effect relationship and whether one can distinguish between the roles of Th1 and Th2 responses in these situations. One of the major criticisms of work on human immune responses to S. mansoni infection has been that the studies are always performed using PBMC, which may not reflect the events in the lymphoid organs. To address this question we have compared the phenotype of cells present in the peripheral blood and in the spleens of We observed an increase in CD4*HLADR⁺, CD5⁺CD19⁺, hepatosplenic patients. CD8⁺HLADR⁺ and NK cells in both compartments, relative to that in normal non-infected/nonexposed controls (accident victims). These results demonstrate that analysis of the peripheral blood reflects the findings in a lymphoid organ, such as the spleen.

Partners

UNIVERSITY OF YORK

Dept. of Biology Heslington UK-York Y01 5DD United Kingdom

CENTRO DE PESQUISAS RENE RACHOU

Lab. of Cellular & Molecular Immunology Av. Augusto de Lima 1715 30100 Belo Horizonte Brazil

INSTITUT PASTEUR LILLE

Centre d'Immunologie & Biologie Parasitaire Rue du Professeur A. Calmette 1 F-59019 Lille

France

R. Wilson

Tel: +44-1904-43.28.30 Fax: +44-1904-43.28.60 E-mail: raw3@york.ac.uk

R. Correa-Oliveira Tel: +55-3-12.95.35.66 Fax: +55-3-12.95.31.15

E-mail: correa@dec001.cict.fiocruz.br

A. Capron

Tel: +33-3-20.87.79.62 Fax: +33-3-20.87.78.88

Period: November 1994 to October 1995

HEALTHY PEACE? REHABILITATION & DEVELOPMENT OF THE HEALTH SECTOR IN POST-CONFLICT SITUATIONS

Co-ordinator: London School of Hygiene and Tropical Medicine, London, United Kingdom, (A. Zwi)

Objectives

Analyse the long-term impact of conflict on health with particular reference to disability and childhood diseases in two post-conflict societies (Ethiopia and El Salvador) and using these conditions as tracers to:

- analyse the development of health-related policies, plans and programmes aimed at rehabilitating the health system in the post-conflict period, and to identify the key factors determining policy choice and influencing implementation.
- analyse the financing of health sector rehabilitation and development in the post-conflict period and assess existing strategies with respect to their sustainability and equity.
- analyse the role of international aid in post-conflict rehabilitation and development of the health sector, and to assess the long-term implications of alternative patterns of international assistance.

Activities

This project represented the first phase of a planned 3-year project, and lasts for a period of 1 year. During this period a situation analysis were prepared in both countries comprising three components:

- **★** Health needs in post-conflict situations:
 - This component of the study will assess the impact of conflict on health status with particular reference to disability and immunisable diseases, and will analyse trends in patterns of morbidity. The emphasis will be on collection and comparative analysis of existing secondary data. In addition, rapid and participatory methods of health needs assessment will be used to build health profiles in at least two districts, which have been differently affected by war.
- **★** Health policy analysis:
 - This component of the study will provide an historical analysis of the development of the health system in the two countries. Particular attention will be focused on the impact of conflict on the health policy environment during the periods of conflict, and its implications for the functioning of the health system. The focus for this aspect of the study will be on events since peace has been secured, and on the role of international agencies in the design and implementation of rehabilitation programmes.
- * Health financing components:
 - This component of the study will provide a comprehensive review of changes in the health financing system during and immediately after the wars. It will provide the basis for an assessment of the key financing issues facing the health sector in both countries, with particular respect to the future role of international aid.

Tel: +25-1-112.32.30

Expected outcomes

- ⇒ Reports and publications documenting the research findings were drafted and circulated widely as a contribution to current international debates concerning post-conflict recovery.
- ⇒ It is anticipated that more detailed research proposals will be prepared to follow up on specific issues in the future.

Partners

LONDON SCHOOL OF HYGIENE AND TROPICAL

MEDICINE Tel: +44-171-927.24.04

Dept. of Public Health and Policy

Keppel Street

London

United Kingdom

ESCUELA ANDALUZA DE SALUD PUBLICA A. Ugalde Blasco Tel: +34-5-827.50.44

Apartado de Correos 2070

Granada **Spain**

UNIVERSIDAD CENTROAMERICANA JOSE E.A. Selva-Sutter

Tel: +50-5-73.44.00 ext 119 **SIMEON CANAS**

Dept. de Salud Pública

Autopista sur 01 168, Jardines de Guad

Apartado (01) 168 San Salvador

El Salvador

UNIVERSITY OF ADDIS ABEBA A.B. Kello

P.O. Box 1176 Sidist Kilo Campus

Addis Ababa

Ethiopia

Period: January 1995 to December 1997

DISSECTION OF THE MECHANISMS LEADING TO THE SELECTIVE TRIGGERING OF PROTECTIVE AND NON PROTECTIVE MURINE T-CELL RESPONSES FOLLOWING INFECTION WITH *LEISHMANIA*: RELEVANCE FOR THE INDUCTION AND DETECTION OF HUMAN PROTECTIVE IMMUNITY

Co-ordinator: Institut Pasteur, Paris, France (G. Milon)

Objectives

- ♦ Define the early priming conditions that may commit naive/virgin T-cell populations within lymphoid organs draining *Leishmania*-loaded sites to produce a given set of cytokines upon subsequent reactivation in the non lymphoid parasite-loaded tissues such as the dermis. The terms of priming conditions refer to different cellular components: mast cells, mononuclear phagocytes, dendritic leucocytes (mast cells, NK leucocytes, neutrophils, eosinophils, either infected or loaded with parasite extracts as sources of/or exposed to priming cytokines such as IL4, IL12, IFN η, INFα later named "polarizing cytokines".
- ◆ Specify the relative contribution of the different cells (a) able to process and present parasite-derived peptides to naive T-cells, i.e. dissect the roles of infected mononuclear phagocytes versus dendritic leucocytes, and (b) able to release a given set of polarizing cytokines. If a peculiar combination of cytokines and antigen-presenting cells is recognized as critical, a logical consequence is to ask whether such priming conditions will be rapidly set in motion *in vivo*, in both the skin site of infection and draining lymph nodes depending upon the genetically dependent ability of mice to control (resistance) or not (susceptibility) the parasitic/pathogenic processes initiated by *Leishmania spp.* (*L. major, L. brazillensis, L. panamensis*).
- ♦ Define more relevant correlates of a protective versus non protective immune response within a very well studied polymorphic human population exposed to *Leishmania braziliensis*, *L. panamensis* while extending the training of scientists in the domain of endemic human leishmaniasis/asymptomatic parasitic processes.

Activities

- * Pursue *in vitro* studies using naive/virgin and experienced mouse or human T-cells to specify the priming/reactivation conditions that determine whether T cells will produce IL4, IL10, IL13 or interferon γ (IFN γ) upon subsequent rechallenge, namely cytokines which deactivate mononuclear phagocytes rendering them permissive to *Leishmania spp.* growth (IL4, IL10, IL13) or which activate mononuclear phagocytes rendering them no more permissive to *Leishmania spp.* growth (IFN γ).
- * Pursue *in vivo* studies in conditions allowing access to both the *Leishmania*-loaded dermis and draining lymph nodes: (ears of mice are optimal sites to inject *Leishmania spp.* and from which to recover all the cells presently thought to be directly or indirectly critical for T cell priming, polarization and for T cell reactivation namely in addition to dendritic

G. Milon

leucocytes, mononuclear phagocytic leucocytes and Natural Killer cells, mast cells, neutrophils, eosinophils, keratinocytes).

Expected outcome

A better understanding of the T-cell priming and reactivation conditions set in motion within clinically/epidemiologically defined susceptible and resistant human populations exposed to *Leishmania spp*. The Brazilian and Colombian teams have studied for several years areas where humans are continuously exposed to *Leishmania*. These areas are unique places to study the influence of T-cell responses on outcome of the parasitic process toward either and asymptomatic process or a disease of variable severity.

Partners

INSTITUT PASTEUR, PARIS

Unité d'immunophysiologie cellulaire

Tel: +33-14-568.86.69

Rue du Docteur Roux, 25

Paris Cedex 15

Tel: +33-14-661.31.69

E-mail: gmilon@pasteur.fr

France

FUNDACAO OSWALDO CRUZ S.G. Coutinho

Lab. of Cellular & humoral immunity in protozooses

Avenida Brazil 4365

Tel: +55-21-280.15.89

Fax: +55-21-590.35.45

Avenida Brazil 4365 Fax: +5
Manguinhos
Rio de Janeiro-RJ

Brazil

CIDEIM N. Saravia

Fundacion Centro Internacional de Entrenemiento E Tel: +57-2-361.49.31 Investigaciones Medicas Fax: +57-2-667.29.89

Avenida 1 Norte 3-03 E-mail: cideim@cali.cetcol.net.co

5390 Cali Colombia

UNIVERSITE DE LAUSANNE J. Louis

Institute of Biochemistry Tel: +41-21-692.57.03 Chemin des Boveresses, 155 Fax: +41-21-692.57.05

Lausanne Switzerland

Period: November 1994 to October 1997

DEVELOPMENT OF SILOS MANAGERIAL SKILLS IN BRAZIL: RESEARCH AND IMPLEMENTATION OF SUITABLE TOOLS FOR INTER-SECTORAL AND PARTICIPATIVE ACTIONS IN DEALING WITH MAIN LOCAL HEALTH PROBLEMS

Co-ordinator: Università Commerciale L. Bocconi, Milano, Italy (M. Meneguzzo)

Objectives

- Develop an innovative model for managing local health units to support strategies directed at decentralising health services in developing countries.
- Specific attention will be given to:
 - developing the institutional framework for local health units;
 - planning and programming processes at local level;
 - resource allocation;
 - relationship between decentralisation strategies and utilisation of health care.
- Evaluate the role of decentralisation and institutional strengthening as a tool for solving the general crisis in public welfare in Brazil and in the two European countries involved in the project, Italy and Spain.
- Set out training programs for public managers.

Activities

- * Analysis, comparison and systematisation of SILOS (Local Health Systems) managerial skills development, methodologies and tools in each specific national context; identification of a methodological approach for the three countries.
- * Analysis and comparison between the different decentralisation experiences in the National Health Systems of Brazil, Italy and Spain, in particularly selection of planning, management and controls tools on which experimentation must be concentrated; choice of SILOS for research activity; introduction of research in local process, and definition of project task forces and working laboratories in SILOS selected by the participating centres. Three different interventions will be implemented:
 - Training and education of human resources directly charged with management responsibility on a SILOS level.
 - Consulting, aimed at accompanying, analysing and systematising the decision-making responsibility on a SILOS level.
 - Evaluation of the research projects in their specific context.
- * Evaluation of the research project in the context of the National Public Health Care Systems in transition decentralisation processes, and settlement of a proposal regarding the reproduction of the experience on a large scale, in different contexts, particularly in Latin American Countries.

Expected outcome

- ⇒ Improvement of managerial effectiveness for the SILOS which are involved in the research in terms of capacity of intersectoral response to community health problems and quality of health and social well-being. Strengthening of managerial methodologies and tools and requirements to their effective implementation at a local level.
- ⇒ Preparation of a guideline regarding the evaluation of managerial skills on a SILOS level in order to allow for comparison between the different national contexts.
- ⇒ Definition of methodological options which allow for transformation of local experiences in health policy for National or Mixed Health Systems.

UNIVERSITA COMMERCIALE L. BOCCONI

Centro. di Ricerche Gestione Ass. Sanitaria

Via Bocconi 8

Milano

Italy

UNIVERSIDADE DE SAO PAULO

Av. Dr. Arnaldo 715

Sao Paulo

Brazil

UNIVERSIDADE DA BAHIA

Faculty of Medicine

Rue Padre Feijo 29 4 Andar C.H.R.

Salvador - Bahia

Brazil

UNIVERSIDAD DE BARCELONA

Dept. CC Polit. Idret Public

Edifici B

Bellaterra **Spain**

M. Meneguzzo

Tel: +25-8-36.62.03

C. Vieira de Sousa Unglert Tel: +551-1-881.24.51

C. Fontes Teixeira Tel: +557-1-245.01.51

J. Subirats Humet Tel: +34-3-581.60.54

Period: January 1995 to December 1997

BIOTECHNOLOGICAL APPROACHES TO THE TOTAL UTILISATION OF CRUSTACEAN SHELLFISH AND SHELLFISH WASTE

Co-ordinator: University of Nottingham, Nottingham, United Kingdom (John Peberdy)

Objectives

- Enhance the processing of crustacean shellfish, especially krill and shrimps, to improve the recovery of tail meat.
- Produce added value products from krill tail meat through the development of novel processing methods.
- Recover added value products from peeling and wash water waste and from "head" meat waste.
- Exploit shell waste as a source of chitin and chitosan, and a substrate for solid state microbial fermentation.

Activities

- **★** Development of technologies for handling and processing shellfish.
- * Changes to freezing procedures monitored in the context of modifications to muscle protein.
- * Protocols established for the recovery of fatty acids, pigment and proteins from waste water; constituents purified/tested for use as emulsifying and foaming agents and food colorants; enzymes from head tissue investigated for biomedical uses.
- * Micro-organisms with the capability of using the chitinous shell waste were isolated/identified for their chitinase and chitin deacetylase activities and the most active screened to facilitate utilisation of chitinous shell waste in solid state fermentation.
- * Procedures for recovering chitin from shell waste were developed to exploit enzymes derived from existing and novel microbial strains.

Outcomes

- ⇒ A fast pre-chilling procedure has been developed for shrimp, krill and langostinos to increase the storage period to 8 days.
- ⇒ Improved procedures for shrimp peeling have increased yield.
- ⇒ Offal and shell waste, which comprised 70-80% of the catch, is now being utilized for fish/animal feed and for inclusion in snacks.
- ⇒ A canning procedure has been developed to use Antarctic krill as human food.
- ⇒ A range of processing methods, based on minced tail meat, have been cultivated to present opportunities for the development of novel food products.
- ⇒ Due to the low functionality of krill muscle the addition of binders and co-enhancers was deemed to be of major significance.
- ⇒ Development of alternative processing procedures has facilitated the recovery of commercially valuable products from wash/defrosting waters.
- ⇒ A variety of proteins, amino acids and lipids have been identified for use in processing.

- ⇒ An ultrafiltration system for the recovery of proteins from wash waters has been developed.
- ⇒ A range of chitinolytic micoorganisms have been isolated and characterised to facilite production of chitinase enzymes.
- ⇒ Preliminary work suggests the components of these systems can be purified and the enzymes have potential for the modification of waste.
- ⇒ A range of bacteria has been isolated which produce the deacetylase enzyme.
- ⇒ The shell waste can be exploited for use as a substrate for microbial fermentation leading to its use in developing countries to produce value added products.
- ⇒ Microbial cultures have been used for demineralisation and hydrolysis of chitin-proteincomplex of prawn shell waste.
- ⇒ A biotechnological approach to waste shell utilisation as been demonstrated and waste minimisation has been achieved.
- ⇒ In Chile the chemical procedure for chitin extraction from krill shell has been optimised and the technology transferred to a company in Ecuador. In the UK joint industrial and government funding and been secured for a pilot operation for a biotechnological approach to waste processing.

Ernesto J. del Rosario

Partners

UNIVERSITY OF NOTTINGHAM John Peberdy

Dept. of Life Science Tel.: +44-115-951 32 31 University Park Fax: +44-115-951 32 31

GB-NG7 2RD Nottingham

United Kingdom

UNIVERSITY OF THE PHILIPPINES AT LOS BANOS

National Institute of Biotechnology & Applied Microbiology Tel.: +63-94-27 21 / 2 4031 Los Banos Fax: +63-94-27 21

The Philippines

PESOUERA FRANCIS DRAKE S.A. Poul Hansen

Casilla 56 V Tel.: +56-32-29 11 69 Ruta 68 Km 104 Fax: +56-32-29 11 79

Valparaiso Chile

CONSEJO SUPERIOR DE INVESTIGACIONES Pilar Montero

CIENTIFICAS Tel.: +34-91-549 23 00 Instituto del Frío Fax: +34-1-549 36 27

Ciudad Universitaria s/n E-28040 Madrid

Spain

QUEEN'S UNIVERSITY OF BELFAST Michael Healy

Dept. of Chemical Engineering Tel.: +44-1232-24 51 33 Fax: +44-1232-38 17 53 David Keir Building

Strandmillis Road GB-BT9 5AG Belfast United Kingdom

UNIVERSIDAD DE SANTIAGO DE CHILE

Claudio Romo Centro de Estudios en Ciencia y Tecnología de Alimentos Tel.: +56-2-681 63 64

Avda Libertador O'Higgins 3363 Fax: +56-2-681 63 60

Santiago Chile

Period: January 1995 to December 1997

ASSESSMENT OF IMMUNE RESPONSES INDUCED IN PRIMATES IMMUNIZED WITH LIPOPEPTIDES DERIVED FROM *P.FALCIPARUM* MPES ANTIGENS

Co-ordinator: Institut Pasteur, Paris, France (P. Druilhe)

Objectives

Construct single and multiple epitope peptides containing a lipid moiety using the sequences already identified in LSA1, LSA3, SALSA and STARP molecules, and analyze the immune response induced in primates by such peptides.

Activities

Syntheses of novel peptides and lipopeptides were performed, particularly with the antigens SALSA, STARP, and mostly LSA3. Immunization studies were carried on in mice of various haplotypes, *Aotus trivirgatus* and chimpanzees in BPRC (The Netherlands) and in CIRMF (Gabon). These formulations were used either alone, injected in PBS, or with various adjuvants, or in schemes of administration including either a recombinant first followed by a lipopeptide, or a lipopeptide first followed by recombinant or naked-DNA immunization. The study of immune responses induced in this manner was extremely detailed, including classical antibody, Th, CTL assays, and novel assays such as a Class-I restricted IFN-g Elispot responses, and homing of lymphocytes in the liver and in-situ analysis of parasitological and cellular events following challenge. A lipo-Mixo-lipopeptide was synthesized so as to represent all existing and possible degeneracies within the Starp repeat sequence.

Results

The main result is that full, sterile protection could be achieved by immunization with simple, non-toxic, very well tolerated lipopeptide formulations injected in saline in chimpanzees, i.e. without any adjuvant. The protection achieved in this manner proved to be reproducible on successive challenges, including massive ones of up to 10 million P. falciparum sporozoites. Results confirm the remarkable potential of this means of immunization and suggest that clinical experiments can be performed with them, particularly in view of parallel experiments performed with similar lipopeptide formulation made with antigens derived from Hepatitis B and HIV viruses in humans. Indeed, addition of a palmitoyl chain can dramatically increase T-helper cell responses in a wide range of MHC-Class II haplotypes, and induces B, Th and CTL responses. Large lipopeptides can be endogeneously processed and associated with Class-I. Lipopeptides are safe, perfectly tolerated, and highly immunogenic in chimpanzees, whose immune system is the closest to human one. Moreover, they induce responses that are Improved antigenicity and immunogenicity were obtained through the Starp Mixotope-peptide that consists of a convergent combinatorial library of peptides, or mixotope, obtained in a single synthesis by introducing sequence degeneration, as compared to the consensus sequence peptide inducing sequence degeneration. In view of the proper internalization of the lipid-tailed peptide by cell membranes, we attempted mucosal immunization with the same formulations. These proved also highly effective and sometimes

induced even greater responses than when the same peptide was injected by subcutaneous This mode of systemic immunization is of interest for vaccine delivery in tropical countries as it requires neither any syringe nor trained personnel.

Selected publications

Aidoo M., Lalvani A., Allsopp C.E.M., Plebanski M., Meisner S., Krausa P., Browning M., Morris-Jones S., Gotch F., Fidock D.A. Takiguchi M., Robson J.H., Greenwood B.M., Druilhe P., Whittle H.C., and Hill A.V.S. 1995. Identification of conserved antigenic components for a cytotoxic T-lymphocyte-inducing vaccine against malaria. Lancet., 345:1003-07

BenMohamed, L., Gras-Masse, H., Tartar A., Daubersies P., Brahimi K., Thomas A., and Druilhe P. 1997. A lipopeptide-based, adjuvant-free, malaria vaccine induces potent and long-lasting B, Th and CTL responses in mice and chimpanzee. Eur. J. Immunol., 27, 1242-1253.

Pasquetto V., Fidock D.A., Gras H., Badell E., Ballou W.R., Eling W., Tartar A., and Druilhe P. 1997. Plasmodium falciparum sporozoite invasion is inhibited by naturally-acquired or experimentally-induced polyclonal antibodies to the STARP antigen. Eur. J. Immunol. 27, 2502-2513

Perlaza B.L., Herrera S., Tartar A., Druilhe. P. B- and T-cell responses produced in Aotus by lipopeptides and peptides from the malaria antigens LSA1, SALSA, STARP and LSA3. Infec. Immunity, (in press).

BenMohamed L., Gras-Masse H., Brahimi K., Eling W., Langermans J., Thomas A., Druilhe P. immunogenicity in chimpanzees of eleven peptides derived from four malaria pre-erythrocytic stage molecules. J. Immunol., (submitted).

Aidoo M., Lalvani A., Gilbert S.C., Whittle H.C., Daubersies P., Druilhe P., Hill A.V.S. CTL epitopes for HLA-B53 and other HLA types in the malaria vaccine candidate liver-stage antigen 3. Eur. J. Immunol.(submitted).

Partners

INSTITUT PASTEUR

Biomedical parasitology 28 rue du Docteur Roux F-75015 Paris

France

UNIVERSIDAD DEL VALLE

Fundación Centro de Primates

AA 25360 Cali

Colombia

KATHOLIEKE UNIVERSITEIT NIJMEGEN

Subfaculty of Biology Dept. of Molecular Biology

Toernooiveld 1

NL-6525 ED Nijmegen

The Netherlands

INTERNATIONAL CENTRE FOR MEDICAL

RESEARCH

Dept. of Immuno-Parasitology

Franceville

Gabon

UNIVERSITY OF OXFORD

Institute of Molecular Medicine Dept. of Molecular Immunology

John Radcliffe Hospital

Oxford

United Kingdom

Pierre Druilhe

Tel.: +33-1-45 68 85 78 Fax: +33-1-45 68 86 40 E-mail: druilhe@pasteur.fr

Socrates Herrera

Tel.: +57-23-56 56 21 Fax: +57-23-58 10 61

E-mail: soheva@mafalda.univalle.edu.co

G.J. Wullems

Tel.: +31-80-61 61 61 Fax: +31-80-55 34 50

P. Millet

Adrian Hill

E-mail: a.hill@well.ox.ac.uk

Period: August 1992 to July 1994

MALARIA PRE-ERYTHROCYTIC STAGES (MPES) EUROPEAN NETWORK ANTIGENS TARGET OF IMMUNE RESPONSES CAPABLE OF INHIBITING P. FALCIPARUM PRE-ERYTHROCYTIC DEVELOPMENT

Co-ordinator: Institut Pasteur, Paris, France (P. Druilhe)

Objectives

- ◆ Development of the immunology of MPES with the aim of developing an effective MPES vaccine.
- Acquisition of an improved knowledge of the biology of MPES.
- ◆ Improved co-ordination and exchanges within and between European and Developing Country teams.

