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disruption, its use for electrification and other 
purposes may be restricted because the failure of 
CCTS forms a barrier to continued traditional use of 
steam coal. 

The EU is hardly vulnerable to the potential external 
risks to its steam coal supplies. In particular, Europe 
imports from countries such as Russia, Colombia and 
South Africa, which are considered ‘safe’ suppliers 
and have not experienced serious disruptions in the 
past. Moreover, European importing countries 
diversify their imports, often complementing them 
with domestic production, which results in good 
scores in diversity indices. 

The real concern with respect to supply security is the 
absence of an economically and politically sustainable 
use of coal for electricity generation, liquefaction, 
gasification, and in industry. According to the IEA 
Technology Roadmap, the next ten years are a ‘make 
or break’ period for CCTS (IEA, 2009a). However, 
we find that the ambitious development plans in 
CCTS demonstration are unlikely to be met. The 
reason is not the lack of funding for demonstration 
projects, but the underestimation of the technical and 
regulatory complexity of the whole CCTS process 
chain.1 Further, strong public rejection of CO2 storage 
and the decline in available storage potential have 
limited both suitable sites for demonstration projects 
and the future contribution of CCTS to a decarbonised 
electricity sector. 

We argue that it is too early to abandon the IEA 
Roadmap, but that CCTS in Europe can only thrive 
when supported by stronger political determination on 
the part of the European Union and the respective 
member states. In particular, the financial and 
political uncertainty surrounding future projects 
should be reduced. This uncertainty stems from 
politically dependent CO2 prices, the true abatement 
costs of commercial capture plants, the size, shape 
and provision of the transport and storage 
infrastructure, the performance of renewable energy 
technologies, and foremost the political commitment 
towards or against CCTS over the coming decisive 
years. The expectation of CCTS becoming a 
commercially available carbon abatement technology 
by the year 2020 or even 2030 should be significantly 
lowered. With a focus on Europe, the role of CCTS as 
a ‘bridge’ technology into an age of renewable 
electricity generation might be questioned. This does 
not apply to the use of CCTS in industrial applications 
or on a global scale. 

                                                      
1 Similar problems were observed during an attempt to 
introduce hydrogen for the transport sector. Unresolved 
technical questions, the lack of the underlying network 
infrastructure and strong competitors have formed high 
market barriers for hydrogen technologies.  

This Policy Brief summarises findings on the 
development and application of specific tools for 
energy security in the coal sector produced by the 
SECURE project. We identify the potential risks 
throughout the value chain for coal-based electricity 
and heat production, followed by policy 
recommendations to deal with the uncertainties of the 
CCTS value added chain.2 

1. European supply with steam coal 
Supply security issues have been subject to scant 
analysis in recent decades, despite the increased 
importance of coal as a primary energy source. In 
fact, amid concerns about global warming and CO2 
emissions reductions, coal is currently experiencing a 
renaissance due to its relatively low price and 
pressures upon primary energy markets such as oil. 
Power production based on steam coal input3 has 
received more attention lately due to the advent of 
clean-coal technologies. Globally, the use of coal has 
risen considerably, mainly due to high energy demand 
growth in China and India. Only about 15% of the 
hard coal produced is internationally traded; from 
2000 to 2005 the amount of yearly traded coal 
increased from 210 to 755 million tonnes. 

Historically, there are two geographical markets: i) 
the Pacific market with exports from Australia, 
Indonesia and China, and to a lesser extent from 
South Africa, the US, Canada and East Asia, i.e. 
Japan, South Korea, Taiwan, etc., and ii) the Atlantic 
market with exports from South Africa and Colombia, 
and to a lesser extent from the US, Canada, Poland, 
Russia, Australia and Venezuela. Recent research 
points out that the traditional separation of the Pacific 
and Atlantic markets has faded (Ellerman, 1995; 
Warell, 2006; Li, 2008; Zaklan, et al., 2009). 
However, the spatial aspect of the global coal market 
plays a considerable role, with transport costs being 
an important factor in determining trade relations.  