Activities

- * Molecular biology studies of pre-erythrocytic antigens from mostly *P. falciparum* and *P. berghei*, and in part, *P. reichenowi* (identification, characterisation, and production of genes and antigens: LSA1 (a major 200 kDa molecule expressed in liver stages), SALSA (a 70 kDa antigen shared between sporozoite and liver stages), LSA3-729 (a pre-erythocytic-stage-specific molecule expressed in sporozoites and liver stages, DG21 (a sporozoite-specific 78 kDa molecule). Antigenic features of these molecules, conservation of epitopes amongst isolates, epitope mapping; immunogenicity in animals, characterization and prevalence of immune responses in humans and in animals, (mice and primates), identification amongst the remaining series of cloned pre-erythrocytic-stage molecules of those that deserve further detailed studies.
- * Improvement of the reproducibility of liver infections in Aotus monkeys. Immunization and sporozoite challenges of chimpanzees and Aotus with P. *falciparum* antigens of mice and thamnomys, with P. berghei, P. yoelii antigens. Analysis of the immune responses developed by immunized animals, and of the type of defence mechanisms operating. Comparison of the type of immunity induced by antigens and by whole parasites (i.e. irradiated sporozoites) in natural versus artificial hosts.
- * Analysis of naturally occurring immunity to MPES in field conditions, of the mechanisms regulating parasite loads at MPES level, and of the main antigens inducing such mechanisms. Analysis of the artificial immunity induced by injection of y-irradiated sporozoites, and of the mechanisms and antigens responsible for such immunity.
- * Study of the mode of action and the respective importance of antibodies, antibody cell Cupertino, lymphocyte cytotoxicity, and cytokines using *P. falciparum* and human hepatocytes, under *in vitro* conditions or *in vivo* in SCID mice.

Expected outcome

Improved understanding of the human *P. falciparum* relationship at MPES level, mainly through an analysis of existing regulatory mechanisms developed against those staged by exposed individuals, and their epidemiological consequences in various areas differing in their vectorial capacity.

Partners

INSTITUT PASTEUR

Département Parasitologie Biomédicale

Rue du Dr. Roux 28 F-75724 Paris 15

France

P. Druilhe

A. Thomas

Tel.: +33-1-45 68 85 78 Fax: +33-1-45 68 86 40 E-mail: druilhe@pasteur.fr

Tel.: +31-1-584 25 38 Fax: +31-1-584 39 86

E-mail: thomas@itri.avg.mbc.tno.nl

BIOMEDICAL PRIMATE RES. CENTRE BPRC

Dept. of Parasitology P.O. Box 5815

NL-2280 HV Rijswijk

The Netherlands

MEDICINE

R. Sinden IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY &

Tel.: +44-171-594 54 25 Fax: +44-171-594 54 24 E-mail: r.sinden@bio.ic.ac.uk

Dept. of Biology Prince Consort Road South Kensington

GB-SW7 2BB London **United Kingdom**

KATHOLIEKE UNIVERSITEIT NIJMEGEN W. Eling

Dept. of Medical Parasitology P.O. Box 0009101

NL-6500 HB Nijmegen The Netherlands

Tel.: +31-8-061 36 63 Fax: +31-8-054 02 16

E-mail: medpar.jm@aznvx1.nl

UNIVERSIDAD DEL VALLE

Fundación Centro de Primates CO-AA 25360 Cali

Colombia

S. Herrera

Tel.: +57-2-356 56 21 Fax: +57-2-358 10 61

E-mail:

soheva@mafalda.univalle.edu.co

MAHIDOL UNIVERSITY

Fac. of Tropical Medicine – Entomology Raivithi Road 420/6 T-10400 Bangkok

Thailand

A. Asavanich Tel.: +66-2-246 12 72

Fax: +66-2-246 83 40

INSTITUUT VOOR TROPISCHE GENEESKUNDE

Nationalestraat 155 B-2000 Antwerpen

Belgium

M. Wéry

Tel.: +32-3-247 63 59 Fax: +32-3-216 14 31 E-mail: mwery@itg.be

KATHOLIEKE UNIVERSITEIT NIJMEGEN

Dept. of Molecular Biology Toernooiveld 1

The Netherlands

NL-6525 ED Nijmegen

Tel.: +31-80-652 25 08

R. Konings

Fax: +31-80-65 21 12

INSTITUTE OF MOLECULAR MEDICINE

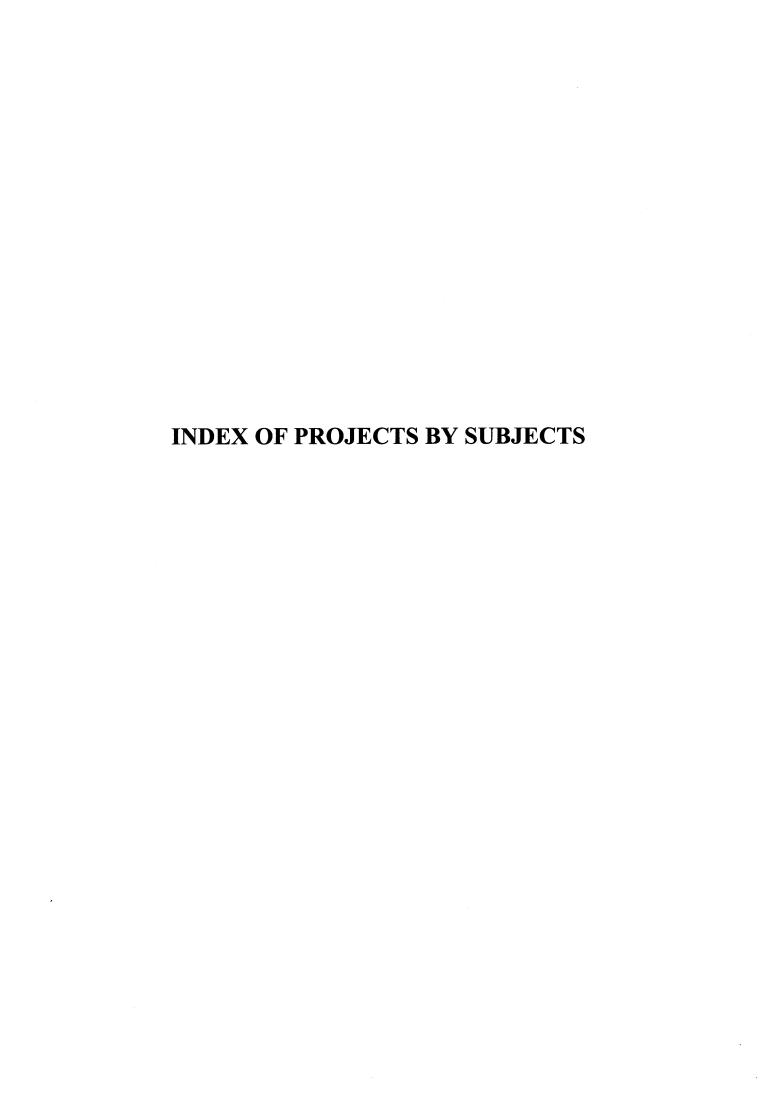
Molecular Immunology Group J. Radcliffe Hospital Headington

GB-OX3 9DU Oxford

A. Hill

Tel.: +44-186-522 23 01 Fax: +44-186-522 25 02 E-mail: a.hill@well.ox.ac.uk

United Kingdom


CENTRE INT'L DE RECH. MEDIC. DE FRANCEVILLE

BP 769 Franceville Gabon

P. Millet

Tel.: +241-67 70 92 Fax: +241-67 72 95

E-mail: Pasmille@club-internet.fr

Life Sciences and Technologies for Developing Countries (STD III) 1991–1994

Projects by subjects
(in numerical order of contracts)

Agriculture

Agriculture		
Contract number	Title	
TS3*CT910003	Influence of cultivation on organic nitrogen status in tropical	
	soils. Adjustment of a mathematical model to nitrogen fertility	
TS3*CT910004	Extractivism in Central Amazonia: Viability and optimization	
TS3*CT910010	Coat protein mediated resistance of <i>solanum tuberosum</i> and	
	nicotiana tabacum towards Andean potato mottle virus	
TS3*CT910014	Genetic improvement of banana for local consumption and for	
	export, with reference to cercosporiosis resistance	
TS3*CT910021	Nutrient cycling and sustainability in alley-cropping systems in	
	the humid tropics. II: phosphorus, labile soil, organic	
	phosphorus and base cations	
TS3*CT920017	Farmer strategies and production systems in fragile	
	environments in mountainous areas of Latin America	
TS3*CT920061	Irrigation-water management and salinization: intercomparison	
	of simulation models in Argentina and Egypt	
TS3*CT920069	Genetic improvement of phaseolus food legumes for the	
	lowland and highland tropics of Colombia and Peru	
TS3*CT920071	Adaptation of maize to acid soils of the tropics	
TS3*CT920091	Evaluation of local poultry resources for creating genetic stock	
	with improved adaptability, productivity and disease resistance	
	for tropical environments	
TS3*CT920093	Thermochemical upgrading of biomasses to gaseous and liquid	
	fuels and feedstocks	
TS3*CT920094	Development of an integrated system to control bean diseases	
	in tropical and subtropical regions	
TS3*CT920098	Biocontrol of damaging root-knot nematode (Meloidogyne	
	Spp.) pests of staple food and cash crops by inducing	
	suppressive soils with the bacterial parasite Pasteuria penetrans	
TS3*CT920106	Definition and conditions of use of field immunodiagnostics for	
	parasitic diseases prevailing in extensively bred cattle	
TS3*CT920109	Estudios bioquímicos e histológicos de los cefalópodos	
	relacionados con la aplicación de tecnologias convencionales y	
	nuevas y con el control de calidad	
TS3*CT920110	Adding value to products, by-products and waste from small-	
	and medium-sized cassava-processing industries in Latin	
TTG2+GTT020111	America	
TS3*CT920111	Intégration de stratégies d'amélioration de la résistance du riz à	
	la pyriculariose (Magnaporthe grisea) dans les nouveaux	
	programmes de création variétale	

Contract number	Title
TS3*CT920115	Biosystematic investigations of the (sub)tropical tuber-bearing
	legume Genus pachyrizmus (yam bean), with special reference
	to the development of high-performance varieties
TS3*CT920125	Biological management of irrigation channel weed problems in
	irrigated semi-arid agriculture
TS3*CT920128	Conservation and regeneration of soil fertility in tropical
	agricultural systems by the manipulation of earthworm
	communities (macrofauna project - second phase)
TS3*CT920131	Organisation of information systems on production inputs, catches and characteristics of small-scale fishery in Ecuador
TS3*CT920134	A project to significantly improve the handling and processing
	of small pelagic fish for aquaculture and food use
TS3*CT920140	Development of novel systems for plant protection against
	fungal infection through genetic engineering of plants and
	myco parasitic fungi
TS3*CT920149	The sustained agricultural development of tropical westlands in
	South America and Africa
TS3*CT930200	Carbon isotope discrimination of leaf and stem carbohydrates
	as indicators of drought tolerance
TS3*CT930203	Sustainable development of intensive aquaculture in the
	Andean-Patagonia region: environmental impact and
	agricultural re-utilization of fish-farming waste
TS3*CT930205	Evaluation and molecular bases of low-cost post-harvest
	technologies
TS3*CT930214	Improved control of bean anthracnose disease in Latin America
	and Africa through increased understanding of pathogen
	diversity
TS3*CT930216	Amélioration génétique de l'adaptation à la sécheresse de l'arachide
TS3*CT930221	Development of selection and clonal propagation techniques for
	multiplication of elite yield and anthracnose-tolerant cashew
	(Anacardium occidentale L.)
TS3*CT930239	Climatological and hydrological determinants of agricultural
	production in South-America remote-sensing and numerical
	simulation
TS3*CT930242	Manipulation of apomixis for the improvement of tropical forages
TS3*CT930252	Regeneration and conservation of hardened and barren volcanic
	soils in Latin America (Chile, Ecuador, Mexico)
TS3*CT930257	Best management practices for the productive/protective
	rehabilitation of deforested sloping lands
TS3*CT940264	Etude de la diversité biologique et de <i>l'Atriplex halimus</i> pour le
	repérage in vitro et in vivo d'individus résistant à des conditions
	extrêmes du milieu, et constitution de clones
TS3*CT940265	Improvement of symbiosis between Rhizobium meliloti and
	alfalfa in acid soils from Argentina and Uruguay
TS3*CT940269	Diagnosis and control of bacterial diseases in penaeid shrimp

Contract number	Title
	hatcheries - relationship between microbial flora, nutrition,
	production techniques, and health status of penaeid shrimp
TS3*CT940274	A novel basis for pest management of <i>Globodera</i> spp. on potato in the Central Andes
TS3*CT940278	Improving the growth of tropical nitrogen-fixing forest trees in the genera <i>Acacia</i> and <i>Casuarina</i> through tissue culture and genetic transformation
TS3*CT940279	Utilization of hemicellulose waste from agricultural and forest industries using xylangdegrading and xylose-fermenting yeasts
TS3*CT940298	Development of methods for the clonal propagation of elite, disease-resistant coconut palms by somatic embryogenesis
TS3*CT940300	Multidisciplinary study of the transformation of Amazonian fruits for their commercialization by existing organizations of small farmers
TS3*CT940306	Optimisation des techniques de sélection du palmier à huile à l'égard de la fusariose, et prise en compte de l'interface racine/sol dans l'évaluation de la résistance
TS3*CT940308	Sustainable agriculture: the role of integrated management of root rot (<i>Phytophthora cinnamomi</i> rands) in avocado (persea americana mill)
TS3*CT940314	An integrated study of land properties, their floristic indications, and appropriate farming systems in an acknowledged biodiversity centre in Amazonian Peru
TS3*CT940316	Assessment of genetic diversity of economically and ecologically important tropical tree species of Central America and the Caribbean: implications for conservation, sustainable utilization, and management
TS3*CT940324	Fog as a new water resource for the sustainable development of the ecosystems of the Peruvian and Chilean coastal desert
TS3*CT940333	Development of minimally processed products from tropical fruits using vacuum impregnation techniques
TS3*CT940335	Ecosystems of the Ix region of Chile: influence of land use on sustainability
TS3*CT940341	New food products from prosopis fruits in Latin America: extending use and preventing desertification in arid zones


Health

Contract number	Title		
TS3*CT910024	Bites and stings by venomous animals in Brazil: clinical and		
	laboratory investigations of envenoming, and therapy		
TS3*CT910029	A survey of Chagas cycles in Uruguay by use of genetic		
	markers with special emphasis on reinfestation hazards of		
	domestic structures by sylvatic cycles		
TS3*CT910038	Identification of candidate protective molecules of <i>E</i> .		
	granulosus, and development of combined Salmonella vaccines		

Contract number	Title
TS3*CT910039	Molecular approach to Echinococcus development
TS3*CT910040	Quantitative diagnosis of schistotoma infections, by
	measurement of circulating antigens in serum and urine
TS3*CT910042	Factors affecting women's choices of health-care providers for
	their children in rural and semi-urban Guatemala
TS3*CT920044	Identification of a promoter specifically transcribed in the gut
	cells of anopheles mosquitoes for the expression of antiparasitic agents
TS3*CT920052	Synthetic peptide antigens as a tool for species-specific serodiagnosis of leishmaniasis with field applications in Brazil
	and Colombia
TS3*CT920053	Malaria pre-erythrocytic stages (MPES) European network antigens target of immune responses capable of <i>inhibiting P</i> . Falciparum pre-erythrocytic development
TS3*CT920070	Community-based malaria control under the guidance of health services: intervention study in Ecuador and Colombia
TS3*CT920077	Phytomonas spp., trypanosomes de plantes - recherches sur le métabolisme, la variabilité, la pathogénicité, et l'épidémiologie, pour arriver à des méthodes de lutte non polluantes
TS3*CT920084	Antimalarial agents which act by affecting the phospholipid metabolism of the intra-erythrocytic plasmodium.
TS3*CT920088	Development of a pharmacological model Health and the current economic crisis in Brazil: the impact on
TEGO N CITICO DO CO	the health and care of mothers and children
TS3*CT920092	Biosystematics and adaptive trends in the genus <i>Rhodnius</i>
TS3*CT920113	Visceral leishmaniasis: epidemiology and disease control
TS3*CT920116	Regulation of sexual development in malaria parasites and the design of logical intervention strategies
TS3*CT920118	Cell-mediated immunity to schistosomes. Evaluation of mechanisms operating against lung stage parasites, which might be exploited in a vaccine
TS3*CT920123	Recombinant antigens as serological tools for specific and sensitive tegumentary and visceral leishmaniasis diagnosis
TS3*CT920129	Clonal variability of the parasite as a predictive tool for different clinical manifestations in tegumentary leishmaniasis of Peru and Bolivia
TS3*CT920130	Risk of reinfestation from wild foci of <i>Triatoma infestans</i> in Bolivia, a country of the southern cone programme
TS3*CT920155	Experimental study of the impact of population clonal structure on relevant medical and biological properties of <i>Trypanosoma</i> cruzi
TS3*CT930219	Field evaluation and further characterization of an invasive specific monoclonal antibody against <i>Entamoeba histolytica</i>
TS3*CT930226	Role of host defences in trypanosome development in Chagas disease vectors with emphasis on the activity of immune depression agents

Contract number	Title
TS3*CT930227	Immunological correlates of resistance and susceptibility to
	infections with gastro-intestinal nematodes in north-east Brazil
TS3*CT930229	Regulations of sexual development in malarial parasites and the
	design of logical intervention strategies
TS3*CT930234	Reducing material mortality and morbidity in Bolivia:
	appropriate birth practices in the formal and informal systems
	of perinatal care
TS3*CT930243	Rapid detection of multi-drug-resistant mycobacteria
TS3*CT930247	Molecular techniques for vector and parasite identification
	applied to a pilot vector control study of leishmaniasis
TS3*CT930255	Oral vaccine against cholera, with "built-in" adjuvanticity
TS3*CT930259	Epidemiological, clinical, and sero-virological studies of
	hepatitis in Gabon and Brazil
TS3*CT940263	Analysis and characterization of phosphofructokinase and
	pyruvate kinase of Leishmania, potential targets for new drugs
TS3*CT940266	Characterization of the immune response against <i>Trypanosoma</i>
	cruzi antigens (GP 50/55 and urinary antigen) involved in
	immunopathology, and their potential use in diagnostics
TS3*CT940272	Studies on humoral and cellular immune responses in humans
	to previously defined malaria vaccine candidates
TS3*CT940277	Control of Taenia solum cysticercosis through specific
	diagnosis, systematic epidemiology, and development of a
TTC2*CTC 40204	recombinant vaccine
TS3*CT940294	Integration multidisciplinary study of human fasciolasis in the
TC2*CT040006	Bolivian northern altiplano
TS3*CT940296	Genetic and immunological factors in human resistance to Schistosoma mansoni
TS3*CT940299	Immune recognition of a novel 45 KDA antigen, specific to
133.01940299	
	Mycobacterium leprae, and evaluation as a potential vaccine candidate
TS3*CT940303	Cell-mediated immunity to schistosomes: evaluation of
133 C1740303	mechanisms operating against lung stage parasites, which might
	be exploited in a vaccine
TS3*CT940305	Healthy place? Rehabilitation and development of the health
155 617 10505	sector in post-conflict situations
TS3*CT940319	Dissection of the mechanisms leading to the selective triggering
155 617 16617	of protective and non-protective murine T-cell responses
	following infection with Leishmania: relevance for the
	induction and detection of human protective immunity
TS3*CT940321	Development of silos managerial skills in Brazil: research and
	implementation of suitable tools for inter-sectoral and
	participative actions in dealing with main local health problems
TS3*CT940343	Biotechnological approaches to the total utilisation of crustacea
	shellfish and shellfish waste
TS3*CT940345	Assessment of immune responses induced in primates
	immunized with lipopeptides derived from P. falciparum
	MPES antigens

Contract number	Title
TS3*CT940346	Malaria pre-erythrocytic stages (MPES): European network
	antigens target of immune responses capable of inhibiting <i>P</i> .
	falciparum pre-erythrocytic development

		·

Life Sciences and Technologies for Developing countries (STD III) - Index of institutes

(by countries)

COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
ARGENTINA	Centro de Recursos Naturales Renovables	TS3*CT920125	41
	Hospital de Niños, Buenos Aires	TS3*CT940266	189
	Instituto de Botanica del Nordeste	TS3*CT930242	70
	Instituto de Investigaciones en Ingeniería Genética y Biológica	TS3*CT920077	138
	Instituto Nacional de Ciencia y Técnica	TS3*CT920061	17
	Hídricas	TS3*CT930239	67
	Universidad Nacional de La Plata	TS3*CT940265	78
	Instituto Nacional de Tecnología Agropecuaria	TS3*CT930239	67
	Instituto Nacional de Tecnología Industrial (INTI)	TS3*CT920109	33
	Planta Piloto de Procesos Industriales	TS3*CT940279	87
	Universidad de Buenos Aires	TS3*CT920110	35
		TS3*CT940333	105
	Universidad Nacional del Comahue	TS3*T930203	56
BELGIUM	Christian De Duve Institute of Cellular Pathology	TS3*CT940263	186
	Facultés Universitaires des Sciences	TS3*CT910014	11
	Agronomiques de la Communauté Française de Belgique - Gembloux	TS3*CT920069	19
	Innogenetics N.V.	TS3*CT930259	184
	Instituut voor Tropische Geneeskunde	TS3*CT910042	126
	"Prince Leopold"	TS3*CT920053	134
		TS3*CT920129	156
		TS3*CT940346	217
	International Institute of Cellular and Molecular Pathology	TS3*CT920077	138
	Katholieke Universiteit Leuven (KUL)	TS3*CT910003	5
		TS3*CT910014	11
	Prince Leopold Institute of Tropical Medicine	TS3*CT920091	23
	Rijksuniversiteit Gent	TS3*CT910010	9
		TS3*CT920140	50
		TS3*CT940269	80
		TS3*CT940278	85
	Université Catholique de Louvain (UCL)	TS3*CT940264	76

COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
		TS3*CT940300	92
	Université Libre de Bruxelles (ULB)	TS3*CT940306	94
	Universiteit Antwerpen	TS3*CT920070	136
BOLIVIA	Centro de Investigación, Educación y Servicios	TS3*CT930234	174
	INLASA	TS3*CT940294	197
	Instituto de Lengua y Cultura Aymara	TS3*CT930234	174
	ORSTOM Bolivia	TS3*CT930239	67
	PROINPA	TS3*CT940274	82
	Taller de Investigación y Formación Académica y Popular	TS3*CT930234	174
	Universidad Mayor de San Andrés de La Paz	TS3*CT920017	15
	Universidad Mayor de San Simon	TS3*CT920129	156
		TS3*CT920130	158
	Universidad Técnica de Oruro	TS3*CT920091	23
BRAZIL	Centro de Pesquisas Aggeu Magalhaes	TS3*CT930227	167
	Centro de Pesquisas René Rachou	TS3*CT910040	124
		TS3*CT920118	152
		TS3*CT940303	205
	Empresa Brasileira de Pesquisa	TS3*CT920111	37
	Agropecuaria	TS3*CT930200	54
		TS3*CT930242	70
		TS3*CT940300	92 94
	Escola Paulista de Medicina	TS3*CT940306	184
		TS3*CT930259	
	Faculdade Medicina Triangulo Mineiro	TS3*CT940296	199
	Fundação Oswaldo Cruz	TS3*CT920044	128
		TS3*CT920092	144 165
		TS3*CT930226	209
	Instituto Butantan	TS3*CT940319	114
		TS3*CT910024	
	Instituto de Desenvolvimento Economico	TS3*CT940300	92
	Instituto Nacional de Pesquisas da	TS3*CT910004	7
	Amazonia	TS3*CT920149	52
	Universidade da Bahia	TS3*CT940296	199
		TS3*CT940321	211
	Universidade de São Paulo	TS3*CT920094	27
		TS3*CT930255	182
		TS3*CT940272	192
		TS3*CT940321	211
	Universidade Estadual de Campinas	TS3*CT930239	67
	Universidade Estadual Paulista	TS3*CT920110	35
	Universidade Federal da Bahia	TS3*CT920052	130

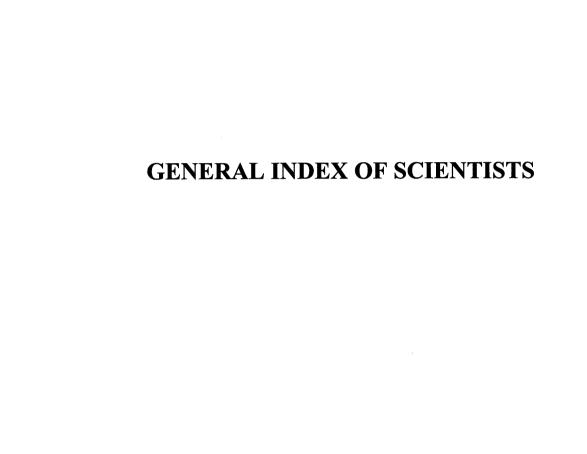
COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
	Universidade Federal de Alagoas (UFAL)	TS3*CT930221	64
	Universidade Federal de Minas Gerais	TS3*CT910024	114
	Universidade Federal de Vicosa	TS3*CT920094	27
	Universidade Federal do Ceara	TS3*CT930216	62
	Universidade Federal do Para	TS3*CT940300	92
	Universidade Federal do Pelotas	TS3*CT920088	142
	Universidade Federal do Piaui	TS3*CT920113	146
	Universidade Federal do Rio de Janeiro	TS3*CT910010 TS3*CT940278	9 85
	Universidade Federal do Rio Grande do Sul	TS3*CT910039	122
	Universidade Estadual de Londrina	TS3*CT920071	21
CHILE	Fundación Chile	TS3*CT920134	48
	Pesquera Francis Drake S.A.	TS3*CT940343	213
	Universidad Austral de Chile	TS3*CT930205	58
	Oniversidad ridstrar de Cinic	TS3*CT940335	108
	Universidad Católica de Chile	TS3*CT940324	104
	Universidad de Chile	TS3*CT920155	161
	Universidad de Concepción	TS3*CT920093	25
	Universidad de la Frontera	TS3*CT940335	107
	Universidad de Santiago de Chile	TS3*CT920109	33
		TS3*CT930239	67
		TS3*CT930252	72
		TS3*CT940264	76 213
COLOMBIA	C . I I	TS3*CT940343	138
COLOMBIA	Centro de Investigación en Palma de Aceite	TS3*CT920077	35
	Centro Internacional de Agricultura Tropical	TS3*CT920110	
	CIDEIM	TS3*CT940319	209
	Corporación Colombiana de Investigación Agropecuaria	TS3*CT920069	19
	Universidad de los Andes	TS3*CT930219	163
	Universidad de Sucre	TS3*CT920052	130
	Universidad del Valle	TS3*CT920053	134
		TS3*CT920070	136
		TS3*CT920084	140
		TS3*CT940345	215
		TS3*CT940346	217
	Universidad Nacional de Colombia	TS3*CT930205	58
COSTA RICA	Centro Agronómico Tropical de	TS3*CT910014	11
	Investigación y Enseñanza (CATIE)	TS3*CT920115	39
	Universidad de Coste Pies	TS3*CT940316	101
	Universidad de Costa Rica	TS3*CT910021 TS3*CT940308	13 96

COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
	Universidad Nacional	TS3*CT930257	74
	Universidad Nacional Heredia	TS3*CT930214	60
DENMARK	Århus Universitet	TS3*CT910004	7
	Danish Institute for Fisheries, Technology and Aquaculture (DIFTA)	TS3*CT920134	48
	Royal Veterinary and Agricultural University	TS3*CT920115	39
	Statens Seruminstitut	TS3*CT910042	126
ECUADOR	Escuela Superior Politécnica del Litoral	TS3*CT940269	80
	Instituto Nacional de Pesca	TS3*CT920131	46
	Instituto Nacional de Investigaciones Agropecuarias (INIAP)	TS3*CT920098 TS3*CT920115	29 39
	Museo Nacional de Medicina del Ecuador	TS3*CT920070	136
	Universidad Central de Ecuador	TS3*CT930252	72
	Universidad Técnica de Esmeraldas "Luis Vargas Torres"	TS3*CT920115	39
FINLAND	University of Turku	TS3*CT940314	98
FRANCE	Centre d'Etudes Nucléaires de Saclay	TS3*CT910024	114
	CIRAD	TS3*CT920110 TS3*CT940298	35 89
	CIRAD CA	TS3*CT910003 TS3*CT920071 TS3*CT920111 TS3*CT930216	5 21 37 62
	CIRAD-CP	TS3*CT920077	138
	CIRAD - Département Cultures Annuelles	TS3*CT920110	35
	CIRAD FLHOR	TS3*CT910014	11
	CIRAD GERDAT	TS3*CT910014	11
	CIRAD SAR	TS3*CT920109	33
	CNRS	TS3*CT910003 TS3*CT920052 TS3*CT920084 TS3*CT920084 TS3*CT930227	5 130 140 141 167
	Ecole Nationale Vétérinaire	TS3*CT920106	31
	Groupe Hospitalier Pitié-Salpêtrière	TS3*CT920113	146
	INSERM	TS3*CT930259 TS3*CT940296	184 199
	Institut Gustave Roussy	TS3*CT920077	138
	Institut National de la Recherche	TS3*CT920071	21

UNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.	
	Agronomique (INRA)	TS3*CT920106	31	
		TS3*CT930239	68	
		TS3*CT940316	101	
	Institut National de la Santé et de la Recherche Médicale	TS3*CT920084	140	
	Institut Pasteur	TS3*CT920053	133	
		TS3*CT920118	152	
		TS3*CT930243	176	
		TS3*CT930255	182	
		TS3*CT940272	192	
		TS3*CT940303	205	
		TS3*CT940319	209	
		TS3*CT940345	215	
		TS3*CT940346	217	
	IRD (ex-ORSTOM)	TS3*CT910003	5	
		TS3*CT910004	7	
		TS3*CT910029	116	
		TS3*CT920092	144	
		TS3*CT920098	29	
		TS3*CT920110	35	
		TS3*CT920128	43	
		TS3*CT920129	156	
		TS3*CT920130	158	
		TS3*CT920155	161	
		TS3*CT930242	70	
		TS3*CT930252	72	
		TS3*CT940278 TS3*CT940298	85 89	
	Réseau International pour l'Amélioration de	TS3*CT940298	11	
	la Banane et de la Banane Plantain	155 61710011		
	Université de Bordeaux II	TS3*CT920077	138	
	Université de Lyon I	TS3*CT940306	94	
	Université de Montpellier II	TS3*CT940300	92	
	*	TS3*CT920084	140	
	Université de Perpignan	TS3*CT940294	197	
	Université Paris Sud	TS3*CT910014	11	
		TS3*CT910038	119	
		TS3*CT910039	122	
		TS3*CT920111	37	
		TS3*CT930214	60	
		TS3*CT940264	76	
	Université Paris VI, Pitié-Salpêtrière	TS3*CT940296	199	
	Université Paris 7 "Denis Diderot"	TS3*CT920115	39	
	Université Paul Sabatier	TS3*CT940263	186	
	I .	TS3*CT940324	103	

COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
GERMANY	Forschungsinstitut Senckenberg	TS3*CT940314	98
	Gesellschaft für Biotechnologische Gene Expression	TS3*CT940266	189
	Humboldt University of Berlin	TS3*CT920091	23
	Institute of Microbiology and Biotechnology	TS3*CT940279	87
	Justus-Lipsius-Universität Giessen	TS3*CT930252	72
	Landesinstitut für Tropenmedizin	TS3*CT910040	124
	Max-Planck-Institut für Limnologie	TS3_CT920149	52
	Rheinische Friedrich-Wilhelms Universität	TS3*CT920069	19
	Bonn	TS3*CT940279	87
	Ruhr Universität Bochum	TS3*CT930226	165
	Universität Bayreuth	TS3*CT940335	107
	Universität Bielefeld	TS3*CT940265	78
	Universität Hannover	TS3*CT920071	21
		TS3*CT920094	27
		TS3*CT940298	89
CD CD CD	Universität Heidelberg	TS3*CT920070	136
GREECE	Aristotelian University of Thessaloniki	TS3*CT930259	184
GUATEMALA	Centro de Educación y Investigación en Salud (CEISAR)	TS3*CT910042	126
	Instituto de Ciencia y Tecnología Agricolas	TS3*CT930257	74
GUINEA BISSAU	Ministerio do Desenvolvimiento Rural e Agricultura	TS3*CT930221	65
HONDURAS	Universidad Nacional Autónoma de Honduras	TS3*CT920017	15
IRELAND	Dublin City University	TS3*CT920149	52
		TS3*CT930234	174
		TS3*CT940294	197
	St. Patrick's College	TS3*CT940279	87
	TEAGASC	TS3*CT940278	85
	University College Dublin	TS3*CT930214	60
ITALY	Comitato Internazionale per lo Sviluppo dei Populi	TS3*CT920131	46
	Conphoebus S.C.R.L.	TS3*CT930257	74
	Consiglio Nazionale delle Ricerche	TS3*CT930200	54
	Istituto Ricerche Immunobiologiche	TS3*CT930255	182
	Istituto Superiore di Sanità	TS3*CT920116	150
	•	TS3*CT930229	171
		TS3*CT930247	178
	Università Commerciale L. Bocconi	TS3*CT940321	211
	Università degli Studi di Firenze	TS3*CT940324	104
	Università degli Studi di Milano	TS3*CT930259	184
	Università degli Studi di Padova	TS3*CT940324	103

COUNTRY	OUNTRY INSTITUTE		PAGE NO.
MEXICO	Centro de Fitopatología	TS3*CT940308	96
	Centro de Investigación Científica de Yucatan	TS3*CT940298	89
	Centro de Investigación del Paludismo	TS3*CT920116 TS3*CT930229	150 171
	Centro de Investigación y Estudios Avanzados	TS3*CT920140	50
	Colegio de Postgraduados	TS3*CT930252	72
	Fundación Universidad de Américas-Puebla	TS3*CT940333	105
	Instituto de Ecología	TS3*CT920128	43
	Instituto Mexicano del Seguro Social	TS3*CT940299	202
	Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP)	TS3*CT920106 TS3*CT920115	31 39
	Instituto Politécnico Nacional	TS3*CT940341	109
	Universidad Autónoma de Tlaxcala	TS3*CT930252	72
	Universidad Nacional de México	TS3*CT940277	195
NETHERLANDS	Biomedical Primate Research Centre	TS3*CT920053 TS3*CT920084 TS3*CT940346	134 140 217
	Diagnostisch Centrum SSDZ	TS3*CT940340	124
	DLO-Winand Staring Centre for Integrated Land, Soil, and Water Research	TS3*CT910040 TS3*CT920061 TS3*CT930239	17 68
	DLP-Centrum voor Plantenveredelings- & Reproductieonderzoek	TS3*CT930242	70
	European Centre for Coal Specimens SBN	TS3*CT920093	25
	International Institute for Infrastructural Hydraulic and Environmental Engineering	TS3*CT920125	41
	International Soil Reference and Information Centre	TS3*CT940314	98
	Katholieke Universiteit Nijmegen	TS3*CT920053 TS3*CT940345 TS3*CT940346	134 215 217
	Landbouw Universiteit Wageningen	TS3*CT920017 TS3*CT920128	15 44
	Rijksuniversiteit Leiden	TS3*CT910040 TS3*CT920116 TS3*CT930219 TS3*CT930229	124 150 163 171
DADACIJAN		TS3*CT940299	202
PARAGUAY	Dirección Nacional de Aeronaútica Civil	TS3*CT930239	68
PERU	Misión Universidad Carolina del Norte	TS3*CT920128	43
	Universidad Nacional Agraria La Molina Universidad Nacional de la Amazonia Peruana	TS3*CT920069 TS3*CT940314	98


COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
	Universidad Nacional de San Augustin	TS3*CT940324	103
	Universidad Peruana Cayetano Heredia	TS3*CT920123	154
		TS3*CT920129	156
	Universidad de Piura	TS3*CT940341	109
PORTUGAL	Estação Agronomica Nacional	TS3*CT930216	62
	Instituto de Investigação Cientifica Tropical (IICT)	TS3*CT930221	64
	Instituto Nacional de Recursos Naturales	TS3*CY940314	98
	Instituto Nacional de Saude	TS3*CT920106	31
	Instituto Superior de Agronomía -	TS3*CT920111	37
	Universidade Catolica Portuguesa	TS3*CT940300	92
		TS3*CT940333	105
	Universidade do Porto	TS3*CT920113	147
		TS3*CT	
SALVADOR	Universidad Centroamericana José Simeón Canas	TS3*CT940305	207
SPAIN	Centro de Investigación y Tecnología Agrarias	TS3*CT940308	96
	Centro de Investigaciones Científicas de la Cartuja	TS3*CT940274	82
	Consejo Superior de Investigaciones	TS3*CT910003	4
	Científicas (CSIC)	TS3*CT910010	9
		TS3*CT920094	27
		TS3*CT920109	33
		TS3*CT920140	50 58
		TS3*CT930205	78
		TS3*CT940265 TS3*CT940308	96
		TS3*CT940341	109
		TS3*CT940341	213
	Escuela Andaluza de Salud Pública	TS3*CT920088	142
	Escucia Andaidza de Saidd i donea	TS3*CT940305	207
	Estación Experimental del Zaidin	TS3*CT910021	13
	Fundación Jímenez Díaz	TS3*CT920113	147
	General del Algarrobo de España	TS3*CT940341	109
	Hospital Clínico y Provincial de Barcelona	TS3*CT930129	163
	Instituto de Salud Carlos III	TS3*CT920123	154
	ilistituto de Salud Carlos III	TS3*CT920123	176
		TS3*CT940277	195
	Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria	TS3*CT930203	56
	Instituto de Investigación y Tecnología para la Oceanografía, Pesca, y Alimentación	TS3*CT920134	48
	Instituto Nacional de Reforma y Desarrollo Agrario	TS3*CT920061	17

COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
	Universidad Autónoma de Madrid	TS3*CT910029	116
		TS3*CT920155	161
		TS3*CT940266	189
	Universitat Autonoma de Barcelona	TS3*CT920071	21
		TS3*CT940321	211
	Universidad Complutense de Madrid	TS3*CT920128	.43
	Universidad de Granada	TS3*CT920077	138
	Universidad de Santiago de Compostela	TS3*CT920106	31
	Universidad de Valencia	TS3*CT920017	15
		TS3*CT930239	67
		TS3*CT940294	197
	Universidad Politécnica de Valencia	TS3*CT940333	105
SWITZERLAND	Universität Bern	TS3*CT930243	176
	Université de Lausanne	TS3*CT940319	209
UNITED KINGDOM	Agricultural and Food Research Council	TS3*CT930242	70
	Agriculture and Fisheries Department	TS3*CT920131	46
	IACR-Rothamsted Experimental Station	TS3*CT920098	29
i		TS3*CT940335	107
	British Museum of Natural History	TS3*CT920130	158
	Heriot-Watt University	TS3*CT940269	80
	Imperial College of Science, Technology,	TS3*CT920044	128
	and Medicine	TS3*CT920053	134
		TS3*CT920093	25
		TS3*CT920116	150 171
		TS3*CT930229	217
	To attend Company and The state	TS3*CT940346	195
	Institute for Animal Health	TS3*CT940277	134
	Institute of Molecular Medicine	TS3*CT920053 TS3*CT940346	217
	Institute of Tomostrial Fools ov		13
	Institute of Terrestrial Ecology	TS3*CT910021 TS3*CT940316	101
	International Institute of Parasitology	TS3*CT920084	140
	Liverpool School of Tropical Medicine	TS3*CT920084	114
	Liverpoor School of Tropical Medicine	TS3*CT910024	128
		TS3*CT920052	130
		TS3*CT930247	178
	London School of Hygiene and Tropical	TS3*CT920088	142
	Medicine	TS3*CT920092	144
		TS3*CT920113	147
		TS3*CT930219	163
		TS3*CT940299	202
	N. 17	TS3*CT940305	207
	National Institute for Medical Research	TS3*CT940272	192
	National Resources Institute	TS3*CT920098	29

COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
		TS3*CT920110	35
	Queen's University of Belfast	TS3*CT940343	213
	Roger Austin	TS3*CT930200	54
	Scottish Crop Research Institute	TS3*CT920098	29
	University College of Swansea	TS3*CT930226	165
	University of Aberdeen	TS3*CT910024	114
	University of Bristol	TS3*CT930214	60
	University of Bath	TS3*CT940306	94
	University of Birmingham	TS3*CT940308	96
	University of Cambridge	TS3*CT910021	13
	o minorage	TS3*CT910039	122
		TS3*CT920123	154
		TS3*CT930200	54
		TS3*CT940296	200
	University of Edinburgh	TS3*CT940341	109
		TS3*CT940263	186 195
	III.	TS3*CT940277	52
	University of Essex	TS3*CT920149	130
	University of Keele	TS3*CT920052 TS3*CT930247	178
	University of Leads	TS3*CT930247	15
	University of Leeds	TS3*CT920017	82
	University of London	TS3*CT930221	65
	Chiversity of London	TS3*CT940298	89
	University of Newcastle	TS3*CT910038	119
	University of Nottingham	TS3*CT930205	58
	Chivelency of rvottingmann	TS3*CT930227	167
		TS3*CT940343	213
	University of Oxford	TS3*CT910024	114
		TS3*CT940345	215
	University of Reading	TS3*CT920125	41
	University of Saint Andrews	TS3*CT930234	174
	University of Sterling	TS3*CT930203	56
	University of York	TS3*CT920118	152
		TS3*CT940303	205
URUGUAY	Dirección General de Recursos Naturales Renovables	TS3*CT930239	68
	Instituto de Biología	TS3*CT910039	122
	Instituto de Investigaciones Biológicas	TS3*CT940265	78
	Universidad de la República	TS3*CT910029	116
		TS3*CT910038	119
VENEZUELA	Fondo Nacional de Investigaciones Agropecuarias	TS3*CT920077	138

COUNTRY	INSTITUTE	CONTRACT NO.	PAGE NO.
	Instituto Venezolano de Investigaciones Científicas	TS3*CT930243	176
	Universidad Central de Venezuela	TS3*CT940263 TS3*CT940333	186 105
	Universidad de Venezuela	TS3*CT930247	179
	Universidad de Carabobo	TS3*CT930247	178
	Universidad Lisandro Alvarado	TS3*CT930247	179

·		

International Co-operation with Developing Countries (INCO-DC) - 1994-1998

General Index of Scientists (in alphabetical order)

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Aarauz Gavallini L.F.	TS3*CT940308 (1)	95
Abdelhay E.	CI1*CT940058 (2)	355
Abel L.	TS3*CT940296 (1), IC18*CT980373 (3)	198, 124
Acerenza L.	CI1*CT930052 (2)	90
Acosta Gallegos	IC18*CT980317 (3)	263
Acosta J.	CI1*CT940074 (2)	53
Adair B.M.	CI1*CT930045 (2)	22
Adams M.R.	CI1*CT920018 (2)	4
Agosin E.	CI1*CT920075 (2)	11
Aguilar A.	IC18*CT980341 (3)	88
Aguilar Ayala J.H.	IC18*CT980350 (3)	97
Aguilar M.	IC18*CT980366 (3)	117
Aguilar O.M.	IC18*CT980321 (3)	270
Aguilar-Setién A.	CI1*CT920068 (2)	285
Agulló-López F.	CI1*CT940039 (2)	399
Ajioka J.W.	CI1*CT930325 (2)	331
Akerman M.	IC18*CT970224 (3)	264
Alazard D.	TS3*CT920110 (1)	34
Alban Castillo J.	IC18*CT970164 (3)	198
Albanyl F.	TS3*CT920077 (1)	137
Albores A.	IC18*CT980341 (3)	87
Albrecht A.	TS3*CT920128 (1)	42
Alcevedo A.	IC18*CT960124 (3)	172
Alexander S.	IC18*CT970250 (3)	75
Altmann S.	CI1*CT940140 (2)	201
Altmann Th.	IC18*CT960089 (3)	162
Alvar J.	TS3*CT920123 (1), IC18*CT970213 (3),	153, 58, 106
	IC18*CT980358 (3)	, ,
Alvarado F.	IC18*CT960027 (3)	15
Alvarado G.	CI1*CT940078 (2)	182
Alvárez A.	CI1*CT930015 (2)	216
Alvárez C.	CI1*CT920042 (2)	128
Alvárez F.	CI1*CT930062 (2)	384
Alvárez L.J.	CI1*CT940064 (2), CI1*CT920016 (2)	156, 367
Alvárez-Gaumé L.	CI1*CT930315 (2)	459
Alves Fernandes Tavora F.J.	TS3*CT930216 (1)	61
Amaral C.F.S.	TS3*CT910021 (1)	12
Amarger N.	IC18*CT980321 (3)	270
Ambraseys N.	CI1*CT940104 (2)	190
Amparo Rojas L.	IC18*CT960063 (3)	144