                                                      
2 Earlier drafts were discussed at the SECURE Stakeholder 
Workshop (November 2009, Paris), with experts from 
academia, the policy community, and industry, and in the 
internal SECURE workshop (June 2010, Brussels). More 
information is available at www.secure-ec.eu and in 
companion CEPS Working Documents (Herold et al., 
2010c, and Mendelevich, et al., 2010). 
3 With hard coal, a distinction is drown between steam 
(thermal) and coking (metallurgical) coal, depending on its 
calorific content and other chemical properties. Steam coal, 
which is almost exclusively used for electricity production, 
can be considered a homogeneous good. This Policy Brief 
considers steam coal the most important type of coal. In 
some European countries, lignite is used domestically 
(generally, minemouth), but there is no risk to its domestic 
supply. 
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Most large coal consumers obtain a significant share 
of their demand on the world market, often because 
domestic reserves have declined. Important EU 
countries in this respect are Germany, the UK, and 
Poland. For these consumers imported steam coal 

becomes more attractive than exploiting indigenous, 
high-cost reserves. Global coal markets now provide 
relatively cheap supply, which has attracted new 
consumers like China and India. 

Table 1 reports the import share of total consumption 
for the major consumers. Even though the import 
dependency rate of some European countries is 
relatively high, the share of imported steam coal in 
electricity production does not exceed 25% in any 

large coal-consuming country. This compares to 
somewhat higher import dependency for Japan, South 
Korea and Taiwan. Although China’s import share is 
low, the amount of imported steam coal is substantial 
in absolute terms.  

Table 1. Import dependency rates (in %) of major steam coal consuming countries in 2007 

Source: IEA (2009b, c). 

Various external risks could impede European coal 
supplies. For instance, an oligopolistic supply 
structure would not endanger the supplies, but it 
would increase prices substantially beyond the 
competitive level. Little diversification and reliance 
on a single exporter would bring large risks of a total 
supply disruption in the short term after, e.g. a 
technical failure on the export side. 

We use the Shannon-Wiener Index4 to measure 
supply diversification. A second step extends the 
index to the Shannon-Wiener-Neumann Indices 1 and 
2 that respectively include the political stability of the 
exporters and the internal supplies of a country. 5 As a 
rule of thumb, these indices lie between zero 

                                                      
4 The Shannon-Wiener Index (SW) measures import supply 
diversification by taking into account both the number of 
suppliers as well as their repartition: the more suppliers 
there are and the more evenly distributed their respective 
quantities, the higher the Index. 
5 The Shannon-Wiener-Neumann Index 1 (SWN 1) adds a 
measure of political stability for each exporting country and 
the Shannon-Wiener-Neumann Index 2 (SWN 2) also 
includes domestic supplies in the formula. A lower measure 
of political stability decreases the value of the index, 
whereas domestic supplies increase it. For a description of 
the formulas see Neumann et al., 2009. 

(complete import dependence upon one supplier) and 
two (broad diversification). Figure 1 shows the 
indexes for the major European and non-European 
importers and OECD Europe for 2007, the most 
recent year with available data. OECD Europe obtains 
virtually all of its imports from six sources, with 
South Africa and Russia making up for more than 
60% of the total deliveries. About 60% of the total 
steam coal consumption in Europe is imported (in 
contrast, 99% of US domestic production supplies 
American consumption). China’s domestic production 
makes that country a net exporter, while Japan lacks 
domestic production and receives more than 50% of 
its imports from Australia. The values – between 0.8 
and 1.8 – for the European countries indicate a high 
degree of diversification, and thus security of supply. 

With respect to the market structure of supply, model-
based analysis suggests relatively few worries about 
oligopolistic market power. The COALMOD model is 
a partial equilibrium model of international steam coal 
trade that is used to compare perfectly competitive 
and oligopolistic markets; for details see Haftendorn, 
Holz and von Hirschhausen (2009). In our 
COALMOD model, the simulated trade flows on the 
global steam coal market suggest that the competitive 
simulation better represents reality. The model also 
shows that the global market for steam coal is 
organised competitively and that strategic behaviour 