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Ampe Ch.	CI1*CT930049 (2)	309
Amzamora S.M.	TS3*CT940333 (1)	104
Andrade H.B.	IC18*CT980320 (3)	268
Angles Riveros R.	TS3*CT940294 (1)	196
Anthony F.	IC18*CT970181 (3)	205
Antoniadis A.	TS3*CT930259 (1)	183
Anzueto F.	CI1*CT920090 (2), IC18*CT970181 (3)	15, 205
Apitz-Castro R.	CI1*CT920062 (2)	138
Apostoli P.	IC18*CT980341 (3)	287
Arala-Chaves M.	IC18*CT970209 (3)	231
Arana B.	CI1*CT920060 (2), IC18*CT960028 (3)	283, 17
Arana F.	IC18*CT960028 (3)	17
Aravena J.C.	CI1*CT930336 (2)	232
Araya C.M.	IC18*CT980317 (3)	263
Araya M.	CI1*CT920078 (2)	290
Araya R.	CI1*CT940134 (2)	364
Arbiza J.R.	IC18*CT980374 (3)	126
Arboix M.	CI1*CT940113 (2)	61
Aréas J.	CI1*CT930304 (2)	388
Arecchi F.T.	CI1*CT930331 (2)	465
Arevaló A.T.	TS3*CT920115 (1)	38
Arevalo J.	TS3*CT920129 (1), CI1*CT930325 (1),	155, 327, 67,
	IC18*CT970225 (3), IC18*CT980358 (3)	106
Argibay J.A.	CI1*CT920020 (2)	65
Arguello L.	CI1*CT930302 (2)	320
Arias A.	IC18*CT970180 (3)	203
Arias C.A.	IC18*CT960027 (3)	115
Arias C.F.	CI1*CT930026 (2)	302
Arias J.M.	CI1*CT940072 (2)	479
Armesto J.	CI1*CT930336 (2), IC18*CT970146 (3)	232, 180
Arntz W.	IC18*CT970175 (3)	200
Arraes Pereira P.A.	TS3*CT920110 (1)	34
Arriaga J.	CI1*CT940046 (2)	401
Arrivillaga J.	TS3*CT930247 (1)	177
Arruda P.	IC18*CT960089 (3)	161
Artaxo P.	CI1*CT920082 (2)	212
Arzt E.	CI1*CT930092 (2)	314
Arzul G.	IC18*CT970157 (3)	196
Astorga Y.	CI1*CT920094 (2)	214
Atallah A.Ncarroli G	IC18*CT96003 (3)	21
Atkinson H.	TS3*CT940274 (1)	81
Atkinson S.	IC18*CT970224 (3), IC18*CT980344 (3)	65, 90
Auslender A.	CI1*CT920046 (2)	432
Austin B.	TS3*CT940269 (1)	79
Austin R.	TS3*CT930200 (1)	53
Auvinet G.	CI1*CT920069 (2), CI1*CT930046 (2)	438, 455

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Avendano L.	IC18*CT980374 (3)	126
Aymonino P.J.	IC18*CT970140 (3)	178
Azevedo S.	IC18*980293 (3)	252
Bach Piella C.	CI1*CT940099 (2)	263
Bachère E.	IC18*CT970209 (3)	230
Badaro R.	TS3*CT920052 (1)	129
Bahnemann D.	CI1*CT940035 (2)	252
Bailey J.	TS3*CT930214 (1)	59
Baird D.	IC18*CT980264 (3)	240
Baldasano J.M.	CI1*CT940077 (2)	261
Baldo E.	CI1*CT920088 (2)	169
Ballesteros H.	IC18*CT960067 (3)	147
Ballivan G.	IC18*CT980298 (3)	258
Baltz T.	IC18*CT970220 (3)	60
Baltz Th.	TS3*CT920077 (1)	137
Baras E.	CI1*CT940032 (2)	40
Barceló J.	TS3*CT920071 (1), IC18*CT960063 (3)	20, 144
Barcelos E.	TS3*CT940306 (1)	93
Bard P.Y.	CI1*CT920025 (2)	424
Barea J.M.	TS3*CT910021 (1)	12
Bargues M.D.	IC18*CT980366 (3)	115
Barker D.	TS3*CT920123 (1), IC18*CT970213 (3)	153, 58
Barloy J.	TS3*CT920071 (1)	20
Barois Boullard I.	TS3*CT920128 (1)	42
Barracco M.	IC18*CT970209 (3)	231
Barrantes F.J.	CI1*CT940127 (2)	112
Barrero L.S.	IC18*CT970192 (3)	213
Barrett M.P.	IC18*CT980357 (3)	104
Barrett T.V.	IC18*CT980366 (3)	116
Barros F.	TS3*CT920088 (1)	141
Bartels D.	CI1*CT920040 (2)	73
Barten F.	IC18*CT960058 (3), IC18*CT970224 (3), IC18*CT980338 (3)	31, 65, 80
Barton P.J.	CI1*CT940058 (2)	355
Baslev	TS3*CT910004 (1)	6
Bassett M.G.	CI1*CT920054 (2)	167
Baudoin J.P.	TS3*CT920069 (1)	18
Baxter P.	CI1*CT920100 (2)	296
Bayliss-Smith T.	TS3*CT910021 (1)	12
Bayón J.C.	CI1*CT930329 (2)	147
Bayonove C.	CI1*CT920075 (2)	11
Bazin H.	CI1*CT940043 (2)	349
Beardmore J.A.	IC18*CT970188 (3)	211
Beck S.	IC18*CT970148 (3), IC18*CT980263 (3)	185, 238
Becker I.	CI1*CT930314 (2)	329
Beech I.V.	CI1*CT940025 (2)	150

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Beguin S.	CI1*CT920062 (2)	138
Belizan J.	IC18*CT970250 (3)	75
Belli A.	CI1*CT920060 (2), IC18*CT960028 (3)	283, 17
Beltran J.M.	TS3*CT920061 (1)	16
Benavente L.	IC18*CT970249 (3)	73
Bensted Smith R.	IC18*CT980297 (3)	256
Berdegue J.A.	IC18*CT960090 (3)	164
Berendsen H.J.C.	CI1*CT940124 (2)	484
Bergamasco A.	CI1*CT940102 (2)	186
Bergamín Filho A.	TS3*CT920094 (1)	138
Berger A.	CI1*CT940111 (2)	267
Bermudez H.	IC18*CT960123 (3)	52
Bermudez H.	TS3*CT920129 (1), TS3*CT920130 (1),	155, 157, 126
	IC18*CT980366 (3)	
Bernede J.Ch.	CI1*CT940070 (2)	406
Berta G.	IC18*CT970180 (3)	203
Berthou F.	IC18*CT980341 (3)	87
Bertrand B.	CI1*CT920090 (2)	15
Bertucci C.	CI1*CT920008 (2)	118
Beswick J.A.	CI1*CT940128 (2)	269
Bianchi G.	IC18*CT970175 (3)	200
Bianchini A.	IC18*CT960037 (3)	138
Bianchini C.	CI1*CT930329 (2)	147
Bicca de Alencastro R.	CI1*CT930091 (2)	176
Bienzle U.	TS3*CT910040 (1)	123
Billaudel S.	IC18*CT980378 (3)	130
Bjune G.	IC18*CT960060 (3)	33
Black M.	CI1*CT930335 (2)	35
Blanco-Tuiran P.	TS3*CT920052 (1)	129
Blanes J.	IC18*CT980259 (3)	233
Blasco F.	TS3*CT940324 (1)	102
Blau W.	CI1*CT930330 (2)	393
Blust R.	CI1*CT940076 (2)	259
Boddey B.	CI1*CT940067 (2)	52
Boerjan W.	IC18*CT970203 (3)	223
Bofetta P.	IC18*CT970222 (3)	62
Boland R.	CI1*CT940013 (2)	97
Bon C.	CI1*CT940073 (2), IC18*CT960032 (3)	360, 19
Bonafante Garrido R.	TS3*CT930247 (1)	177
Bond G.	CI1*CT920093 (2)	141
Bonet Gorbea M.	IC18*CT980348 (3)	95
Bonierdale M.	IC18*CT980320 (3)	268
Bonifacio R.	CI1*CT930024 (2)	299
Boninsegna J.A.	CI1*CT930336 (2)	232
Bonnal Ph.	IC18*CT960090 (3)	164
Bonnans J.F.	CI1*CT940115 (2)	481

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Borchenius F.	IC18*CT960038 (3)	140
Borges do Valle C.	TS3*CT930242 (1)	69
Borges M. de F.	IC18*CT970182 (3)	207
Borojevic R.	CI1*CT930035 (2)	306
Borrego C.	IC18*CT980262 (3)	235
Borrero C.A.	CI1*CT940139 (2)	199
Borros C.	CI1*CT920103 (2)	16
Bosch A.	IC18*CT980378 (3)	130
Bosch P.	CI1*CT940064 (2)	156
Bosseno R.	TS3*CT930239 (1)	66
Botteghi C.	CI1*CT920008 (2)	118
Böttger K.	CI1*CT940100 (2)	265
Bottner P.	IC18*CT980263 (3)	238
Bouchy M.	CI1*CT940035 (2)	252
Boulard Ch.	TS3*CT920106 (1)	30
Boulon M.	CI1*CT930046 (2)	455
Bourdelande J.L.	IC18*CT960076 (3)	156
Bourguet J.	CI1*CT920031 (2)	69
Bout D.	CI1*CT940057 (2)	353
Boyer M.D.	IC18*CT970192 (3)	213
Bradby B.	TS3*CT930234 (1), IC18*CT970250 (3),	172, 75, 95
·	IC18*CT980348 (3)	
Bradley J.E.	IC18*CT950017 (3)	6
Braga Vela J.	IC18*CT960038 (3)	140
Brambila-Paz L.	CI1*CT930031 (2)	450
Brammer M.J.	CI1*CT940116 (2)	110
Braslavsky S.E.	IC18*CT960076 (3)	156
Brasselet J.P.	CI1*CT930057 (2)	457
Bravo A.	IC18*CT980303 (3)	261
Brazil R.P.	IC18*CT980372 (3)	122
Bréart G.	IC18*CT970250 (3)	75
Brechot C.	TS3*CT930259 (1)	183
Brenguier J.L.	CI1*CT940066 (2)	256
Brennicke A.	CI1*CT930058 (2)	25
Breyne P.	IC18*CT970149 (3)	187
Brianso-Penalva J.L.	IC18*CT970140 (3)	178
Briffa K.R.	CI1*CT930336 (2)	232
Bringezu S.	IC18*CT980298 (3)	259
Brochier B.	CI1*CT920068 (2)	285
Bronfman L.	CI1*CT930332 (2)	467
Brooke Jernkins H.D.	IC18*CT970140 (3)	178
Brugnoli E.	TS3*CT930200 (1)	53
Bruhn C.	CI1*CT940143 (2)	157
Bruno O.D.	CI1*CT930025 (2)	301
Bruns R.E.	CI1*CT930091 (2)	176
Brussaard L.	TS3*CT920128 (1)	42

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Bruzual G.A.	CI1*CT930328 (2)	464
Buck M.	CI1*CT940060 (2)	48
Budelli R.	CI1*CT920085 (2)	295
Bulet Ph.	IC18*CT970209 (3)	231
Bulla L.	CI1*CT940099 (2)	263
Buño W.	CI1*CT920084 (2)	77
Burton J.	CI1*CT920021 (2), CI1*CT940047 (2)	422, 477
Bustos Obregón E.	CI1*CT920022 (2)	67
Butterworth A.E.	TS3*CT940296 (1)	198
Caballero P.	IC18"*CT960097 (3)	168
Cabral M.	TS3*CT920113 (1)	145
Cabrera C.	IC18*CT980323 (3)	272
Cabrera Z.	IC18*CT950002 (3)	136
Cáceres A.	CI1*CT920084 (2)	77
Cadena G.	CI1*CT930028 (2), IC18*CT970208 (3)	20, 229
Cadisch G.	CI1*CT940067 (2)	52
Calamini G.	TS3*CT940324 (1)	102
Calas M.	IC18*CT960056 (3)	29
Calavia O.	IC18*CT970164 (3)	198
Calcagno M.	CI1*CT920038 (2)	71
Calderón E.	IC18*CT980282 (3)	44
Calderón J.	TS3*CT940269 (1)	79
Callieri D.	TS3*CT940279 (1)	86
Calvache H.	IC18*CT970199 (3)	217
Calvario-Martínez O.	IC18*CT970202 (3)	221
Calvo A.	TS3*CT920017 (1), CI1*CT940141 (2)	14, 411
Calvo J.	CI1*CT930050 (2)	88
Camacho C.	CI1*CT930057 (2)	457
Camarena Mayta F.	TS3*CT920069 (1)	18
Campillo M.	CI1*CT920036 (2)	162
Campos C.	IC18*CT980282 (3)	244
Campos J.	CI1*CT940109 (2)	192
Camps F.	IC18*CT980356 (3)	102
Camus A.	TS3*CT920084 (1)	139
Canals A.	CI1*CT940075 (2)	180
Cane P.	IC18*CT980374 (3)	126
Canto Saenz M.	CI1*CT930047 (2)	24
Cantow H.J.	CI1*CT930322 (2)	391
Cantu M.P.	IC18*CT980290 (3)	249
Canziani G.A.	IC18*CT980262 (3)	235
Caprara A.	IC18*CT980344 (3)	90
Capron A.	TS3*CT920118 (1), TS3*CT940303 (1)	151, 203
Caputi A.	CI1*CT920085 (2)	295
Caputo E.	CI1*CT920020 (2)	65
Carballas T.	TS3*CT910003 (1), IC18*CT980263 (3)	4, 238
Carbonell Torres E.	CI1*CT940041 (2)	44

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Cardellach E.	CI1*CT940075 (2)	180
Cardena-García J.	IC18*CT970140 (3)	178
Cardenas G.J.	IC18*CT980271 (3)	242
Cárdenas-Treviño G.	CI1*CT930330 (2)	393
Cardinali D.P.	CI1*CT940036 (2)	343
Cardosa de Almeida M.L.	IC18*CT960084 (3)	45
Cardoso J.L.C.	TS3*CT910021 (1), IC18*CT960032 (3)	12, 19
Carmignani L.	IC18*CT960073 (3)	154
Carmona C.	CI1*CT940133 (2)	62
Caron H.	IC18*CT970149 (3)	187
Carrasco A.E.	CI1*CT930017 (2)	81
Carrasco E.	IC18*CT980320 (3)	267
Carreira P.	CI1*CT920060 (2), IC18*CT960028 (3)	283, 17
Carreto Irauarguí	IC18*CT970157 (3)	196
Carrillo R.	TS3*CT940335 (1)	106
Carolli G.	IC18*CT960033	21
Carter S.	CI1*CT930024 (2)	299
Carvalho E.M.	TS3*CT940296 (1)	198
Carvalho F.	CI1*CT930340 (2), IC18*CT980264 (3)	236, 240
Casanova R.	CI1*CT920056 (2)	134
Caselles Miralles V.	TS3*CT930239 (1)	66
Casquet C.	CI1*CT920088 (2)	169
Cassano A.E.	CI1*CT940035 (2)	252
Castagnino M.A.	CI1*CT940004 (2)	475
Castaldi S.	IC18*CT970150 (3)	189
Castanys S.	IC18*CT960028 (3)	17
Castellanet Ch.	IC18*CT960068 (3)	149
Castello H.	CI1*CT940018 (2)	242
Castilla J.C.	CI1*CT930338 (2)	234
Castillo L.E.	CI1*CT940076 (2)	259
Castillo R.	TS3*CT920115 (1)	38
Castresana C.	TS3*CT920140 (1)	49
Castroviejo M.	CI1*CT940079 (2)	54
Catalá S.	IC18*CT980366 (3)	115
Catovsky D.	CI1*CT920074 (2)	289
Cave R.	IC18"*CT960097 (3)	168
Cavelier J.	IC18*CT960038 (3)	140
Cazzulo J.J.	IC18*CT980357 (3)	104
Ceccarelli R.	IC18*CT970175 (3)	200
Cecioni A.	IC18*CT980290 (3)	249
Cereceda Troncoso P.	TS3*CT940324 (1)	102
Chaer Nascimento M.A.	CI1*CT940061 (2)	357
Chambouleyrón J.L.	TS3*CT920061 (1)	16
Chamy R.	IC18*CT970206 (3)	227
Charli J.L.	CI1*CT930301 (2)	318
Chauvin A.	TS3*CT920106 (1)	30

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Chávez A.	CI1*CT920043 (2)	206
Chávez Quesada S.E.	IC18*CT960068 (3)	149
Cheilletz A.	CI1*CT940098 (2)	184
Chelazzi G.	CI1*CT930338 (2)	234
Chilton J.	CI1*CT920043 (2)	206
Chiocchio S.	CI1*CT940037 (2)	345
Choi P.	CI1*CT920053 (2)	436
Chong Díaz G.	CI1*CT940069 (2)	178
Choque C. F.	TS3*CT920091 (1)	22
Christensen N.E.	CI1*CT920086 (2)	444
Christensen S.B.	IC18*CT960074 (3)	41
Christensen V.	IC18*CT970175 (3)	200
Chuaqui H.	CI1*CT920053 (2)	436
Chuzel G.	TS3*CT920110 (1)	34
Ciancio A.	CI1*CT940041 (2)	44
Cid del Prado Vera I.	CI1*CT930027 (2)	18
Ciferri A.	CI1*CT930322 (2)	391
Cingolani C.	CI1*CT920054 (2)	167
Cisneros B.	CI1*CT930098 (2)	316
Clary D.C.	CI1*CT940128 (2)	269
Clavaguera N.	CI1*CT940029 (2)	395
Claver C.	CI1*CT930329 (2)	147
Clement A.	IC18*CT970157 (3)	196
Clón L.	IC18*CT980318 (3)	140
Cobbold P.R.	CI1*CT930091 (2)	176
Cobo E.	IC18*CT960033 (3)	21
Cobos C.J.	CI1*CT940128 (2)	269
Cochemé J.J.	CI1*CT920044 (2)	164
Codd G.A.	CI1*CT930345 (2)	238
Coello Cisneros S.M.	TS3*CT920131 (1)	45
Cohen J.	IC18*CT960027 (3)	15
Cohn A.	IC18*CT980344 (3)	90
Collado Martínez C.A.	TS3*CT930252 (1)	71
Colle R.	CI1*CT930333 (2)	469
Colombo J.A.	CI1*CT920084 (2)	77
Colombo M.	TS3*CT930259 (1)	183
Colón L.	IC18*CT980318	265
Colston M.J.	IC18*CT970253 (3)	77
Cominetti R.	CI1*CT940115 (2)	481
Comps B.	CI1*CT930042 (2)	84
Conca C.	CI1*CT920046 (2)	432
Conejero V.	IC18*CT960124 (3)	174
Connolly J.	IC18*CT970156 (3)	191
Conte Camerino D.	CI1*CT940037 (2)	345
Contreras-Solorio D.A.	CI1*CT940046 (2)	401
Cook R.	TS3*CT920131 (1)	45

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Cooke B.M.	TS3*CT930214 (1), IC18*CT980317 (3)	59, 263
Coombs G.H.	IC18*CT980358 (3)	106
Cooper R.	TS3*CT940306 (1)	93
Coppens G.	IC18*CT960118 (3)	172
Corachan M.	TS3*CT930219 (1), CI1*CT930302 (2)	162, 316
Cordon-Rosales C.	IC18*CT960052 (3)	26
Cordon-Rosales C.	IC18*CT980366 (3)	117
Cordova Aguilar H.	IC18*CT970148 (3)	185
Cork A.	IC18*CT980356 (3)	102
Cornejo R.R.	IC18*CT960067 (3)	147
Corradin G.	IC18*CT950016 (3), IC18*CT980387 (3)	4, 132
Correa J.	CI1*CT920072 (2)	9
Correa J.	CI1*CT940011 (2)	39
Correa R.	CI1*CT920046 (2)	432
Correa-Oliveira R.	TS3*CT920118 (1), TS3*CT940303 (1),	151, 203, 56,
	IC18*CT970212 (3), IC18*CT980360 (3)	108
Cory B.J.	CI1*CT920076 (2)	440
Cosenza H.	CI1*CT930302 (2)	320
Costa N.B.	IC18*CT960044 (3)	142
Costamagna J.	IC18*CT970140 (3)	178
Cote F.	IC18*CT970204 (3)	225
Coullet P.	CI1*CT920006 (2)	418
Coutinho A.	CI1*CT930056 (2)	312
Coutinho H.	TS3*CT930227 (1)	166
Coutinho S.G.	TS3*CT940319 (1)	208
Covarrubias A.	CI1*CT940082 (2)	56
Craievich A.	CI1*CT930034 (2)	451
Craig A.	CI1*CT930024 (2), IC18*CT960066 (3), IC18*CT980364 (3)	299, 137, 112
Craig Ph.S.	CI1*CT940081 (2)	362
Crampton J.	TS3*CT920044 (1)	127
Crespo P.	CI1*CT920057 (2)	136
Cressa C.	CI1*CT940100 (2)	265
Crisanti A.	IC18*CT950020 (3)	8
Crisanti A.	TS3*CT920044 (1)	127
Cristina J.	IC18*CT980378 (3)	130
Croft S.L.	IC18*CT960084 (3)	45
Crouzet J.	TS3*CT940300 (1)	90
Crowley P.	IC18*CT960033 (3)	21
Crupkin M.	TS3*CT920109 (1)	32
Cruz Alcedo G.	TS3*CT940341 (1)	108
Cruz-Suárez L.E.	CI1*CT930300 (2)	29
Cuellar Anjel J.	IC18*CT970209 (3)	231
Cuerda A.	CI1*CT920054 (2)	167
Cussó F.	CI1*CT930316 (2)	461
Da Nobrega A.F.	CI1*CT930056 (2)	312

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Da Silva E.	IC18*CT980264 (3)	240
Da Silva Lima E.	IC18*CT980372 (3)	122
Da Silveira Pinheiro B.	TS3*CT930200 (1)	53
Dajas F.	CI1*CT920033 (2)	70
Dalla Fontana G.	IC18*CT960069 (3)	151
Dalton J.P.	TS3*CT940294 (1)	196
Danil de Namor A.F.	CI1*CT920055 (2), IC18*CT970140 (3)	132, 178
Danjoy Arias G.	TS3*CT940314 (1)	97
Dañobeitia J.J.	CI1*CT940078 (2)	182
Dardenne M.	CI1*CT920007 (2)	276
Dauta A.	IC18*980293 (3)	251
Davies C.R.	IC18*CT960123 (3)	52
Davies C.R.	CI1*CT930036 (2)	308
Davies J.B.	CI1*CT930309 (2)	325
De Aguirra Massola A.M.	TS3*CT940272 (1)	190
De Aquino Neto	CI1*CT930091 (2)	176
De Bièvre P.	CI1*CT940143 (2)	157
De Bruin H.	CI1*CT940059 (2)	254
De Carvalho A.	CI1*CT940063 (2)	404
De Cortina J.	CI1*CT940104 (2)	190
De Fabrizio S.V.	TS3*CT920110 (1)	34
De G arcía E.	IC18*CT970192 (3)	213
De Gier A.	IC18*CT980323 (3)	272
De Jonge N.	TS3*CT910040 (1)	123
De Kloet E.R.	CI1*CT940003 (2)	339
De Lisio A.	IC18*CT980298 (3)	258
De Maagd R.A.	IC18*CT980303 (3)	261
De Mahieu G.	IC18*CT980262 (3)	235
De Masulli B.S.	IC18*CT960073 (3)	154
De Meis L.	CI1*CT940116 (2)	110
De Mendoza D.	CI1*CT940016 (2)	99
De Miranda E.	CI1*CT920019 (2), IC18*CT960090 (3)	120, 164
De Nicola A.F.	CI1*CT940003 (2)	339
De Novos Pinto Bastos M.A.	CI1*CT940061 (2)	357
De Oliveira Alves-Coelho C.	IC18*CT970147 (3)	183
De Oliveira D.	CI1*CT940065 (2)	50
De Oliveira D.E.	IC18*CT970203 (3)	223
De Oliveira D.E.	TS3*CT910010 (1)	8
De Oliveira D.E.	TS3*CT940278 (1)	83
De Oliveira Neto G.	CI1*CT930029 (2)	143
De Oliveiro D.E.	IC18*CT960124 (3)	174
De Pauw N.	CI1*CT920094 (2)	214
De Razeghi G.	IC18*CT980338 (3)	79
De Souza Garcia E.	TS3*CT930226 (1)	164
De Souza W.	IC18*CT980371 (3)	120
De Vlieger J.J.	CI1*CT940006 (2)	36