  
Import dependency rate  Share of steam coal in 

electricity production  

Share of imported steam 
coal in electricity 
production  

Germany 77.8 20.8 16.2 
Italy 98.6 14.1 13.9 
Spain 70.5 21.3 15.1 
UK 64.4 34.5 22.2 
US 3.4 46.5 1.6 
Japan 100 24.0 24.0 
South Korea 93.5 36.9 34.5 
Taiwan 100 48.8 48.9 
China 2.2 80.3 1.7 
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by the exporters cannot be significantly observed. The 
real prices are closer to the competitive level as 
shown in Figure 2. We perform likely scenarios of 
supply disruption, only to find that they have limited 

impact on EU countries. Our analyses of the supply 
structure confirm there is little risk for the security of 
supplies from the export markets serving Europe; this 
holds in the medium to long term, too. 

Figure 1. Diversification indices for major European and non-European importers in 2007 

 
Source: Neumann et al. (2009). 

SW: Shannon-Wiener Index, measure of import supply diversification. 
SWN 1: Shannon-Wiener-Neumann Index1, in addition to SW including a measure of political stability for each exporting country. 
SWN 2: Shannon-Wiener-Neumann Index2, in addition to SWN1 including the level of domestic supplies. 

Figure 2. CIF prices in the perfect competition (PC) and Cournot scenario (CO) – model results, and reference data 
(RE) in 2005 (l) and 2006 (r) 

 
 

Source: Haftendorn & Holz (2010). 
CO: Cournot-assumption. 
RE: Reference data, real prices observed. 
PC: Perfect competition assumption. 
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2. Obstacles to a successful roll-out of 
CCTS 

2.1 Upstream: CO2 capture 
Although the chemical industry has used CO2 capture 
for decades, near-term available technologies vary in 
maturity and thus have different time horizons for 
commercial availability. This Policy Brief focuses on 
first-generation capture technologies. Scaling up the 
technology of CO2 capture and the treatment of gases 
containing impurities demands dedicated research and 
development well before the technology can begin to 
achieve significant CO2 emissions abatement. 
Currently, the following three capture technologies 
are under consideration: 

Post-combustion chemical absorption technologies are 
commercially available. The technology was first 
applied in the 1980s to capture CO2 from ammonia 
production plants. The captured CO2 is used in food 
production to carbonate soft drinks and soda water. 
However, the technology is used only for the 
treatment of very clean gas mixtures (Kanniche et al., 
2010). Including compression, this process leads to a 
25% loss in the thermal efficiency of a coal-fired 
plant. Nonetheless, high compatibility in retrofitting 
existing plants makes this technology the most 
attractive mid-term option. 

The oxyfuel process ‘separates’ the flue gas before 
combustion. CO2 from conventional combustion 
processes is present as a dilute gas in the flue gas, 
resulting in costly capture using, e.g. amine 
absorption. Attempts to develop and apply the 
technology were initiated in the 1980s by the oil 
industry. The energy efficiency of a coal-fired oxyfuel 
power plant is 8-10% lower than air-based systems. 
Several technical questions still need resolution: the 
technology has not been demonstrated on a large 
scale, and the high temperatures of flue gas do not 
allow for the electric removal of ash but rather require 
costly ceramic filters. 

Pre-combustion capture refers to the treatment of CO2 
and H2 after the gasification of coal, biomass or the 
steam reformation of natural gas. Pre-combustion 
capture is not applicable to existing plants other than 
Integrated Gasification Combined Cycle (IGCC) and 
Integrated Reformer Combined Cycle (IRCC) plants. 
Therefore, the technology is mainly an option for 
industrial applications in the absence of IGCC plants. 
The energy penalty is around 22 points, dropping 
from 43% to 33.5% (Kanniche et al., 2010). The 
major barrier, however, is the high investment cost of 
approximately €2,700/kW for coal-based IGCC plants 
(Tzimas, 2009). 

2.2 Midstream: CO2 transport 
Pipeline transportation is commonly considered the 
only economic onshore transport solution which can 
carry the quantities emitted by large-scale sources. 
Onshore transport faces few or no significant 
technological barriers and is usually in liquid or 
super-critical form in order to avoid two-phase flow 
regimes. CO2 pipelines representing a typical network 
industry, characterised by very high upfront 
investment costs that are sunk; variable costs are 
comparatively insignificant and primarily include 
expenditures for fuelling compressors. CO2 
transportation costs vary between less than €1 and 
more than €20/tCO2, a function of the transportation 
distance and the CO2 flow (IPCC, 2005). 

The level of uncertainty about the size and 
configuration of the pipeline network stems from the 
uncertainty about future policies and the suitability of 
geological formations to store captured CO2. The 
solutions will correspond to the shape of the future 
network, which remains undefined and requires 
quantification and qualification of storage sites at the 
European level (Herold et al., 2010a). Important 
regulatory issues therefore include: network 
ownership; competition regulation; and the degree of 
vertical integration. The options for ownership range 
from completely private to completely public. In the 
case of regionally dispersed sources and sinks, and 
long transport distances, the benefits of an 
interconnected pipeline network increase. Southern 
European states lack geological formations suitable 
for CO2 storage on a larger scale.  

It is important to understand that the transport 
network will not evolve until storage sites are 
identified and the first capture plants are under 
construction, and that no investment in CCTS plants 
can be expected unless legal, regulatory and economic 
questions about the future network are answered. 

2.3 Downstream: CO2 storage 
Injecting CO2 into reservoirs has been practised for a 
few decades, but only a handful of operations 
permanently store CO2, i.e. under the Sleipner Field 
(Norway) or at In Salah (Algeria). Storage comes with 
a portfolio of technology options, but not all are 
applicable in Europe for economic reasons or due to 
the lack of geologic formations. Enhanced oil 
recovery, practised for decades in the US, and 
enhanced gas recovery require oil and gas fields that 
still hold a significant quantity (60%). However, only 
a fraction of the injected CO2 remains underground. 
Alternatively, storage can take place in depleted 
fields, yet without the monetary benefit of fossil fuel 
production.  
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Table 2. Cost estimation of CO2 storage options in €/tCO2 

 
Depth of storage (m) 

1,000 2,000 3,000 

Aquifer onshore 1.8 2.7 5.9 

Aquifer offshore 4.5 7.3 11.4 

Natural gas field onshore 1.1 1.6 3.6 

Natural gas field offshore 3.6 5.7 7.7 

Depleted oil field onshore 1.1 1.6 3.6 

Depleted oil field offshore 3.6 5.7 7.7 

 Low Medium High 

EOR onshore -10 0 10 

EOR offshore -10 3 20 

ECBM 0 10 30 

Source: Vallentin (2007). 

Mature oil and gas reservoirs that have held crude oil 
and natural gas for millions of years have a lower risk 
of leakage. Storage in saline aquifers appears to have 
the best storage potential for Europe, followed by coal 
seams and fossil fuel reservoirs (Vallentin, 2007). 
Saline aquifers potentially could hold a global storage 
potential of 1,000 to 10,000 GtCO2 (IPCC, 2005). 
They are also associated with high uncertainty 
concerning their pure physical potential, usable 
formations and timeframes. Due to environmental 
concerns, ocean storage of CO2 is no longer 
considered. Yet storage in formations under the 
seabed offers an alternative to the NIMBY problem 
observed in many countries. Although seabed storage 
might gain public acceptance, its storage costs are far 
greater than onshore facilities. 

New studies find a strong decline in estimated storage 
potential (Gerling et al., 2010 and Höller, 2010). For 
instance, the Federal Institute for Geosciences and 
Natural Resources (BGR) estimates that total annual 
storage potential in Germany is 50 to 75 MtCO2. 6 
This is equal to about 20% of the emissions covered 
under the German EU ETS allocation and highlights 
the limitations of CCTS, especially if the observed 
trend continues (Gerling, 2010). 