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
De Vries R.R.P.	TS3*CT940299 (1)	201
De Waele D.	IC18*CT970208 (3)	229
Dedet J.P.	IC18*CT980373 (3)	124
Dediego	TS3*CT920155 (1)	159
Deelder A.M.	TS3*CT910040 (1), IC18*CT970212 (3)	123, 56
Dekant W.	IC18*CT980341 (3)	87
Del Cid R.	TS3*CT920017 (1)	14
Del Pino M.	CI1*CT930323 (2)	462
Del Ponte G.	CI1*CT920008 (2)	118
Del Portillo H.	IC18*CT960066 (3)	37
Del Portillo H.	IC18*CT960071 (3)	39
Del Portillo H.	IC18*CT980364 (3)	112
Del Portillo H.A.	IC18*CT960052 (3)	26
Del Rio F.	CI1*CT940132 (2)	409
Del Rosario M.	CI1*CT920100 (2)	296
Delbeke K.	CI1*CT940076 (2)	259
Delfino J.	CI1*CT930049 (2)	309
Delgado Gallego E.	IC18*CT980340 (3)	85
Delgado Martín J.	CI1*CT920049 (2)	130
Delgado-Barrio G.	CI1*CT940128 (2)	269
Delvaux B.	CI1*CT930028 (2), IC18*CT970208 (3)	20, 229
Demant A.	CI1*CT930033 (2)	173
Demey F.	TS3*CT920091 (1)	22
Depetris P.J.	CI1*CT940030 (2)	248
Dereppe J.M.	CI1*CT930090 (2)	222
Deruelle N.	CI1*CT940004 (2)	475
Dessein A.	TS3*CT930227 (1), TS3*CT940296 (1),	166, 198, 124
20000M 1 N	IC18*CT980373 (3)	100, 150, 121
Dewey J.	CI1*CT930091 (2)	176
Díaz A.	TS3*CT920077 (1)	137
Díaz Alzamora F.R.	CI1*CT940070 (2)	406
Diaz de Razeghi G.	IC18*CT980353 (3)	100
Diaz Delgado C.	IC18*CT960104 (3)	170
Díaz F.M.	CI1*CT940070 (2)	406
Díaz H.	CI1*CT920084 (2)	77
Díaz J.I.	CI1*CT920046 (2)	432
Diaz Paleo A.H.	IC18*CT960124 (3)	174
Diaz Pineda F.	IC18*CT960087 (3)	158
Díaz S.	CI1*CT940028 (2)	246
Diercksen G.H.F.	CI1*CT930339 (2)	470
Diez-Banos P.	TS3*CT920106 (1)	30
Dimaté M.C.C.	CI1*CT940103 (2)	188
Diotaiuti L.	IC18*CT960042 (3), IC18*CT980366 (3)	23, 116
Do Ceu Matos M.	TS3*CT930216 (1)	61
Do Vale F.X.R.	TS3*CT920094 (1), IC18*CT960037 (3)	26, 138
Dockrell H.M.	TS3*CT940299 (1), IC18*CT970236 (3)	201, 71

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Dolberg F.	IC18*CT970156 (3)	191
Dollet M.	TS3*CT920077 (1)	137
Domaniewsky J.	TS3*CT920125 (1)	40
Domingo E.	IC18*CT980378 (3)	130
Domingues Vargas M.	CI1*CT920030 (2)	124
Domínguez H.	IC18*CT970206 (3)	227
Donati M.B.	CI1*CT940073 (2)	360
Dost B.	CI1*CT940103 (2)	188
Douglas G.	TS3*CT940278 (1)	83
Downie J.A.	CI1*CT940042 (2)	46
Doxey D.L.	CI1*CT920061 (2)	8
Doyennette L.	CI1*CT920079 (2)	442
Drake L.A.	CI1*CT940103 (2)	188
Dron M.	TS3*CT930214 (1), CI1*CT940074 (2)	59, 53
Druilhe P.	TS3*CT920053 (1), TS3*CT940345 (1),	131, 214,
	TS3*CT940346 (1), IC18*CT950016 (3),	216, 4, 8,
	IC18*CT950020 (3), IC18*CT950021 (3),	119, 132
	IC18*CT980387 (3)	,
Dubois P.	IC18*CT950020 (3)	9
Dubourdieu M.	IC18*CT970220 (3)	60
Dubremetz J.F.	CI1*CT940057 (2)	353
Ducci M.E.	IC18*CT970224 (3)	64
Ducci M.E.	IC18*CT980344 (3)	90
Ducloy M.	CI1*CT930001 (2)	448
Duhoux E.	TS3*CT940278 (1)	83
Duivenvoorden J.F.	IC18*CT960038 (3)	140
Dujardin B.	IC18*CT980338 (3), IC18*CT980350 (3),	79, 97, 100
	IC18*CT980353 (3)	, ,
Dujardin J.P.	TS3*CT910029 (1), TS3*CT920092 (1),	115, 143, 157,
	TS3*CT920130 (1), IC18*CT960042 (3),	23, 115
	IC18*CT980366 (3)	
Duley L.	IC18*CT960033 (3)	20
Dupré E.	CI1*CT920103 (2)	16
Duque C.	CI1*CT920019 (2)	120
Duque H.	IC18*CT970156 (3)	193
Duran Arenas L.	IC18*CT980348 (3)	95
Duran Portas S.	CI1*CT930339 (2)	470
Duris D.	CI1*CT920090 (2)	15
Dutuit P.	TS3*CT940264 (1)	75
Dyer K.R.	CI1*CT940027 (2)	244
Eastwood M.	TS3*CT940341 (1)	108
Echave J.	CI1*CT940128 (2)	269
Edwards D.	CI1*CT920054 (2)	167
Edyvean R.	CI1*CT940025 (2)	150
Ehrlich R.	TS3*CT910039 (1)	120
Eisner D.	CI1*CT940129 (2)	114
Eling W.	TS3*CT920053 (1), TS3*CT940346 (1),	131, 216, 4, 8,

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
	IC18*CT950016 (3), IC18*CT950020 (3), IC18*CT980387 (3)	132
Ellis J.	CI1*CT930315 (2)	459
Ellisseche D.	IC18*CT980318 (3)	265
Erikson Ph.	IC18*CT970164 (3)	198
Escalant J.V.	TS3*CT910014 (1)	10
Escande A.R.	IC18*CT970180 (3)	203
Escolero Fuentes O.	CI1*CT920043 (2)	206
Espinoza E.	IC18*CT960058 (3)	31
Esponda P.	CI1*CT920022 (2)	67
Esteban M.	IC18*CT950020 (3)	18
Esteban-Durán J.R.	IC18*CT970199 (3)	217
Esteves F.	IC18*CT980262 (3)	235
Estévez J.	CI1*CT930015 (2)	216
Estrada N.	IC18*CT980320 (3)	267
Etienne E.	CI1*CT920090 (2)	15
Evangelisti F.	CI1*CT930062 (2)	384
Evans K.	CI1*CT930027 (2), CI1*CT930047 (2)	18, 24
Fabbri A.	IC18*CT980290 (3)	248
Fainboim L.	CI1*CT920071 (2)	287
Fairlamb A.H.	IC18*CT980372 (3)	121
Faivre-Bauman A.	CI1*CT930301 (2)	318
Falciai M.	TS3*CT940324 (1)	102
Falcony C.	CI1*CT930038 (2)	375
Fallavier P.	TS3*CT920071 (1)	20
Fanfani L.	IC18*CT980284 (3)	246
Fargette M.	TS3*CT920098 (1), CI1*CT920090 (2)	28, 15
Farnot U.	IC18*CT970250 (3)	275
Fassin D.	IC18*CT980338 (3)	279
Favelukes G.	IC18*CT970180 (3)	203
Febres F.	IC18*CT960033 (3)	21
Feingold J.	TS3*CT940296 (1)	198
Feliciangeli-Pinero D.	TS3*CT930247 (1)	177
Fenzl N.	IC18*CT980298 (3)	258
Ferman Almada J.L.	IC18*CT980290 (3)	248
Fernández E.	IC18*CT970208 (3)	229
Fernández O.A.	TS3*CT920125 (1)	40
Fernández Piedale M.T.	TS3*CT920149 (1)	51
Fernández Sanz J.	CI1*CT940064 (2)	156
Ferrara G.	CI1*CT920098 (2)	171
Ferraz	TS3*CT910004 (1)	6
Ferreira A.M.	CI1*CT930307 (2)	30
Ferreira J.F.	IC18*CT970188 (3)	211
Ferreira P.	IC18*CT970156 (3)	193
Ferrer W.	CI1*CT930043 (2)	453
Ferrera A.	CI1*CT920003 (2)	274

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Ferrero J.C.	CI1*CT940128 (2)	269
Ferreyra R.E.	IC18*CT980284 (3)	246
Ferrinho P.	IC18*CT980346 (3)	93
Fillho A.B.	IC18*CT960037 (3)	8
Fiori A.P.	IC18*CT960073 (3)	154
Fischer Kowalski M.	IC18*CT980298 (3)	258
Fito Maupoey P.	TS3*CT940333 (1)	104
Flisser A.	CI1*CT940081 (2)	362
Flores R.	IC18*CT960044 (3)	142
Flórez Díaz A.	TS3*CT930252 (1)	71
Florin-Christensen M.	CI1*CT940026 (2)	103
Flüh E.R.	CI1*CT940078 (2)	182
Focardi S.	CI1*CT930306 (2)	228
Fogain R.	IC18*CT970208 (3)	103
Fonseca de Castro J.A.	TS3*CT920113 (1)	145
Fontes Costa Lima J.L.	CI1*CT920052 (2)	434
Fontes Teixeira C.	TS3*CT940321 (1)	210
Foray P.	CI1*CT930046 (2)	455
Ford-Lloyd B.	TS3*CT940308 (1)	95
Forest F.	TS3*CT920110 (1)	34
Foroughi-Wher B.	IC18*CT970204 (3)	225
Fossi M.C.	CI1*CT940018 (2)	242
Frances E.	IC18*CT980290 (3)	248
Franceschetti G.	TS3*CT940324 (1)	102
Franco F.	IC18*CT980298 (3)	258
Franco J.	TS3*CT940274 (1)	81
Frank A.	CI1*CT940072 (2)	479
Frank E.	IC18*CT960067 (3)	146
Fresno M.	TS3*CT940266 (1)	187
Friedman E.	CI1*CT930353 (2)	474
Froidefond M.	CI1*CT930334 (2)	230
Frontali C.	IC18*CT960071 (3)	39
Fuertes A.	CI1*CT920057 (2)	136
Gadian A.M.	CI1*CT940066 (2)	256
Gajardo G.	IC18*CT970188 (3)	211
Galanaud P.	CI1*CT920045 (2)	282
Galindo C.	CI1*CT920088 (2)	169
Galindo E.	CI1*CT920037 (2)	428
Gallagher J.T.	CI1*CT930035 (2)	306
Gallego-Juárez J.A.	CI1*CT920032 (2)	426
Galler R.	TS3*CT920044 (1)	127
Gallo Llobet L/	TS3*CT940308 (1)	95
Gálvez-Orente J.A.	IC18*CT980262 (3)	235
Gamarro F.	IC18*CT960028 (3)	17
Gamboa D.F.	CI1*CT920100 (2)	296
Gancedo Ruiz J.R.	CI1*CT930318 (2)	390

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Gandarillas A.	IC18*CT980318 (3)	265
Ganuza D.	CI1*CT920054 (2)	167
Garate T.	TS3*CT940277 (1), IC18*CT950002 (3)	193, 136
Garatuza-Payan J.	CI1*CT940059 (2)	254
García A.F.	IC18*CT970201 (3)	219
García Calvente M. d.M.	TS3*CT920088 (1)	141
García Codrón J.C.	IC18*CT970148 (3)	185
García de la Torre J.	CI1*CT940124 (2)	484
García Díaz M.	IC18*CT970192 (3)	213
García H.H.	IC18*CT950002 (3)	136
García J.J.	CI1*CT940062 (2)	154
García M.J.	IC18*CT970253 (3)	77
García R.	CI1*CT940077 (2)	261
García Reina G.	CI1*CT920072 (2), CI1*CT940011 (2)	9, 39
Garcicevich A.L.	IC18*CT960090 (3)	164
Garner P.	IC18*CT960086 (3)	46
Garrahan P.J.	CI1*CT930048 (2)	86
Garretón L.G.	CI1*CT920032 (2)	426
Gavillet Ph.	CI1*CT940118 (2)	483
Gaxiola R.	CI1*CT940082 (2)	56
Geldreich L.	CI1*CT930034 (2)	451
Gentil V.	CI1*CT920010 (2)	277
Genty B.	IC18*CT960037 (3)	138
Geraldo L.P.	CI1*CT930053 (2)	381
Gerhardus A.	IC18*CT980353 (3)	99
Gerken M.	IC18*CT960067 (3)	146
Gessner M.O.	CI1*CT940100 (2)	265
Gianella A.	IC18*CT980366 (3)	116
Giannetto G.	CI1*CT940044 (2)	152
Giardini D.	CI1*CT940103 (2)	188
Gil A.	CI1*CT920078 (2)	290
Gil L.	CI1*CT930051 (2), IC18*CT980341 (3)	311, 88
Gilbert B.	IC18*CT970220 (3)	60
Gilbert I.	IC18*CT980371 (3)	120
Gilbert M.	CI1*CT930303 (2)	386
Gill M.	CI1*CT920010 (2)	277
Giller K.E.	CI1*CT940067 (2)	52
Gillies A.	TS3*CT940316 (1)	99
Gillitzer R.	CI1*CT930314 (2)	329
Gilmore L.	TS3*CT940263 (1), IC18*CT960079 (3)	185, 43
Giménez C.A.	IC18*CT970192 (3)	213
Ginliani G.	CI1*CT940098 (2)	184
Ginting CH. U.	IC18*CT970199 (3)	91
Giral L.	TS3*CT920084 (1)	139
Girault J.A.	CI1*CT940038 (2)	347
Giuditta A.	CI1*CT930037 (2)	82

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Goday C.	CI1*CT940071 (2)	107
Godeas A.	CI1*CT920077 (2)	13
Goldenberg S.	CI1*CT930063 (2)	93
Goldstein G.	IC18*CT980338 (3)	79
Goldwasser M.	CI1*CT920093 (2)	141
Goles E.	CI1*CT920046 (2)	432
Gomes de Souza D.O.	CI1*CT940116 (2)	110
Gómez Alpizar L.E.	IC18*CT980320 (3)	268
Gonzales-Urena A.	CI1*CT940128 (2)	269
González A.	CI1*CT920017 (2), CI1*CT920020 (2)	278, 65
González Block M.A.	IC18*CT960115 (3)	50
González Calbet J.M.	CI1*CT920087 (2)	369
González del Tanago M.	IC18*CT970147 (3)	183
González Gómez J.	CI1*CT940031 (2)	397
González J.M.	CI1*CT930318 (2)	390
González M.	IC18*CT980339 (3)	83
González Pacanowska D.	IC18*CT980371 (3)	120
González y Merchand J.	IC18*CT970253 (3)	77
González-Moraga G.	CI1*CT930330 (2)	393
González-Sprinberg G.	CI1*CT930043 (2)	453
Gonzálvez Espinosa M.	IC18*CT970146 (3)	180
Gordon A.L.	TS3*CT920093 (1)	24
Gordon Gibson G.	CI1*CT930051 (2)	34
Gore N.C.	IC18*CT980358 (3)	106
Gorfinkel L.	CI1*CT940017 (2)	101
Gorgolas M.	TS3*CT920113 (1)	145
Gosselin D.	IC18*CT970199 (3)	217
Goulding K.	TS3*CT940335 (1)	106
Goulson D.	IC18"*CT960097 (3)	168
Gouvea Vieira	CI1*CT940073 (2)	360
Graça M.A.S.	CI1*CT940100 (2)	265
Grace J.	IC18*CT970150 (3)	189
Grajales Quintero A.	CI1*CT940032 (2)	40
Granato C.	TS3*CT930259 (1)	183
Grant K.	CI1*CT920085 (2)	295
Gras Rebolledo N.	CI1*CT940143 (2)	157
Gras-Masse H.	IC18*CT950021 (3)	11
Grau O.	IC18*CT960044 (3)	142
Graziosi G.	IC18*CT970181 (3)	205
Gré J.R.	CI1*CT930334 (2)	230
Greene M.	CI1*CT940033 (2)	250
Greenfield S.	CI1*CT920033 (2)	70
Gribel R.	IC18*CT970149 (3)	187
Griesson D.	TS3*CT930205 (1)	57
Griffon D.	TS3*CT920110 (1)	34
Grigera J.R.	CI1*CT930014 (2)	373

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Grijalba Silva F.J.	CI1*CT940098 (2)	184
Grimaud J.A.	IC18*CT970212 (3)	56
Grime J.Ph.	CI1*CT940028 (2)	246
Grinberg H.	CI1*CT940128 (2)	269
Grisnstein S.	TS3*CT940266 (1)	187
Gros E.G.	IC18*CT980372 (3)	122
Grynberg G.	CI1*CT930001 (2)	448
Gryseels B.	IC18*CT980360 (3)	108
Guderian R.	IC18*CT950017 (3)	6
Guerrero R.	IC18*CT970201 (3)	219
Guerrero-Legarreta I.	CI1*CT930060 (2)	27
Guhl F.	TS3*CT930219 (1), IC18*CT960061 (3),	162, 35, 117
	IC18*CT980366 (3)	, ,
Guidetti Zagatto E.A.	CI1*CT920052 (2)	434
Guilbert S.	TS3*CT920109 (1)	32
Guilhermino L.	IC18*CT980264 (3)	240
Guimaraes Carvalho R.	IC18*CT980284 (3)	246
Guimaraes M. de F.	TS3*CT920071 (1)	20
Guisnet M.	CI1*CT940044 (2)	152
Gujit I.M.	IC18*CT960090 (3)	164
Gunzig E.	CI1*CT940004 (2)	475
Gustin P.	CI1*CT930032 (2)	304
Gutiérrez C.	CI1*CT940079 (2)	54
Guyot J.P.	CI1*CT930346 (2)	240
Guzman M.	IC18*CT970192 (3)	213
Gysin J.	IC18*CT980362 (3)	110
Häberle P.	CI1*CT930059 (2)	383
Habermehl G.G.	IC18*CT960032 (3)	19
Haemers A.	IC18*CT980372 (3)	121
Hall D.	CI1*CT930096 (2)	224
Hall M.	TS3*CT930200 (1)	53
Hämmerling G.J.	CI1*CT920027 (2)	280
Hamon S.	TS3*CT940298 (1)	88
Hanau S.	IC18*CT980357 (3)	104
Hanka W.	CI1*CT940103 (2)	188
Hansen P.	TS3*CT940343 (1)	212
Haran D.	CI1*CT930310 (2)	327
Harboe M.	IC18*CT960060 (3)	33
Harpham T.	IC18*CT970224 (3)	64
Harris S.	IC18*CT970194 (3)	215
Harrison A.	TS3*CT910021 (1)	12
Harrison L.J.S.	TS3*CT940277 (1)	193
Hassink J.	CI1*CT940067 (2)	52
Hau B.	TS3*CT920094 (1), IC18*CT960037 (3)	26, 138
Hayward M.	TS3*CT930242 (1)	69
Healy M.	TS3*CT940343 (1)	212

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Hebette J.	IC18*CT960068 (3)	149
Heip C.	CI1*CT940076 (2)	259
Helweg A.	CI1*CT930340 (2)	236
Henkel C.	CI1*CT930332 (2)	467
Henker H.C.	CI1*CT920062 (2)	138
Henley J.M.	CI1*CT940005 (2)	94
Henneaux M.	CI1*CT920005 (2)	416
Hennion B.	CI1*CT940031 (2)	397
Henry de Frahan B.	TS3*CT940300 (1)	90
Henry G.	TS3*CT920110 (1)	34
Heredia M.C.A.Z.	TS3*CT920115 (1)	38
Hérion P.	CI1*CT940057 (2)	353
Hernan García M.	IC18*CT980340 (3)	285
Hernándes-Rivas R.	IC18*CT980362 (3)	110
Hernández A.	CI1*CT920090 (2)	15
Hernández Juareguí P.	CI1*CT930045 (2)	22
Hernández M.R.	CI1*CT930098 (2), IC18*CT980271 (3)	316, 242
Hernández R.	IC18*CT960061 (3)	35
Herrenschmidt N.	IC18*CT960125 (3)	54
Herrera Estrella L.R.	CI1*CT940074 (2), IC18*CT960089 (3)	53, 162
Herrera P.	TS3*CT920134 (1)	47
Herrera S.	TS3*CT920053 (1), TS3*CT920070 (1),	131, 135, 139,
Henera 3.	TS3*CT920033 (1), TS3*CT920070 (1),	216, 4, 8,
	IC18*CT950016 (3), IC18*CT950020 (3),	17, 29, 41,
	IC18*CT950010 (3), IC18*CT950020 (3), IC18*CT960056 (3),	54, 132
	IC18*CT960074 (3), IC18*CT960125 (3),	34, 132
	IC18*CT980387 (3)	
Herrera-Estrella A.	TS3*CT920140 (1)	49
Hervé D.	IC18*CT980263 (3)	238
Hervé F.	CI1*CT930033 (2)	173
Herzog M.M.	CI1*CT920083 (2)	293
Hidalgo C.	CI1*CT940129 (2)	114
Higgins Ch. F.	CI1*CT930326 (2)	333
Hill A.	TS3*CT920053 (1), TS3*CT940345 (1),	131, 214, 216,
Tim A.	TS3*CT940346 (1), IC18*CT950020 (3)	9
Hill A.V.S.	IC18*CT970236 (3)	71
Hillier B.	CI1*CT940033 (2)	250
Hnilo A.	CI1*CT930331 (2)	465
Höfer M.	TS3*CT920069 (1), TS3*CT940279 (1)	18, 86
*****	TS3*CT920009 (1), 133*CT940279 (1)	180
Holder A	TS3*CT940272 (1), IC18*CT950020 (3)	190, 18
Holder A.		129
Honmel M.	TS3*CT920052 (1)	301
Hooghe-Peters E.	CI1*CT930025 (2)	40
Hootsmans M.J.M.	TS3*CT920125 (1)	
Hormaeche C.E.	TS3*CT910038 (1), TS3*CT910039 (1)	117, 120
Horn K.	CI1*CT930059 (2)	383
Horst P.	TS3*CT920091 (1)	22