Storing CO2 in geologic formations requires routine 
monitoring throughout the entire storage period. The 
leakage rate of individual formations is unpredictable 
                                                      
6 This is due to the restriction in the injection rate. 

and varies between no leakage and unforeseen high 
rates. Low leakage must be monitored over a time 
horizon exceeding firms’ planning horizons and 
makes governmental intervention necessary. The 
European Commission proposes that liability should 
be transferred to the public 20 years after storage 
closure. A former German proposal for CCTS 
legislation suggested that liability should be 
transferred 30 years after a site is closed and long-
term safety has been proven. Perhaps the most 
significant barrier to large-scale carbon storage is 
public opposition. An educational effort by policy-
makers and the industry could help to explain the 
costs, benefits and limits of all alternatives. A further 
decline in the usable storage potentials due to public 
opposition would increase transport and storage costs 
significantly (Mendelevitch et al., 2010). 

2.4 Uncertain economics of the CCTS 
value added chain 

Due to the energy penalty and the higher capital 
expenditure of CCTS plants, the costs of electricity 
production will increase if the technology comes into 
use. The true costs of CO2 abatement with CCTS 
remain unknown in the absence of scaled-up 
demonstration plants; likewise, the expected benefits 
for electricity producers are uncertain, given future 
carbon price uncertainty (Tzimas, 2009).  
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Table 3. Investment cost of different systems with and 
without CO2 capture 

Technology 
Investment costs 
demonstration  
project in €08/kW 

Efficiency
[%] 

IGCC-carbon 
capture 2,700 35 

PF 1,478 46 

PF-carbon 
capture 2,500 35 

Oxyfuel 2,900 35 

NGCC-carbon 
capture 1,300 46 

Source: Tzimas (2009). 

Our project database (Herold & Hirschhausen, 2010b) 
shows that among the 69 CO2 capture projects, only 
eight are operating on a pilot scale and that large-scale 
demonstration projects, i.e. SuperGen in the US, and 
the UK tender, are behind schedule. It is not certain 
whether the European Recovery Programme could 
jumpstart the development of its six large-scale 
capture projects. 

Mendelevitch et al. (2010) introduce a mixed integer, 
multiperiod, cost-optimizing CCTS network model to 
analyse the future potential of the technology for CO2 
reduction at the European level. It incorporates 
endogenous decisions about carbon capture, pipeline 
and storage investments, ejection and flow quantities 
based on given costs, certificate prices, storage 
capacities and point source emissions. The results 
indicate that CCTS can theoretically contribute to the 
decarbonisation of Europe’s energy and industry 
sectors. This requires a CO2 certificate price rising to 
€55 in 2050, and sufficient CO2 storage capacity for 
both on- and offshore sites. However, CCTS 
deployment is highest in CO2-intensive industries 
where emissions cannot be avoided by fuel switching 
or alternative production processes. In all scenarios, 
the importance of the industrial sector as a first-mover 
to induce the deployment of CCTS is highlighted. 

By contrast, a decrease of available storage capacity 
or a more moderate increase in CO2 prices will 
significantly reduce the role of CCTS as a CO2 
mitigation technology, especially in the energy sector. 
Continued public resistance to onshore CO2 storage 
could only be overcome by constructing expensive 
offshore storage. 

3. Conclusion and policy 
recommendations  

This Policy Brief suggests that the real issue in 
European steam coal supply security is not resource 

availability, but rather the absence of an economically 
and politically sustainable use of coal for electricity 
generation, liquefaction, gasification, industrial 
applications, etc., due to obstacles in the 
implementation of a CCTS value-added chain. 

On the coal supply side, we find that virtually all 
major exporters7 can be considered ‘safe’ countries in 
geopolitical terms and no sudden supply disruption on 
political grounds can reasonably be expected. Short-
term supply disruptions may occur due to natural 
disasters, or to social tensions that lead to strikes. Yet 
efficient supply management with stockpiling and 
supply diversification can reduce the short-term risk 
of disruption for European import countries. 
Therefore, we suggest that: 

• market monitoring should continue, particularly 
for developments and prices in specific regions 
(e.g., China); 

• competition authorities should continue to 
monitor international coal markets, with a special 
focus on mergers and acquisitions of large coal 
and mining companies; 

• while coal-buying utilities should be urged to 
implement efficient risk management, we see no 
need for additional policy intervention. 