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Horst W.	TS3*CT920071 (1), IC18*CT960063 (3)	20, 144
Horta A.	CI1*CT930322 (2)	391
Hours B.	IC18*CT980353 (3)	239
Huacuz J.M.	IC18*CT960104 (3)	170
Huarte M.	IC18*CT980318 (3)	265
Hulin J.P.	CI1*CT940141 (2)	411
Hungria da Cunha M.	IC18*CT980321 (3)	270
Ibanez S.	IC18*CT980366 (3)	117
Ibarra Velarde F.	TS3*CT920106 (1)	30
Imeson Anton	IC18*CT970148	185
Incapie G.	CI1*CT940139 (2)	199
Incyth J.A.	IC18*CT960069 (3)	151
Infante D.	IC18*CT970192 (3)	213
Iñiguez O.	TS3*CT920091 (1)	22
Innocenti F.	CI1*CT930033 (2)	173
Irigoyén J.F.	TS3*CT930252 (1)	71
Irion G.	TS3*CT940314 (1)	97
Isla Villar	IC18*CT970164 (3)	198
Iturriaga G.	CI1*CT920040 (2)	73
Jach G.	IC18*CT960126 (3)	176
Jackson G.	CI1*CT940132 (2)	409
Jacobsen H.J.	TS3*CT940298 (1)	88
Jacquot J.P.	CI1*CT920070 (2)	76
Jaenicke M.	IC18*CT980298 (3)	259
Jaimovich E.	CI1*CT940129 (2)	114
Jaizme Vega M. del C.	IC18*CT970208 (3)	229
James A.C.	IC18*CT970192 (3)	213
Jandrot-Perrus M.	CI1*CT940073 (2)	360
Janse C.	TS3*CT920116 (1), TS3*CT930229 (1)	148,168
Janse C.J.	IC18*CT960052 (3)	26
Japenga J.	CI1*CT930055 (2)	220
Jaramillo E.	CI1*CT930338 (2), CI1*CT930339 (2)	234, 470
Jaraquemada D.	CI1*CT920071 (2)	287
Jarre Teichman A.	IC18*CT970175 (3)	200
Jay M.	TS3*CT940306 (1)	93
Jepsen S.	IC18*CT950020 (3), IC18*CT950021 (3)	9, 11
Jiménez Díaz R.M.	TS3*CT920094 (1)	26
Jiménez P.C.	TS3*CT940324 (1)	102
Jiménez de Antá	IC18*CT960061 (3)	35
Jímenez-Montealegre R.	IC18*CT970202 (3)	221
Jocteur-Monrozier L.	TS3*CT910003 (1)	4
Jofré A.	CI1*CT940115 (2)	481
Jofre J.	IC18*CT980282 (3)	244
Johnston I.A.	CI1*CT930050 (2)	88
Jones D.	TS3*CT910014 (1)	10
Jones M.	TS3*CT920149 (1)	51

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Jones O.	IC18*CT970199 (3)	217
Jones P.D.	CI1*CT930336 (2)	232
Jongman R.H.G.	IC18*CT960087 (3)	158
Jongmans D.	CI1*CT920036 (2)	162
Jordan E.	CI1*CT940139 (2)	199
Jordana X.	CI1*CT930058 (2)	25
Jorge M.T.	IC18*CT960032 (3)	19
Jori G.	IC18*CT960076 (3)	156
Jourdane J.	TS3*CT940294 (1)	196
Juárez P.	IC18*CT980366 (3)	115
Jungwirth Ch.	CI1*CT930308 (2)	323
Junk W.	TS3*CT920149 (1)	51
Jurberg J.	TS3*CT920092 (1), IC18*CT960042 (3),	143, 124, 115
	IC18*CT980366 (3)	, ,
Kahl G.	IC18*CT970192 (3)	213
Kallioloa R.	TS3*CT940314 (1)	97
Kämmer D.	IC18*CT970192 (3)	213
Kandiyoti R.	TS3*CT920093 (1)	24
Kanninen M.	IC18*CT980324 (3)	274
Karjalainen T.	IC18*CT980324 (3)	274
Käser H.	CI1*CT930052 (2)	90
Kaspari H.	TS3*CT940279 (1)	86
Katime I.A.	CI1*CT940123 (2)	408
Kauffman S.	TS3*CT940314 (1)	97
Kaufmann R.	IC18*CT980259 (3)	233
Kelly L.	TS3*CT930203 (1)	55
Kempe S.	CI1*CT940030 (2)	248
Kerry B.	TS3*CT920098 (1)	28
Kestler E.	IC18*CT970250 (3)	75
Kevany J.	IC18*CT970235 (3)	69
Kharazmi A.	IC18*CT960074 (3)	41
Kiessling R.	IC18*CT980377 (3)	128
Killick-Kendrick R.	IC18*CT980373 (3)	124
Kinet J.M.	TS3*CT940264 (1)	75
Klatser P.R.	IC18*CT980377 (3)	128
Kleinn Ch.	IC18*CT980323 (3)	272
Klemes J.	IC18*CT980271 (3)	242
Kloareg B.	CI1*CT920072 (2)	9
Knobloch U.	IC18*CT980338 (3)	79
Koch B.	IC18*CT980323 (3)	272
Kogevinas M.	IC18*CT970222 (3)	62
Koifman S.	IC18*CT970222 (3)	62
Kok A.W.M.	CI1*CT920092 (2)	446
Kolsteren P.	IC18*CT970249 (3)	73
Konings R.	TS3*CT920053 (1), TS3*CT940346 (1)	131, 216
Korte R.	IC18*CT980353 (3)	99

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Koukios E.G.	TS3*CT930252 (1)	73
Kremer A.	TS3*CT940316 (1), IC18*CT970149 (3)	99, 187
Kröger A.	TS3*CT920070 (1), CI1*CT930302 (2),	135, 320, 82
	IC18*CT980339 (3)	
Kroon E.G.	CI1*CT930308 (2)	323
Krusse de Arruda B.	IC18*CT980340 (3)	85
Kumaratne D.S.	IC18*CT970236 (3)	71
Labastida J.M.J.	CI1*CT930315 (2)	459
Labbé P.	IC18*CT970149 (3)	187
Lacabanne C.	CI1*CT930044 (2)	379
Lagares A.	TS3*CT940265 (1)	77
Laignelet A.S.	IC18*CT970192 (3)	213
Lailhacar S.	TS3*CT940264 (1)	75
Laloe F.	IC18*CT970156 (3)	191
Lanaras Th.	IC18*980293 (3)	251
Langer A.	IC18*CT970250 (3)	75
Langin Th.	IC18*CT980317 (3)	263
Lanusse C.E.	CI1*CT940113 (2)	61
Lanzer M.	IC18*CT960052 (3), IC18*CT960066 (3),	26, 37, 39, 112
	IC18*CT960071 (3), IC18*CT980364 (3)	
Lara A.	IC18*CT970146 (3)	180
Larondelle Y.	TS3*CT940300 (1)	90
Larouzé B.	TS3*CT930259 (1)	183
Lashermes Ph.	IC18*CT970181 (3), IC18*CT970194 (3)	205, 214
Latrubesse E.M.	IC18*CT980290 (3)	249
Lattes A.	CI1*CT920089 (2)	139
Lauvergne J.J.	IC18*CT960067 (3)	147
Lavelle P.	TS3*CT920128 (1)	42
Lavin M.	CI1*CT940102 (2)	186
Le Ray D.	TS3*CT920129 (1), IC18*CT960123 (3)	155, 52
Le Roy J.	IC18*CT980338 (3)	80
Le Treut H.	CI1*CT940111 (2)	267
Lebrun M.H.	TS3*CT920110 (1)	34
Leclercq G.	CI1*CT920093 (2)	141
Lecoq M.	CI1*CT920019 (2)	120
Lefebvre J.	CI1*CT940031 (2)	397
Lefrant S.	CI1*CT940070 (2)	406
Legnani C.	CI1*CT940001 (2)	337
Lehane M.J.	IC18*CT980366 (3)	115
Lema J.M.	IC18*CT970206 (3)	227
Lemanceau Ph.	IC18*CT970180 (3)	203
Lemes M.	IC18*CT970149 (3)	187
Leo O.	CI1*CT940057 (2)	353
Leotin J.	CI1*CT920099 (2)	370
Lepoivre Ph.	TS3*CT910014 (1)	10
Lescure	TS3*CT910004 (1)	6

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Lesueur D.	IC18*CT970194 (3)	215
Lewis G.	CI1*CT940134 (2)	364
Lezama A.	CI1*CT930001 (2)	448
Liao Lee A.	CI1*CT920100 (2)	296
Liebermann M.	TS3*CT920017 (1)	14
Liebsch A.	CI1*CT930059 (2)	383
Lightfoot C.	IC18*CT960090 (3)	164
Lijklema L.	IC18*CT970202 (3)	221
Lima P.R.Z.	IC18*CT970164 (3)	198
Lindmark G.	IC18*CT970250 (3)	75
Lindström K.	IC18*CT970194 (3)	215
Linne T.	CI1*CT930045 (2)	22
Liprandi F.	IC18*CT960027 (3)	15
Lisboa de Castro S.	IC18*CT960084 (3)	45
Litvak M.S.	CI1*CT930058 (2)	25
Lizardi P.	CI1*CT920017 (2)	278
Llanos Cuenta A.	IC18*CT960123 (3)	52
Llanos-Cuentas E.A.	CI1*CT930036 (2)	308
Llorente L.	CI1*CT920045 (2)	282
Lloyd S.	CI1*CT940133 (2)	62
Lobo M.	TS3*CT920069 (1), IC18*CT970182 (3)	18, 207
Lobo-Ferreira J.	IC18*CT980296 (3)	254
Lobo-Guerrero J.	CI1*CT940047 (2)	477
Lombardi G.	IC18*CT960073 (3)	154
Lombardo E.	CI1*CT930090 (2)	222
Long N.	TS3*CT920017 (1)	14
Long S.	TS3*CT920149 (1)	51
Lopes Brandão R.	CI1*CT940101 (2)	109
López Herrera C.J.	TS3*CT940308 (1)	95
López Mungía A.	CI1*CT930358 (2)	148
López P.	CI1*CT940016 (2)	99
López R.	IC18*CT960068 (3)	149
López-Agudo A.	CI1*CT920041 (2)	126
López-Gorgé J.	CI1*CT920070 (2)	76
López-Munguía A.	IC18*CT970206 (3)	227
Lorenz N.	IC18*CT980338 (3)	80
Lorenzo E.	IC18*CT960104 (3)	170
Louis J.	TS3*CT940319 (1)	208
Lourenço N.	IC18*CT980296 (3)	254
Louvard D.	CI1*CT920031 (2)	69
Lowe A.	IC18*CT970149 (3)	187
Lucius R.	CI1*CT930309 (2), IC18*CT950017 (3)	325, 6
Ludeña E.V.	CI1*CT930333 (2)	469
Luengo C.A.	CI1*CT920028 (2)	122
Luján R.	CI1*CT930309 (2)	325
Lukesch R.	IC18*CT980298 (3)	258

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Lunt G.G.	CI1*CT940127 (2)	112
Machado M.A.	IC18*CT960044 (3)	142
Macheno M.	IC18*CT980339 (3)	83
MacLean N.	CI1*CT940110 (2)	59
Madariaga R.	CI1*CT940104 (2), CI1*CT940109 (2)	190, 192
Maenhaut W.	CI1*CT920082 (2)	212
Maertens G.	TS3*CT930259 (1)	182
Magaña F.	CI1*CT940039 (2)	399
Maigret B.	CI1*CT940061 (2)	357
Maingon R.	IC18*CT960028 (3)	117
Maingon R.	TS3*CT920052 (1), TS3*CT930247 (1), CI1*CT930310 (2)	129, 177, 327
Maire B.	IC18*CT970249 (3)	73
Maitlis P.M.	CI1*CT940062 (2)	154
Malm Penna O.	CI1*CT930055 (2)	220
Mamede S.	IC18*CT980344 (3)	90
Manasevich R.	CI1*CT930323 (2)	462
Mancheno A.	TS3*CT920070 (1)	135
Manno M.	IC18*CT980341 (3)	87
Manta Ares E.	CI1*CT920049 (2)	130
Mantell S.	TS3*CT930221 (1)	63
Mantovani A.	CI1*CT940068 (2)	359
Marchand J.L.	IC18*CT960063 (3)	144
Marchis-Mouren G.	CI1*CT940034 (2)	105
Maréchal B.M.	CI1*CT940118 (2)	483
Margís Marcía	IC18*CT970149	187
Margís Rogerio	IC18*CT970149	187
Mariau D.	IC18*CT970199 (3)	217
Marino O.	CI1*CT930324 (2)	34
Maroli M.	TS3*CT930247 (1)	177
Marshall J.M.	CI1*CT930039 (2)	376
Marshall S.	CI1*CT940110 (2)	59
Marta F.	IC18*CT960044 (3)	142
Martegani E.	CI1*CT940101 (2)	109
Martí J.	CI1*CT920098 (2)	171
Martinet J.	CI1*CT930353 (2)	474
Martínez Duart J.M.	CI1*CT930038 (2)	375
Martínez M.	CI1*CT930098 (2)	316
Martínez S.	CI1*CT920046 (2)	432
Martínez Vega J.J.	CI1*CT930044 (2)	379
Martínez-Drets G.	TS3*CT940265 (1)	77
Martini A.	CI1*CT930054 (2)	92
Martín-Lomas M.	TS3*CT940274 (1)	81
Mascini M.	CI1*CT930029 (2)	143
Mas-Coma S.	TS3*CT940294 (1)	196
Masera O.	IC18*CT980324 (3)	274

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Maskell D.	CI1*CT940001 (2)	337
Mason H.	IC18*CT980341 (3)	87
Massart D.L.	CI1*CT930091 (2)	176
Matos E.	IC18*CT970222 (3)	62
Matute J.	IC18*CT970156 (3)	65
Matutes E.	CI1*CT920074 (2)	289
Mawhin J.	CI1*CT930323 (2)	462
May J.	CI1*CT930332 (2)	467
Mayer R.	TS3*CT920052(1)	129
Mayorga E.	CI1*CT920018 (2)	4
Mazié J.C.	CI1*CT940043 (2)	349
Mazier D.	IC18*CT960074 (3)	41
Mc Carthy B.J.	IC18*CT960067 (3)	146
Mc Carthy J.	TS3*CT940266 (1)	187
Mc Granaham G.	IC18*CT970224 (3)	65
McAndrew B.J.	CI1*CT920103 (2)	16
McDonald I.R.	CI1*CT920016 (2)	367
Meehus A.	TS3*CT920070 (1)	135
Megias M.	CI1*CT940042 (2)	46
Mejías Guijo M.	IC18*CT980321 (3)	270
Mélard Ch.	CI1*CT940032 (2)	40
Melchers W.J.G.	CI1*CT920003 (2)	274
Meldal M.P.	IC18*CT970225 (3)	67
Melero J.A.	CI1*CT940012 (2), IC18*CT980374 (3)	341, 126
Mello R.	IC18*CT960068 (3)	149
Méndez B.	IC18*CT970201 (3)	219
Mendizábal E.	CI1*CT940123 (2)	408
Mendonça-Hagler L.	CI1*CT930054 (2)	92
Mendoza Zélis L.	CI1*CT940029 (2)	395
Mendoza-León A.	IC18*CT980357 (3)	104
Meneguzzo M.	TS3*CT940321 (1)	210
Menenti M.	TS3*CT920061 (1), TS3*CT930239 (1), IC18*CT960069 (3)	16, 66, 151
Menez A.	TS3*CT910021 (1)	12
Menezes A.	IC18*CT970222 (3)	62
Merck A.	CI1*CT940076 (2)	259
Merckx R.	TS3*CT910003 (1)	4
Merodio C.	TS3*CT930205 (1)	57
Meyer J.F.	IC18*CT980262 (3)	235
Mezcua J.	CI1*CT940103 (2), CI1*CT940104 (2)	188, 190
Michelot J.L.	CI1*CT940140 (2)	201
Michels P.	IC18*CT960079 (3)	43
Michels P.	TS3*CT940263 (1)	185
Miles M.A.	TS3*CT920113 (1)	145
Mills A.	IC18*CT970235 (3)	69
Milne R.G.	IC18*CT960044 (3)	142

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Milon G.	TS3*CT940319 (1)	208
Minranda A.C.	IC18*CT970150 (3)	189
Miranda C.	CI1*CT940067 (2)	52
Miranda Silva Ch.L.	TS3*CT940300 (1)	90
Mitchell G.H.	IC18*CT950020 (3), IC18*CT960125 (3)	9, 54
Mitjá A.	CI1*CT930015 (2)	216
Moffat Duncan J.	IC18*CT980318 (3)	265
Moguilevsky J.A.	CI1*CT920080 (2)	291
Mohren F.	IC18*CT980324 (3)	274
Moinelo S.R.	CI1*CT920028 (2)	122
Molgo J.	CI1*CT940129 (2)	114
Moll H.	CI1*CT930314 (2)	329
Monasterio M.	IC18*CT980263 (3)	238
Monjour L.	TS3*CT920113 (1)	145
Monroy-Hermosillo O.	CI1*CT930346 (2)	240
Mons B.	IC18*CT950020 (3)	9
Monsan P.	CI1*CT930358 (2)	148
Montánez C.	CI1*CT930098 (2)	316
Monteiro Santos T.	TS3*CT940300 (1)	90
Monte-Neshich D.	IC18*CT960126 (3)	176
Montenegro G.	CI1*CT930042 (2)	84
Montenegro Guillen S.	CI1*CT930340 (2)	236
Montero P.	TS3*CT940343 (1)	212
Montero-Julian F.	IC18*CT980373 (3)	124
Montoya Vitini F.	CI1*CT920032 (2)	426
Montoya Y.	TS3*CT920123 (1)	153
Moorby J.	TS3*CT940298 (1)	88
Moore Th.	IC18*CT970164 (3)	198
Mora A.Q.	TS3*CT920115 (1)	38
Mora Camacho J.R.	TS3*CT930252 (1)	73
Mora H.	CI1*CT940139 (2)	199
Mora M.T.	CI1*CT940029 (2)	395
Moral-Rama A.	TS3*CT920109 (1)	32
Morel E.	CI1*CT920054 (2)	167
Moreno A.	TS3*CT920128 (1)	42
Moreno J.	CI1*CT920027 (2), IC18*CT980366 (3)	280, 117
Moreno P.	IC18*CT960044 (3)	142
Morett E.	CI1*CT940060 (2)	48
Morgana B.	TS3*CT930257 (1)	73
Mota I.	CI1*CT940043 (2)	349
Mota M.	IC18*CT970206 (3)	227
Mouriño A.	CI1*CT940013 (2)	96
Mow Robinson J.M.	IC18*CT980297 (3)	256
Moya O.	CI1*CT920076 (2)	440
Mujica V.	CI1*CT930333 (2)	469
Mulder M.	CI1*CT920081 (2)	210

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Müller D.G.	CI1*CT940011 (2)	39
Müller E.	CI1*CT940037 (2)	345
Müller Hohenstein K.	TS3*CT940335 (1)	106
Natarajan A.T.	CI1*CT930305 (2)	321
Navarro C.	TS3*CT940316 (1), IC18*CT970149 (3)	99, 187
Navarro Cerrillo R.M.	IC18*CT980259 (3)	233
Naylor E.	CI1*CT930338 (2)	234
Neuma de Castro Dantas T.	CI1*CT920089 (2)	139
Newstead P.E.	CI1*CT930031 (2)	450
Newton Adrian	IC18*CT970146 (3)	180
Newton S.	TS3*CT930255 (1)	180
Nickel U.	CI1*CT930030 (2)	218
Nielsen T.	TS3*CT920134 (1)	47
Niencheski L.F.H.	CI1*CT930345 (2)	238
Nienow A.W.	CI1*CT920037 (2)	428
Nieto Cadenazzi A.	TS3*CT910038 (1)	117
Nimmo D.	IC18*CT960028 (3)	17
Nina P.	TS3*CT930234 (1)	172
Nixon J.F.	CI1*CT920030 (2)	124
Nobre C.	CI1*CT940111 (2)	267
Nobrega, R.	CI1*CT920081 (2)	210
Noël Dulout F.	CI1*CT930305 (2)	321
Nogueira Freire V.	CI1*CT940066 (2)	256
Nolan K.B.	CI1*CT920055 (2)	132
Nørby J.G.	CI1*CT930048 (2)	86
Notteghem J.L.	TS3*CT920111 (1)	36
Noyola-Robles A.	CI1*CT930346 (2)	240
Nunes Sarno E.	IC18*CT980377 (3)	128
Nuñez M.	CI1*CT940111 (2)	267
Nuñez S.	CI1*CT940006 (2)	36
Obradors X.	CI1*CT920087 (2)	369
Ocampo J.A.	CI1*CT920077 (2)	13
Ocampo Torres F.J.	CI1*CT930061 (2)	174
Ocola L.	CI1*CT940103 (2)	188
Odee D.	IC18*CT970194 (3)	89
Olate Aravena J.	CI1*CT930354 (2)	335
Olguín E.	CI1*CT930096 (2)	224
Oliveira F.	TS3*CT940333 (1)	104
Oliveira Santos J.	CI1*CT920039 (2)	430
Olsson M.	IC18*CT970146 (3)	180
Opperdoes F.R.	IC18*CT970220 (3), IC18*CT980357 (3)	60, 104
Opperdoes F.R.	TS3*CT920077 (1)	137
Oropeza C.	TS3*CT940298 (1)	88
Oropeza Mota J.L.	TS3*CT930252 (1)	71
Orozco M.	IC18*CT980350 (3)	97
Ortega-Calderón A.	TS3*CT930243 (1)	175

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Osete M.L.	CI1*CT940114 (2)	196
Oskam L.	CI1*CT930309 (2)	325
Osuna Carrillo A.	IC18*CT960084 (3)	45
Ottenhoff T.H.M.	IC18*CT980377 (3)	128
Ovando-Shelley E.	CI1*CT930046 (2)	455
Pachano S.	IC18*CT980259 (3)	233
Pagliano D.	IC18*CT960126 (3)	176
Pando R.H.	IC18*CT960060 (3)	33
Panizza M.	IC18*CT980290 (3)	248
Pankhurst R.J.	CI1*CT930033 (2), CI1*CT920088 (2)	173, 169
Panzera F.	IC18*CT960042 (3), IC18*CT980366 (3)	24, 116
Papastamatiou D.	CI1*CT940104 (2)	190
Pardal P.P. de O.	IC18*CT960032 (3)	19
Paredes Arce G.	TS3*CT940314 (1)	97
Paredes M.G.	IC18*CT960067 (3)	147
Parera C.A.	IC18*CT960104 (3)	170
Parés J.M.	CI1*CT940114 (2)	196
Parisi M.	CI1*CT920031 (2)	69
Parkhouse M.	IC18*CT950002 (3)	136
Parkhouse R.M.E.	TS3*CT940277 (1)	193
Parodi E.	CI1*CT940011 (2)	39
Parra O.	CI1*CT930306 (2)	228
Parrillia M. del C.	CI1*CT940139 (2)	199
Pascoli Cereda M.	TS3*CT920110 (1)	34
Pashanasi B.	TS3*CT920128 (1)	42
Pastoret P.P.	CI1*CT920068 (2)	285
Paterson R.	CI1*CT930053 (2)	381
Patino R.I.	IC18*CT980341 (3)	88
Patrick S.G.	CI1*CT930303 (2)	386
Paul Q.	TS3*CT930252 (1)	71
Paz L.M.	IC18*CT980271 (3)	242
Peberdy J.	TS3*CT940343 (1)	212
Pecker A.	CI1*CT920069 (2)	438
Pedrozo F.	TS3*CT930203 (1)	55
Peinemann K.V.	CI1*CT930041 (2)	378
Peixoto A.L.	IC18*CT970164 (3)	198
Peixoto Teixeira Leitao J.M.	IC18*CT960118 (3)	172
Pelseneer-Cooreman J.	TS3*CT940306 (1)	93
Penaloza R.	TS3*CT930252 (1)	71
Penzera F.	IC18*CT980366 (3)	254
Peoli E.	IC18*CT980296 (3)	254
Pera-Milla López E.	IC18*CT980350 (3), IC18*CT980362 (3)	97, 251
Pereira da Silva L.	TS3*CT940272 (1), IC18*CT980362	90, 110
Pereira Nunes S.	CI1*CT930041 (2)	378
Pérez A.	CI1*CT940056 (2)	402
Pérez Alcázar G.A.	CI1*CT930318 (2)	390

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Perez Bercoff R.	IC18*CT980378 (3)	130
Pérez-Deverge R.	IC18*CT970204	225
Pérez-Segura E.	CI1*CT920044 (2)	164
Perie J.	IC18*CT970220 (3)	60
Perillo G.M.E.	CI1*CT940027 (2)	244
Perondini A.L.	CI1*CT940071 (2)	107
Perrings Ch.	IC18*CT980262 (3)	235
Pesce A.	CI1*CT940016 (2)	99
Peters W.	TS3*CT920084 (1)	139
Pévet P.	CI1*CT940036 (2)	343
Peyron F.	IC18*CT960086 (3)	47
Phan-Tan-Luu R.	CI1*CT930091 (2)	176
Piana E.L.	CI1*CT930015 (2)	216
Picco P.	CI1*CT920046 (2)	432
Pidello A.	IC18*CT970180 (3)	203
Pike I.H.	CI1*CT930300 (2)	29
Pimpinelli S.	CI1*CT940071 (2)	107
Pinilla A.E.	CI1*CT920021 (2), CI1*CT940047 (2)	422, 477
Pino M.	CI1*CT930099 (2)	226
Pinto de Lemos E.E.	TS3*CT930221 (1)	63
Pinto Ganhao J.F.	TS3*CT920110 (1)	34
Pinto-Toro J.A.	TS3*CT920140 (1)	49
Plastino A.	CI1*CT930352 (2)	472
Platt T.	TS3*CT930234 (1)	172
Plopper L.D.	IC18*CT960037 (3)	138
Plumbridge J.	CI1*CT920038 (2)	71
Podjarny A.D.	CI1*CT930014 (2)	373
Polderman A.M.	TS3*CT930219 (1), IC18*CT960061 (3)	162, 35
Polk Ph.	CI1*CT940076 (2)	259
Polo F.	CI1*CT920043 (2)	206
Polunin N.	IC18*CT970175 (3)	200
Pombo de Oliveira M.	CI1*CT920074 (2)	289
Ponce C.	IC18*CT980366 (3)	117
Ponce C.	CI1*CT920060 (2)	283
Ponce C. and E.	IC18*CT960028 (3)	17
Ponce E.	IC18*CT970194 (3)	215
Ponzi M.	TS3*CT920116 (1), TS3*CT930229 (1),	148, 168, 26
	IC18*CT960052 (3)	
Possani L.D.	CI1*CT940045 (2)	351
Pott A.	IC18*CT960087 (3)	158
Power H.	CI1*CT940077 (2)	261
Pozo Carro R.	TS3*CT920134 (1)	47
Prata A.	TS3*CT940296 (1)	198
Preiser K.	IC18*CT960104 (3)	170
Premoli A.	IC18*CT970146 (3)	181
Prestipino G.	CI1*CT940045 (2)	351

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Preston D.	TS3*CT920017(1), IC18*CT970148 (3)	14, 185
Prieto M.R.	IC18*CT960069 (3)	151
Pringle C.R.	CI1*CT940012 (2)	341
Prior R.	IC18*CT970199 (3)	91
Probst J.L.	CI1*CT940030 (2)	248
Prodanov E.	CI1*CT940034 (2)	105
Prol-Ledesma R.M.	CI1*CT940075 (2)	180
Pucacco G.	CI1*CT920013 (2)	420
Pueyco J.J.	CI1*CT940069 (2)	178
Pühler A.	TS3*CT940265 (1)	77
Puig Arevaló J.E.	CI1*CT940123 (2)	408
Puigdomenech P.	TS3*CT910010 (1), IC18*CT960089 (3),	8, 161, 223
	IC18*CT970203 (3)	
Puigjaner L.	IC18*CT980271 (3)	242
Pyle D.L.	IC18*CT970182 (3)	209
Qarin C.	TS3*CT930242 (1)	69
Queirolo F.	CI1*CT940143 (2)	157
Quel E.	CI1*CT920079 (2)	442
Quesada A.	IC18*980293 (3)	251
Quintana Pérez C.	IC18*CT980290 (3)	248
Quintero B.G.	CI1*CT940032 (2)	40
Quinton J.	IC18*CT960096 (3)	166
Quiros Reyes E.	CI1*CT930099 (2), CI1*CT930330 (2)	226, 393
Rabagliati F.	CI1*CT930322 (2)	391
Racines J.	IC18*CT980366 (3)	117
Raimbault M.	TS3*CT920110 (1), IC18*CT970185 (3)	34, 209
Ramírez G.	CI1*CT940116 (2)	110
Ramírez J.	TS3*CT940263 (1), CI1*CT920041 (2),	185, 126, 199,
	CI1*CT940139 (2), IC18*CT960079 (3)	43
Ramírez Martínez J.R.	CI1*CT920018 (2)	4
Ramos Ramírez E.G.	TS3*CT940341 (1)	108
Rampazzo N.	IC18*CT960096 (3)	166
Ramsey J.	IC18*CT980366 (3)	118
Rana K.J.	CI1*CT920103 (2)	16
Rance S.	TS3*CT930234 (1)	172
Rapela C.W.	CI1*CT920088 (2)	169
Rappuoli R.	TS3*CT930255 (1)	180
Ratcliffe N.	TS3*CT930226 (1)	164
Raveau B.	CI1*CT920057 (2)	136
Rebella C.M.	TS3*CT930239 (1), IC18*CT960069 (3)	66, 151
Reboratti C.	IC18*CT970148 (3)	185
Rendón A.	CI1*CT930098 (2)	316
Rendon H.	CI1*CT940103 (2)	188
Rendon Von Osten J.	IC18*CT980264 (3)	240
Renieri C.	IC18*CT960067 (3)	146
Rennie F.	IC18*CT980298 (3)	258

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Restrepo L.A.	TS3*CT930205 (1)	57
Restrepo M.	IC18*CT980339 (3)	83
Retana J.	IC18*CT970146 (3)	181
Reul H.M.G.M.	CI1*CT930092 (2)	314
Rhaiza D.C.	TS3*CT930247 (1)	177
Ribeiro C.D.	IC18*CT950021 (3)	11
Ribeiro de Nazaré R.F.	TS3*CT940300 (1)	90
Ribeiro F.R.	CI1*CT940044 (2)	152
Ricarte Gutiérrez G.	IC18*CT960058 (3)	31
Ricque D.	CI1*CT930300 (2)	29
Rieger F.	CI1*CT940129 (2)	114
Riley J.	IC18*CT970156 (3)	191
Ring P.	CI1*CT930352 (2)	472
Riou G.	TS3*CT920077 (1)	137
Ritter E.	IC18*CT980320 (3)	267
Rivas B.	CI1*CT930322 (2)	391
Rivas L.	IC18*CT970213 (3)	58
Riveau G.	IC18*CT980360 (3)	108
Rivera Coto G.	TS3*CT930214 (1)	59
Rivera Herrero C.	CI1*CT940040 (2)	42
Robaglia Ch.	IC18*CT960126 (3)	176
Robert B.	CI1*CT940058 (2)	355
Robinson D	CI1*CT920044 (2)	164
Roldan J	CI1*CT920044 (2)	164
Robinson I.S.	CI1*CT930061 (2)	174
Robles C.A.	CI1*CT920061 (2)	8
Rochat D.	IC18*CT970199 (3)	217
Rodnight R.	CI1*CT940116 (2)	110
Rodrígues Junior C.J.	TS3*CT930221 (1)	63
Rodrigues V.	IC18*CT980373 (3)	124
Rodríguez C.O.	CI1*CT920086 (2), IC18*CT980338 (3)	444, 79
Rodríguez Fernández O.	CI1*CT930303 (2)	386
Rodríguez Ithurralde D.	CI1*CT940005 (2)	95
Rodríguez J.	IC18*CT970209 (3)	231
Rodríguez M.	TS3*CT930229 (1)	168
Rodríguez M.H.	TS3*CT920116 (1), IC18*CT950022 (3)	148, 13
Rodríguez N.	TS3*CT930247 (1)	177
Rodríguez Sortes R.	CI1*CT930335 (2)	35
Rodríguez T.	IC18*CT960067 (3)	147
Rodríguez-Cerezo E.	CI1*CT940040 (2)	42
Roitman I.	CI1*CT930063 (2)	93
Rojas de Arias G.A.	IC18*CT980356 (3), IC18*CT980366 (3)	102, 116
Rojas M.O.	IC18*CT960071 (3)	39
Romana C.	IC18*CT980366 (3)	115
Romanowski V.	IC18*CT980378 (3)	130
Romero L.	IC18*CT980284 (3)	246

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Romo C.	TS3*CT920109 (1), TS3*CT930205 (1), TS3*CT940343 (1)	32, 57, 212
Romo M.P.	CI1*CT920069 (2)	438
Ronco A.	IC18*CT970222 (3)	62
Rook G.	IC18*CT960060 (3)	33
Rosa A.L.	CI1*CT940017 (2)	101
Rosa D.	IC18*CT980341 (3)	88
Rosen M.	CI1*CT940141 (2)	411
Rosenthal H.	IC18*CT970157 (3)	196
Rossello E.	CI1*CT930091 (2)	176
Rossi C.	IC18*CT980262 (3)	235
Rossi R.C.	CI1*CT930048 (2)	86
Rossignol L.	TS3*CT910014 (1)	10
Rossignoli R.	CI1*CT930352 (2)	472
Rostgaard L.	IC18*CT980271 (3)	242
Rovelli A.	CI1*CT920025 (2)	424
Rovira J.	IC18*CT960115 (3), IC18*CT980339 (3)	49, 83
Rowntree P.	CI1*CT940111 (2)	267
Ruberte J.	CI1*CT940113 (2)	61
Rudler H.	CI1*CT920042 (2)	128
Rufas J.S.	TS3*CT910029 (1)	115
Ruffini R.	CI1*CT920013 (2)	420
Ruiz M.C.	IC18*CT960027 (3)	15
Rull L.F.	CI1*CT940132 (2)	409
Russi J.C.	CI1*CT940012 (2)	341
Saavedra J.	CI1*CT920088 (2)	169
Sala M.	IC18*CT970147 (3)	183
Salamanca J.C.	IC18*CT980303 (3)	261
Salazar Itilier	TS3*CT940335 (1)	106
Salazar Schettino P.M.	IC18*CT980366 (3)	118
Salençon J.	CI1*CT920069 (2)	438
Salinas R.	IC18*CT960086 (3)	47
Saloma Terrazas M.	CI1*CT930030 (2)	218
Salvador A.R.	CI1*CT940132 (2)	409
Sampaio Silva M.	TS3*CT920106 (1)	30
San José Muñoz J.S.	IC18*CT970150 (3)	189
San Roman E.A.	IC18*CT960076 (3)	156
Sanahuja B.	CI1*CT930328 (2)	464
Sánchez Barceló E.	CI1*CT940036 (2)	343
Sanchez Bennett E.H.	CI1*CT940140 (2)	201
Sánchez F.H.	CI1*CT940029 (2)	395
Sánchez L.	CI1*CT940071 (2)	107
Sánchez Morena M.	TS3*CT920077 (1)	137
Sánchez Podlech P.A.	IC18*CT970201 (3)	219
Sánchez R.A.	CI1*CT920097 (2)	79
Sánchez Viesca A.F.	IC18*CT980346 (3)	93

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Sánchez-Sesma F.J.	CI1*CT920036 (2)	162
Sancho F.	TS3*CT910021 (1), IC18*CT960096 (3)	12, 166
Sandiford P.	IC18*CT960115 (3)	49
Sandoval J.A.	IC18*CT970192 (3)	213
Sanguinetti A.C.	TS3*CT930239 (1)	66
Sanjuan Díaz C.	TS3*CT940341 (1)	108
Santarelli F.	CI1*CT940035 (2)	252
Santelises A.A.	IC18*CT960096 (3)	166
Santiago Santos D.	CI1*CT930326 (2)	333
Santibanez F.	TS3*CT930239 (1)	66
Santos Cabralo J.R.	IC18*CT960118 (3)	172
Sarah J.L.	CI1*CT920090 (2), IC18*CT970208 (3)	15, 228
Saravia N.	TS3*CT940319 (1)	208
Sarkis Yunes J.	CI1*CT930345 (2)	238
Sarmiento G.	IC18*CT960087 (3)	158
Saucedo Castañeda J.G.	IC18*CT970182 (3)	209
Sauerborn R.	IC18*CT980353 (3)	99
Saugier B.	IC18*CT980263 (3)	238
Saulnier D.	IC18*CT970209 (3)	231
Saura Calixto F.	TS3*CT940341 (1)	108
Sautet J.	CI1*CT940113 (2)	61
Savidan Y.	TS3*CT930242 (1)	69
Savino W.	CI1*CT920007 (2)	276
Savy V.L.	IC18*CT980374 (3)	126
Sbadi R.	IC18*CT980271 (3)	242
Scazzocchio C.	TS3*CT910038 (1), TS3*CT910039 (1),	117, 120, 101
	CI1*CT940017 (2)	, ,
Schaffert R.E.	IC18*CT960063 (3)	144
Schaposnik F.	CI1*CT930315 (2)	459
Scharfstein J.	IC18*CT970225 (3)	67
Schaub G.	TS3*CT930226 (1)	164
Scheele C.W.	CI1*CT930319 (2)	32
Scherf A.	IC18*CT960071 (3), IC18*CT980362 (3)	39, 110
Schilde L.	IC18*CT980320 (3)	267
Schilling M.	CI1*CT920073 (2)	208
Schilling R.	TS3*CT930216 (1)	61
Schmid G.	CI1*CT930330 (2)	393
Schneider W.	IC18*CT980323 (3)	272
Schofield C.J.	TS3*CT920092 (1), TS3*CT920130 (1),	143, 157, 23,
	IC18*CT960042 (3), IC18*CT980366 (3)	115
Schreier P.	CI1*CT920019 (2)	120
Schrével J.	CI1*CT930016 (2)	298
Schulz T.	CI1*CT920074 (2)	289
Schwan R.F.	IC18*CT970182 (3)	207
Schwartzbrod L.	IC18*CT980282 (3)	244
Schwendiman J.	TS3*CT910014 (1)	10

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Sciutto E.L.	TS3*CT940277 (1), IC18*CT950002 (3)	193, 136
Sebastiani M.	CI1*CT930043 (2)	453
Sebben A.	CI1*CT930063 (2)	93
Secher N.	IC18*CT960033 (3)	20
Seguin B.	TS3*CT930239 (1)	66
Sejas Vera E.A.	IC18*CT970249 (3)	73
Selman-Housein G.	IC18*CT970203 (3)	223
Selva-Sutter E.A.	TS3*CT940305 (1)	206
Semenzato R.	TS3*CT940324 (1)	102
Sepulveda A.	CI1*CT920013 (2)	420
Serey I.	CI1*CT930042 (2)	84
Serra C.	IC18*CT980296 (3)	254
Serra J.L.	CI1*CT930096 (2)	224
Serrano R.	CI1*CT940082 (2)	56
Shall S.	CI1*CT930063 (2)	93
Shelley A.	CI1*CT920083 (2)	293
Siakavara K.	IC18*CT980297 (3)	256
Siciliano J.C.	CI1*CT940038 (2)	347
Side J.	IC18*CT980297 (3)	256
Sierra Angel G.	TS3*CT920109 (1)	32
Sierra de Ledo B.	CI1*CT930334 (2)	230
Silva J.	IC18*CT980262 (3)	236
Silveira A.C.	IC18*CT960042 (3)	23
Silveira Pinto H.	TS3*CT930239 (1)	66
Simon G.	TS3*CT920098 (1)	28
Sin R.B.	CI1*CT930307 (2)	30
Sinden R. E.	TS3*CT920044 (1), TS3*CT920053 (1),	127, 131,
	TS3*CT920116 (1),TS3*CT930229 (1),	148,168, 216,
	TS3*CT940346 (1), IC18*CT950022 (3)	13
Singh S.K.	CI1*CT920025 (2)	424
Siquiera M.M.	IC18*CT980374 (3)	266
Sivonen K.	IC18*980293 (3)	252
Slowing K.	IC18*CT960115 (3), IC18*CT970224 (3)	50, 64
Smalligen R.	IC18*CT960032 (3)	19
Smith H.	CI1*CT920097 (2)	79
Smulders P.	CI1*CT920021 (2)	422
Snape C.E.	CI1*CT920028 (2)	122
Soares A.	IC18*CT980264 (3)	240
Soares Oliveira M. de L.	TS3*CT940300 (1)	90
Soberón Chavez M.	CI1*CT940042 (2)	46
Soccol C.R.	IC18*CT970182 (3)	209
Socrates Herrera	TS3*CT940345 (1)	214
Söderhall K.	IC18*CT970209 (3)	230
Söderlund N.	IC18*CT970235 (3)	208
Solari A.	TS3*CT920155 (1)	159
Solari G.	CI1*CT930331 (2)	465

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Solbach W.	CI1*CT930314 (2)	329
Solé R.A.	CI1*CT920028 (2)	122
Sørensen M.	TS3*CT920115 (1)	38
Sørensen S.C.	TS3*CT910042 (1)	125
Sorgeloos P.	TS3*CT940269 (1), IC18*CT970188 (3)	79, 211
Sotelo J.R.	CI1*CT930037 (2)	82
Soundy J.	IC18*CT960028 (3)	17
Sousa O.	IC18*CT980366 (3)	118
Souza Sierra M.	CI1*CT930334 (2)	230
Sovero G.	CI1*CT920092 (2)	446
Spencer E.	IC18*CT980378 (3)	130
Spencer Ossa E.	IC18*CT960027 (3)	15
Sperling K.R.	CI1*CT930099 (2)	226
Stalla G.K.	CI1*CT930092 (2)	314
Staube A.	CI1*CT940056 (2)	402
Stein A.	IC18*CT970156 (3)	191
Steinbuchel A.	IC18*CT970201 (3)	219
Steindel M.	IC18*CT980366 (3)	116
Stenson B.	IC18*CT970235 (3)	69
Stephens C.	IC18*CT970224 (3)	65
Stevenson Harrison L.J.	IC18*CT950002 (3)	136
Stewart C.	TS3*CT930243 (1)	175
Stewart J.	CI1*CT940059 (2)	254
Strosse H.	IC18*CT970192 (3)	213
Suárez Reynoso G.	CI1*CT930039 (2)	376
Suárez Z.H.	IC18*CT960118 (3)	172
Suazo Davis G.	IC18*CT980323 (3)	272
Subirats Humet J.	TS3*CT940321 (1)	210
Svensson L.	IC18*CT960027 (3)	115
Swennen R.	TS3*CT910014 (1), IC18*CT970192 (3)	10, 213
Swings J.	TS3*CT940269 (1)	79
Takiff H.	TS3*CT930243 (1)	175
Tamisier A.	IC18*CT960087 (3)	158
Tapia de Daza M.S.	TS3*CT940333 (1)	104
Tapia Ramírez M.	CI1*CT940041 (2)	44
Targett G.	IC18*CT950020 (3)	159
Tarling D.H.	CI1*CT940114 (2)	196
Tassara C.	TS3*CT920131 (1)	45
Tavares T.	CI1*CT920073 (2)	208
Taylor A.	CI1*CT930060 (2)	27
Tchegliacova N.	CI1*CT940098 (2)	184
Teitelboim C.	CI1*CT920005 (2)	416
Teixeira A.R.L.	CI1*CT930016 (2)	298
Teixeira H.C.	IC18*CT980377 (3)	128
Teixeira J.A.	IC18*CT970182 (3)	207
Telenti A.	TS3*CT930243 (1)	175

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Teles Rabello A.L.	TS3*CT910040 (1)	123
Teliz D.	TS3*CT940308 (1)	95
Temmerman M.	IC18*CT970250 (3)	75
Terreros P.	CI1*CT930329 (2)	147
Tezenas du Montcel H.	TS3*CT910014 (1), CI1*CT930028 (2), IC18*CT970204 (3)	10, 20, 225
Theakston R.D.G.	TS3*CT910021 (1), IC18*CT960032 (3)	12, 19
Thevelein J.	CI1*CT940101 (2)	109
Thibault L.	CI1*CT940115 (2)	481
Thirion S.	IC18*CT960068(3)	149
Thomas A.	TS3*CT920053 (1), TS3*CT920084 (1), TS3*CT940346 (1), IC18*CT950016 (3), IC18*CT950020 (3), IC18*CT960056 (3), IC18*CT970212 (3), IC18*CT980387 (3)	131, 139, 216, 14, 29, 174, 56, 132
Thomas A.W.	IC18*CT950022 (3)	13
Thomas A.W.	IC18*CT960125 (3)	54
Thornton G.	CI1*CT920056 (2)	134
Thornton I.	IC18*CT980284(3)	246
Thorpe R.S.	TS3*CT910021 (1)	12
Thouret J.C.	CI1*CT940139 (2)	199
Tibayrenc M.	TS3*CT920129 (1), TS3*CT920155 (1)	155, 159
Tiedtke A.	CI1*CT940026 (2)	103
Tirapegui E.	CI1*CT920006 (2)	418
Tjiebaut B.	CI1*CT930042 (2)	84
Tocho J.O.	CI1*CT930316 (2)	461
Tomson G.	IC18*CT980346 (3)	93
Tordo N.	CI1*CT920068 (2)	285
Torgeson P.E.	CI1*CT940133 (2)	62
Torné M.	CI1*CT940112 (2)	194
Toro García N.	TS3*CT940265 (1)	77
Toro Nozal M.J.	CI1*CT930354 (2)	335
Torras C.	CI1*CT920046 (2)	432
Torres H.N.	TS3*CT920077 (1), CI1*CT930329 (2)	137, 147
Torres S.	CI1*CT920013 (2)	420
Tota B.	CI1*CT930050 (2)	88
Toulmin C.	IC18*CT960069 (3)	151
Tovar M.	CI1*CT920087 (2)	369
Townson H.	TS3*CT930247 (1)	177
Travi B.	IC18*CT970213 (3)	58
Travino C.	TS3*CT920098 (1)	28
Tredice J.R.	CI1*CT930331 (2)	465
Troe J.	CI1*CT940128 (2)	269
Trognitz B.	IC18*CT980320 (3)	268
Trouillas J.	CI1*CT930025 (1)	301
Troye-Blomberg M.	IC18*CT980373 (3)	124
Trudgill D.	TS3*CT920098 (1)	28
Tuomisto H.	IC18*CT960038 (3)	140