On the utilisation side, there is an implicit supply 
security threat, i.e. that coal will no longer be an 
essential element of European energy supply, because 
the CCTS rollout will be delayed or never carried out. 
There is justified concern that the ambitious 
development plans in CCTS demonstration as 
outlined in the IEA Technology Roadmap over the 
next decade will not be met. This is based on a lack of 
determination by public authorities to overcome the 
significant obstacles inherent in the complexity of the 
CCTS chain, and the difficulties of the power sector 
embracing a technology that challenges the business 
model of coal electrification. With a focus on Europe, 
the economic use of coal in the power sector and in 
industry could be threatened. CO2 emissions from the 
industrial sector are responsible for 22.3% of 
Europe’s CO2 emissions (European Commission, 
2010). One-third is directly linked to fossil fuels or 
chemical processes. The substitution of coal in 
industrial processes could present even larger 
challenges than the substitution of coal for electricity 
production.  

In addition to transport infrastructure, recent 
estimations find a significant decline in European 
storage potential. Further, increased public opposition 
to onshore storage will most likely necessitate 

                                                      
7 Major exporters are Australia, South Africa, Indonesia, 
the US, Russia, China and Colombia. 
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offshore solutions. This will raise the costs and the 
technical complexity of the CCTS chain and will 
therefore raise questions on the role of CCTS as a 
bridge technology to an age of renewable based 
energy production. We therefore recommend the 
following:  

• The potential contribution of CCTS to a 
decarbonised European electricity sector should 
be reconsidered given new data available on 
CCTS costs, a better understanding of the 
complexity of the process chain and the lowered 
CO2 storage potential. The idea that CCTS could 
constitute an ‘energy bridge’ to a new, largely 
renewable-based energy system should be 
discontinued. 

• Europe has an important role to play in keeping 
the technology options open and avoiding 
premature IP appropriation. The EU-co-funded 
projects should make new knowledge widely 
available, and a competition between projects 
should be promoted that yields the highest 
chances of achieving technical progress (Newbery 
et al., 2009). 

• Money does not seem to be a significant 
constraint to CCTS projects. The readily available 
billions of euros and dollars should be invested 
immediately.8 In cases where industry does not 
respond, the legal and regulatory framework 
should be readjusted and the level of incentives 
should be raised. In the absence of a credible CO2 
price path, forcing utilities into a capture-ready 
option will raise the costs of the standard plants 
but will not encourage CCTS investment (Geske 
& Herold, 2010).  

• The strong focus on the implementation of CCTS 
in the power sector observed in the past should be 
extended to industrial applications, which can be 
highly vulnerable to an abandonment of coal. Due 
to a larger number of small emissions sources, 
this will pose higher challenges to network 
development. 

• Early planning of transport routes is of paramount 
importance should large-scale CCTS deployment 
be implemented. At least in this phase, the state 

                                                      
8 The EU has commissioned €1.05 billion from the EERP 
plus the revenues from 300 million certificates. The 
expected €6-9 billion will co-finance 8-12 CCTS projects 
and 34 renewable energy projects. The US has announced 
that US$2.4 billion from the American Recovery and 
Reinvestment Act will be used to expand and accelerate the 
commercial deployment of CCTS. Canada has 
commissioned US$2 billion in funding by the provinces for 
four large-scale CCTS projects. Australia has allocated 
Aut$2.4 billion to partially fund CCTS flagship projects. 

will be needed as a major provider in the 
development of transportation infrastructure, 
including planning and siting. 

• Construction and operation can be tendered to the 
private sector, or carried out by state-owned 
network firms. Routing pipelines along existing 
networks can lower costs and, to a limited extent, 
mitigate public rejection. Thus synergies with 
other energy network infrastructure (gas, 
electricity) should be considered.  

• Future regulation should specify the allocation 
and financing principles and access for third 
parties. It is unlikely that the private sector has 
sufficient incentives to develop the network, 
given the political, regulatory, technical and 
economic uncertainties. 

• If Europeans fail to fill their role as CCTS 
pioneers, new strategies for the global roll-out of 
CCTS are needed. The inclusion of CCTS under 
the Clean Development Mechanism could help 
bring the technology to the markets. However, 
this would also imply outsourcing potential risks 
associated with the technology. 
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