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Turner P.	CI1*CT940069 (2)	178
Twickler Th.	CI1*CT920092 (2)	446
Uden P.	IC18*CT970156 (3)	191
Udias A.	CI1*CT940104 (2)	190
Ugalde Blasco A.	TS3*CT940305 (1)	206
Urbain J.	CI1*CT930324 (2)	34
Urbina J.	IC18*CT980371 (3)	120
Urbina J.A.	IC18*CT960084 (3)	45
Urquiaga S.	CI1*CT940067 (2)	52
Urrutia-Fucugauchi J.	CI1*CT940114 (2)	196
Uzal F.A.	CI1*CT920061 (2)	8
Valencia R.	IC18*CT960038 (3)	140
Valencia Vasquez P.G.	IC18*CT980350 (3)	97
Valente S.A.	IC18*CT980366 (3)	115
Valenzuela Delgado M.E.	TS3*CT910042 (1)	125
Valla F.	CI1*CT940139 (2)	199
Van der Stuyft P.	TS3*CT910042 (1), IC18*CT960058 (3),	125, 31, 95
j	IC18*CT980348 (3)	, ,
Van der Veen A.M.H.	TS3*CT920093 (1)	24
Van Drunen M.	IC18*CT980298 (3)	258
Van Haren R.J.F.	IC18*CT980263 (3)	238
Van Helden W.	CI1*CT940047 (2)	477
Van Isacker P.	CI1*CT940072 (2)	479
Van Lerberghe W.	IC18*CT980346 (3)	93
Van Montagu M.	TS3*CT910010 (1), TS3*CT920140 (1),	8, 49, 83, 50,
8	TS3*CT940278 (1), CI1*CT940065 (2),	174
	IC18*CT960124 (3)	
Van Ortega-Blake I.	CI1*CT940124 (2)	484
Van Rie J.	IC18*CT980303 (3)	261
Vanbelle M.	CI1*CT920018 (2)	4
Váquez-Ramos J.	CI1*CT940079 (2)	54
Vargas C.	CI1*CT930310 (2)	327
Vargas M.	CI1*CT930032 (2)	301
Vargas-Albores F	IC18*CT970209 (3)	231
Vaughan P.	TS3*CT920088 (1)	141
Vaz Portugal A.	IC18*CT960073 (3)	154
Vázquez L.	IC18*CT980340 (3)	85
Vázquez M.A.	TS3*CT930239 (1)	66
Vega Farfan V.	CI1*CT940041 (2)	44
Vega-López F.	TS3*CT940299 (1), IC18*CT970236(3)	201, 71
Vegas R.	CI1*CT940114 (2)	196
Velasco V.R.	CI1*CT940046 (2)	401
Vélez Martínez M.	CI1*CT920039 (2)	430
Ventura F.	IC18*CT970236 (3)	71
Ventura O.S.	CI1*CT930339 (2)	470
Vera E.E.	CI1*CT940112 (2)	194

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Vercruysse J.	IC18*CT980360 (3)	108
Verdaguer E.	CI1*CT940004 (2)	475
Verdeil J.L.	TS3*CT940298 (1)	88
Verreth A.J.	CI1*CT940032 (2)	40
Verreth J.	IC18*CT970202 (3)	221
Vial H.	TS3*CT920084 (1), IC18*CT960056 (3)	139, 28
Videla H.	CI1*CT940025 (2)	150
Vieira de Sousa Unglert C.	TS3*CT940321 (1)	210
Vigil P.	CI1*CT920022 (2)	67
Vilaro F.	IC18*CT980318 (3)	265
Villasusu J.M.	IC18*CT960115 (3)	50
Vinella S.	IC18*CT960067 (3)	146
Viramonte J.G.	CI1*CT920098 (2)	171
Vouyoukalou E.	TS3*CT920098 (1)	28
Vrinat M.	CI1*CT920041 (2)	126
Wagenvoort M.	TS3*CT930242 (1)	69
Wahlgren M.	IC18*CT980362 (3)	110
Wainstok de Calmanovici R.	CI1*CT940068 (2)	359
Wakelin D.	TS3*CT930227 (1)	166
Walgraef D.	CI1*CT920006 (2)	418
Walker Herrera M.C.	CI1*CT930028 (2)	20
Walter Ayneto I.	TS3*CT930203 (1)	55
Ward R.	TS3*CT930247 (1), CI1*CT920060 (2),	177, 283, 17
Warhurst D.Ch.	IC18*CT960028 (3) TS3*CT930219 (1), IC18*CT960056 (3),	162, 29, 35
	IC18*CT960061 (3)	
Warrell D.A.	TS3*CT910021 (1), IC18*CT960032 (3),	12, 19
Wasim S.M.	CI1*CT920099 (2),	370
Wasserman M.	IC18*CT960071 (3),	39
Waters A.P.	IC18*CT950022 (3),	13
Watt I.	IC18*CT960086 (3),	47
Watts A.	CI1*CT930304 (2),	388
Watts Ch.	CI1*CT940059 (2),	254
Weiss R.A.	CI1*CT920074 (2),	289
Wekerle H.	CI1*CT920007 (2),	276
Welckler C.	IC18*CT960063 (3),	144
Welti Chanes J.	TS3*CT940333 (1),	104
Wenham J.	TS3*CT920110 (1),	34
Werna E.	IC18*CT970224 (3),	64
Werner G.	TS3*CT930252 (1),	71
Wéry M.	TS3*CT920053 (1), TS3*CT940346 (1),	131, 216, 4,
	IC18*CT950016 (3), IC18*CT980387 (3),	132
Wesfreid J.E.	CI1*CT940141 (2),	411
Westermeier R.	CI1*CT940011 (2),	39
Wheals A.E.	IC18*CT970182 (3),	207
Wheatley A.D.	CI1*CT930346 (2),	240

SCIENTIST'S NAME	CONTRACT NUMBER & (VOLUME NO.)	PAGE NO.
Wheeler A.	TS3*CT930247 (1),	177
Whitmore A.	CI1*CT940067 (2),	52
Whittaker P.	TS3*CT940279 (1),	86
Whittingham D.G.	CI1*CT920103 (2),	16
Williams N.A.	CI1*CT930026 (2),	302
Williams T.	IC18*CT960097 (3),	168
Williams-Linera G.	IC18*CT970146 (3),	180
Willson M.	TS3*CT940263 (1),	185
Wilson A.R.	IC18*CT980360 (3),	108
Wilson J.	TS3*CT940316 (1), IC18*CT970149 (3),	99, 187, 215
	IC18*CT970194 (3)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Wilson M.	IC18*CT960079 (3)	43
Wilson R.	TS3*CT920118 (1), TS3*CT940303 (1)	151, 203
Wilson R.A.	IC18*CT970212 (3)	56
Wolosiuk R.A.	CI1*CT920070 (2)	76
Woodruff D.P.	CI1*CT940063 (2)	404
Woolhouse M.E.J.	IC18*CT980360 (3)	108
Wullems G.J.	TS3*CT940345 (1)	214
Wunsch-Filho V.	IC18*CT970222 (3)	62
Wüster W.	IC18*CT960032 (3)	19
Wuttke W.	CI1*CT920080 (2)	291
Yamanaka H.	CI1*CT930029 (2)	143
Yapyta Y.	TS3*CT930234 (1)	172
Yarzabal L.	TS3*CT910029 (1)	115
Yepes H.	CI1*CT940103 (2)	188
Zaat J.	IC18*CT960086 (3)	47
Zaha A.	TS3*CT910039 (1)	120
Zakhia N.	TS3*CT920110 (1)	34
Zanolin F.	CI1*CT930323 (2)	462
Zatz M.	CI1*CT920010 (2)	277
Zegarra Ponce R.	CI1*CT920055 (2)	132
Zelaya Martínez	IC18*CT960096 (3)	166
Zeledon E.	IC18*CT960115 (3)	50
Zeledón R.	CI1*CT920060 (2)	283
Zeller R.	CI1*CT930017 (2)	81
Zemann R.	IC18*CT960096 (3)	166
Zerba E.	IC18*CT980356 (3)	102
Zollo A.	CI1*CT940109 (2)	192
Zowe J.	CI1*CT920046 (2)	432
Zuddas P.	IC18*CT980284 (3)	246
Zuily Y.	TS3*CT920115 (1)	38
Zuluaga J.	TS3*CT930239 (1)	66
Zumbado M.E.	CI1*CT930319 (2)	32
Zuppi G.M.	CI1*CT940140 (2)	201
Zurita B.	IC18*CT970235 (3)	69
Zwi A.	TS3*CT940305 (1)	206

European Commission

UNION EUROPEA - AMERICA LATINA COOPERACION CIENTIFICA EN LOS AÑOS 90 EUROPEAN UNION - LATIN AMERICA SCIENTIFIC COOPERATION IN THE 90' s

Vol I: Life Sciences and Technologies for Developing Countries (STD III)

Luxembourg: Office for Official Publications of the European Communities

1999 — 280 p. — 21 x 29,7cm

ISBN 92-828-7832-5

Venta • Salg • Verkauf • Πωλήσεις • Sales • Vente • Vendita • Verkoop • Venda • Myynti • Försäljning

BELGIQUE/BELGIË

Jean De Lannoy

Avenue du Roi 202/Koningslaan 202 B-1190 Bruxelles/Brussel Tél. (32-2) 538 43 08 Fax (32-2) 538 08 41 E-mail· jean de.lannoy@infoboard be URL: http://www.jean-de-lannoy.be

La librairie européenne/
De Europese Boekhandel
Rue de la Loi 244/Wetstraat 244
B-1040 Bruxelles/Brussel
Tél. (32-2) 295 26 39
Fax (32-2) 735 08 60
E-mail: mail@libeurop.be
URL: http://www.libeurop.be

Moniteur belge/Belgisch Staatsblad

Rue de Louvain 40-42/Leuvenseweg 40-42 B-1000 Bruxelles/Brussel Tél. (32-2) 552 22 11 Fax (32-2) 511 01 84

DANMARK

J. H. Schultz Information A/S

Herstedvang 10-12 DK-2620 Albertslund Tlf. (45) 43 63 23 00 Fax (45) 43 63 19 69 E-mail schultz@schultz.dk URL: http://www.schultz.dk

DEUTSCHLAND

Bundesanzeiger Verlag GmbH

Vertnebsahteilung Amsterdamer Straße 192 D-50735 Köln Tel. (49-221) 97 66 80 Fax (49-221) 97 66 82 78 E-Mail: vertrieb@bundesanzeiger de URL: http://www.bundesanzeiger.de

ΕΛΛΑΔΑ/GREECE

G. C. Eleftheroudakis SA

International Bookstore International Bookstore
Panepistimiou 17
GR-10564 Athina
Tel. (30-1) 331 41 80/1/2/3/4/5
Fax (30-1) 323 98 21
E-mail: elebooks@netor.gr

ESPAÑA

Boletín Oficial del Estado

Trafalgar, 27 E-28071 Madrid Tei. (34) 915 38 21 11 (Libros), 913 84 17 15 (Suscrip.) Fax (34) 915 38 21 21 (Libros), 913 84 17 14 (Suscrip.) E-mail: clientes@com boe es URL: http://www.boe.es

Mundi Prensa Libros, SA

Castelló, 37 E-28001 Madrid Tel. (34) 914 36 37 00 Fax (34) 915 75 39 98 E-mail: libreria@mundiprensa.es URL: http://www.mundiprensa.com

FRANCE

Journal officiel

Service des publications des CE 26, rue Desaix F-75727 Paris Cedex 15 Tél. (33) 140 58 77 31 Fax (33) 140 58 77 00 URL: http://www.journal-officiel.gouv.fr

IRELAND

Government Supplies Agency

Publications Section 4-5 Harcourt Road Dublin 2 Tel. (353-1) 661 31 11 Fax (353-1) 475 27 60

ITALIA

Licosa SpA

Via Duca di Calabria, 1/1 Casella postale 552 I-50125 Firenze Tel. (39) 055 64 83 1 Fax (39) 055 64 12 57 E-mail: licosa@ftbcc.it URL: http://www.ftbcc.it/licosa

LUXEMBOURG

Messageries du livre SARL

5, rue Raiffeisen L-2411 Luxembourg Tél. (352) 40 10 20 Fax (352) 49 06 61 E-mail. mail@mdl.lu URL: http://www.mdl.lu

NEDERLAND

SDU Servicecentrum Uitgevers

Christoffel Plantijnstraat 2 Postbus 20014 2500 EA Den Haag Tel. (31-70) 378 98 80 Fax (31-70) 378 97 83 E-mail: sdu@sdu.nl URL: http://www.sdu.nl

ÖSTERREICH

Manz'sche Verlags- und Universitätsbuchhandlung GmbH

Kohlmarkt 16 A-1014 Wien
Tel. (43-1) 53 16 11 00
Fax (43-1) 53 16 11 67
E-Mail: bestellen@manz.co.at
URL: http://www.manz.at/index.htm

PORTUGAL

Distribuidora de Livros Bertrand Ld.

Grupo Bertrand, SA Rua das Terras dos Vales, 4-A Apartado 60037 P-2700 Amadora Tel (351-1) 495 90 50 Fax (351-1) 496 02 55

Imprensa Nacional-Casa da Moeda. EP

Rua Marquès Sá da Bandeira, 16-A P-1050 Lisboa Codex Tel. (351-1) 353 03 99 Fax (351-1) 353 02 94 E-mail: del.incm@mail.telepac.pt URL: http://www.incm.pt

SUOMI/FINLAND

Akateeminen Kirjakauppa/ Akademiska Bokhandeln

Akademiska Bokhandeln Keskuskatu //Centralgatan 1 PL/PB 128 FIN-00101 Helsinki/Helsingfors P/tfn (358-9) 121 44 18 F/fax (358-9) 121 44 35 Sähköposti akatilaus@akateeminen.com URL http://www.akateeminen.com

SVERIGE

BTJ AB

Traktorvägen 11 S-221 82 Lund Tfn (46-46) 18 00 00 Fax (46-46) 30 79 47 E-post: btjeu-pub@btj.se URL: http://www.btj.se

LINITED KINGDOM

The Stationery Office Ltd

International Sales Agency
51 Nine Elms Lane
London SW8 5DR
Tel. (44-171) 873 90 90
Fax (44-171) 873 84 63
E-mail: pac-nquines@theso.co.uk
URL: http://www.the-stationery-office.co.uk

ÍSLAND

Bokabud Larusar Blöndal

Skólavordustig, 2 IS-101 Reykjavik Tel (354) 551 56 50 Fax (354) 552 55 60

NORGE

Swets Norge AS

Østenjoveien 18 Boks 6512 Etterstad N-0606 Oslo Tel (47-22) 97 45 00 Fax (47-22) 97 45 45

SCHWEIZ/SUISSE/SVIZZERA

Euro Info Center Schweiz

c/o OSEC c/o OSEC Stampfenbachstraße 85 PF 492 CH-8035 Zürich Tel. (41-1) 365 53 15 Fax (41-1) 365 54 11 E-mail: eics@osec.ch URL: http://www.osec.ch/eics

BĂLGARIJA

Europress Euromedia Ltd

59, blvd Vitosha BG-1000 Sofia Tel. (359-2) 980 37 66 Fax (359-2) 980 42 30 E-mail: Miléna@mbox.cit.bg

ČESKÁ REPUBLIKA

ÚSIS

NIS-prodejna Havelkova 22 CZ-130 00 Praha 3 Tel (420-2) 24 23 14 86 Fax (420-2) 24 23 11 14 E-mail. nkposp@dec.nis.cz URL: http://usiscr.cz

CYPRUS

Cyprus Chamber of Commerce and Industry

PO Box 1455 CY-1509 Nicosia Tel. (357-2) 66 95 00 Fax (357-2) 66 10 44 E-mail: demetrap@ccci.org.cy

Eesti Kaubandus-Tööstuskoda (Estonian Chamber of Commerce and Industry) Toom-Kooli 17 EE-0001 Tallinn Tel. (372) 646 02 44 Fax (372) 646 02 45 E-mail* einfo@koda.ee URL: http://www.koda.ee

HRVATSKA

Mediatrade Ltd

Pavla Hatza 1 HR-10000 Zagreb Tel. (385-1) 481 94 11 Fax (385-1) 481 94 11

MAGYARORSZÁG

Euro Info Service

Európa Ház
Margitsziget
PO Box 475
H-1396 Budapest 62
Tel. (36-1) 350 80 25
Fax (36-1) 350 90 32
E-mail euroinfo@mail.matav.hu
URL: http://www.euroinfo hu/index.htm

MALTA

Miller Distributors Ltd

Malta International Airport Maid International Airpo PO Box 25 Luqa LQA 05 Tel. (356) 66 44 88 Fax (356) 67 67 99 E-mail gwirth@usa.net

POLSKA

Ars Polona

Ars Polona Krakowskie Przedmiescie 7 Skr. pocztowa 1001 PL-00-950 Warszawa Tel. (48-22) 826 12 01 Fax (48-22) 826 62 40 E-mail: ars_pol@bevy.hsn.com.pl

ROMÂNIA

Euromedia
Str G-ral Berthelot Nr 41
RO-70749 Bucuresti
Tel. (40-1) 315 44 03
Fax (40-1) 314 22 86

ROSSIYA

CCEC

60-letiya Oktyabrya Av. 9 117312 Moscow Tel. (7-095) 135 52 27 Fax (7-095) 135 52 27

SLOVAKIA

Centrum VTI SR

Nám. Slobody, 19 SK-81223 Bratislava Tel. (421-7) 54 41 83 64 Fa. (421-7) 54 41 83 64 E-mail: europ@tbb1.slik.stuba.sk URL. http://www.sltk.stuba.sk

SLOVENIJA

Gospodarski Vestnik

Dunajska cesta 5 SLO-1000 Ljubljana Tel (386) 613 09 16 40 Fax (386) 613 09 16 45 E-mail: europ@gvestnik si URL: http://www.gvestnik.si

TÚRKIYE

Dünya Infotel AS

Dunya Infotel AS
100, Yil Mahallessi 34440
TR-80050 Bagcilar-Istanbul
Tel (90-212) 629 46 89
Fax (90-212) 629 46 27
E-mail Infotel@dunya-gazete com tr

AUSTRALIA

Hunter Publications

PO Box 404 3067 Abbotsford, Victoria Tel. (61-3) 94 17 53 61 Fax (61-3) 94 19 71 54 E-mail jpdavies@ozemail.com.au

Les éditions La Liberté Inc.

3020, chemin Sainte-Foy G1X 3V Sainte-Foy, Québec Tel. (1-418) 658 37 63 Fax (1-800) 567 54 49 E-mail: liberte@mediom.qc.ca

Renouf Publishing Co. Ltd

netiour Publishing Co. Ltd 5369 Chemin Canotek Road Unit 1 K1J 9J3 Ottawa, Ontario Tel. (1-613) 745 26 65 Fax (1-613) 745 76 60 E-mail. order.dept@renoufbooks.com URL: http://www.renoufbooks.com

EGYPT

The Middle East Observer 41 Sherif Street

41 Sherri Street Cairo Tel. (20-2) 392 69 19 Fax (20-2) 393 97 32 E-mail: mafouda@meobserver.com.eg URL http://www.meobserver.com.eg

INDIA

EBIC India

3rd Floor, Y. B. Chavan Centre Gen. J. Bhosale Marg 400 021 Mumbal 400 021 Minibal Tel. (91-22) 282 60 64 Fax (91-22) 285 45 64 E-mail⁻ ebic@giasbm01 vsnl net in URL: http://www.ebicindia.com

ISRAEL

ROY International

41, Mishmar Hayarden Street 41, Mishmar Hayarden Stree PO Box 13056 61130 Tel Aviv Tel (972-3) 649 94 69 Fax (972-3) 648 60 39 E-mail: royıl@netvision.net.il URL. http://www.royint.co.il

Sub-agent for the Palestinian Authority:

Index Information Services

PO Box 19502 Jerusalem Tel. (972-2) 627 16 34 Fax (972-2) 627 12 19

JAPAN

PSI-Japan

Asahi Sanbancho Plaza #206 7-1 Sanbancho, Chiyoda-ku Tokyo 102 Tel. (81-3) 32 34 69 21 Fax (81-3) 32 34 69 15 E-mail: books@psi-japan.co.jp URL: http://www.psi-japan.com

MALAYSIA

EBIC Malaysia

Level 7, Wisma Hong Leong 18 Jalan Perak 50450 Kuala Lumpur Tel. (60-3) 262 62 98 Fax (60-3) 262 61 98 E-mail: ebic-kl@mol.net my

MÉXICO

Mundi Prensa Mexico, SA de CV

Río Pánuco No 141 Hio Panuco No 141 Colonia Cuauhtémoc MX-06500 Mexico, DF Tel. (52-5) 533 56 58 Fax (52-5) 514 67 99 E-mail: 101545 2361 @compuserve.com

PHILIPPINES

EBIC Philippines

19th Floor, PS Bank Tower Sen. Gil J. Puyat Ave. cor. Tindalo St. Sen. Gil J. Puyat Ave. cor. Tindal Makati City Metro Manılla Tel. (63-2) 759 66 80 E-mail⁺ eccpcom@globe com ph URL: http://www.eccp.com

SRI LANKA

EBIC Sri Lanka

Trans Asia Hotel
115 Sir chittampalam
A Gardiner Mawatha
Colombo 2
Tel. (94-1) 074 71 50 78
Fax (94-1) 44 87 79
E-mail. ebicsl@ltmin.com

THAILAND

EBIC Thailand

29 Vanissa Building, 8th Floor 29 Vanissa Building, 8th Floor Soi Childiom Ploenchit 10330 Bangkok Tel. (86-2) 655 06 27 Fax (66-2) 655 06 28 E-mail: ebiobkk@ksc15 th.com URL. http://www.ebiobkk.org

UNITED STATES OF AMERICA

Bernan Associates

4611-F Assembly Drive Lanham MD20706 Tel (1-800) 274 44 47 (toll free telephone) Fax (1-800) 865 34 50 (toll free fax) E-mail: query@bernan.com URL: http://www.bernan.com

ANDERE LÄNDER/OTHER COUNTRIES/ AUTRES PAYS

Bitte wenden Sie sich an ein Büro Ihrer Wahl/ Please contact the sales office of your choice/ Veuillez vous adresser au bureau de vente de votre choix

Office for Official Publications of the European Communities

2, rue Mercier 2, tue welder L-2985 Luxembourg Tel. (352) 29 29-42455 Fax (352) 29 29-42758 E-mail: info info@opoce cec.be URL: http://eur-op.eu.int This volume presents an overview of the results of almost a decade of continuous support from the European Community to cooperation between EU scientists and their Latin American counterparts. In addition it gives full details of the teams involved and how to contact them.

ISBN 92-828-7832-5

