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1 Model

Our model builds on Behrens, Mion, Murata, and Südekum (2014, 2017). There are
r = 1, 2, . . . ,K countries or regions. For simplicity, we henceforth always use the
term regions. Region r has a population of Lr workers who are also consumers.
Each individual supplies inelastically one unit of labor. Labor is the only factor of
production, and it is supplied locally (i.e., there is no cross-regional commuting).
However, we assume that individuals are mobile across countries and regions, i.e.,
they are free to pick their place of residence.

We first set up the model in Sections 1.1 and 1.2, and then analyze the firm-level
outcomes and the ‘short run’ equilibrium — when people are immobile and do not
relocate across regions — in Section 1.3. We spell out the details concerning labor
mobility in Section 1.4.

1.1 Preferences and demands

There is a continuum of horizontally differentiated varieties of final consumption
goods and services. Consumers have identical preferences that display ‘love of vari-
ety’ and give rise to demands with variable elasticity. One key property of our model
is that the marginal utility at zero consumption is bounded. Hence, consumers will
not demand varieties for which the price (including trade costs) is too high. Those
varieties are not traded across regions/countries, as is often the case for numerous
services. Our model thus naturally applies to the analysis of the aggregate economy
in which goods and services co-exist.

Let psr(i) and qsr(i) denote the price and the per capita consumption of variety i
when it is produced in region s and consumed in region r. The utility maximization
problem of a representative individual in region r is given by:

max
qsr(j), j∈Ωsr

Ur ≡∑
s

∫
Ωsr

[
1− e−αqsr(j)

]
dj s.t. ∑

s

∫
Ωsr

psr(j)qsr(j)dj = Er, (1)

where α > 0 is a utility parameter, and where Ωsr denotes the endogenously de-
termined set of varieties produced in s and consumed in r. As shown in Appendix
A.1, solving (1) yields the following demand functions:

qsr(i) =
Er
N c
rpr
− 1
α

{
ln
[
psr(i)

N c
rpr

]
+ hr

}
, ∀i ∈ Ωsr, (2)
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where N c
r is the mass of varieties consumed in region r, and

pr ≡
1
N c
r

∑
s

∫
Ωsr
psr(j)dj and hr ≡ −∑

s

∫
Ωsr

ln
[
psr(j)

N c
rpr

]
psr(j)

N c
rpr

dj

denote the average price and the differential entropy of the price distribution, re-
spectively.

As explained before, demand does not need to be positive if the price charged for
the variety is too high. Formally, as can be seen from (2), the demand for the local
variety i (resp., the distant variety j) is positive if and only if the price of variety i

(resp., variety j) is lower than some choke price pdr : qrr(i) > 0 if and only if prr(i) < pdr ;
and qsr(j) > 0 if and only if psr(j) < pdr , where pdr ≡ N c

rpreαEr/(Nc
rpr)−hr depends on

the price aggregates pr and hr.
Using the definition of the choke price allows us to express the demands for local

and distant varieties concisely as follows:

qrr(i) =
1
α

ln
[

pdr
prr(i)

]
and qsr(j) =

1
α

ln
[

pdr
psr(j)

]
. (3)

The price elasticity of the local variety i (resp., the distant variety j) is given by
1/[αqrr(i)] (resp., 1/[αqsr(j)]). Thus, if individuals consume more of those varieties,
which is for instance the case when their expenditure increases, they become less
price sensitive (see, e.g., Simonovska, 2015). Hence, the model allows us to take into
account the fact that richer consumers are less price sensitive than poorer consumers.

Last, since e−αqsr(j) = psr(j)/pdr , the indirect utility in region r is given by

Ur = N c
r −∑

s

∫
Ωsr

psr(j)

pdr
dj = N c

r

(
1− pr

pdr

)
. (4)

Expression (4) will prove useful to compute the equilibrium utility in the subsequent
analysis and to assess the consequences of changing trade costs.

1.2 Technology and market structure

The production side of the model features heterogeneous firms as in Melitz (2003)
and Melitz and Ottaviano (2008). Prior to production, firms decide in which region
they enter and they engage in research and development. The labor market in each
region is perfectly competitive, so that all firms take the wage rate as given. Entry
in region r requires a fixed amount Fr of labor paid at the market wage wr. Each
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firm i that enters in region r discovers its marginal labor requirement mr(i) ≥ 0 only
after making this irreversible entry decision. We assume that mr(i) is drawn from
a known, continuously differentiable distribution Gr.1 In what follows we assume,
for simplicity, that firms’ productivity draws 1/m follow a Pareto distribution

Gr(m) =

(
m

mmax
r

)k
,

with region-specific upper bounds, mmax
r > 0, and a common shape parameter,

k ≥ 1. The Pareto distribution has been extensively used in the previous literature
on heterogeneous firms (e.g., Bernard et al., 2007b; Helpman et al., 2008; Melitz and
Ottaviano, 2008). It provides a good approximation of the distribution of firm sizes.

Shipments from region r to region s are subject to trade costs τrs > 1 for all
r and s, which firms incur in terms of labor. Put differently, the firm has to hire
τrs − 1 additional workers in order to ship the good from region r to region s.
Those additional costs include, e.g., transportation costs of the good per se, but also
different indirect trade costs including, for example, non-tariff barriers (NTB).

Since entry costs are sunk, firms will survive (i.e., operate) provided they can
charge prices psr(i) above marginal costs τrsmr(i)wr in at least one region. This
usually includes the region the firm is located in, but the model allows for situa-
tions where a firm can survive only because of its distant demand and does not
sell anything to its local market. While this situation seems not very relevant in an
international context, it clearly is at smaller geographic scales such as the interre-
gional context that we will focus on in what follows. The surviving firms produce
in the region where they enter. We assume that firms do not relocate, i.e., once lo-
cation choices have been made there is no relocation. Adding relocation makes the
model complicated since it requires to deal with the spatial sorting of firms along
productivity (see, e.g., Gaubert, 2015, for a model dealing with that question).

In line with empirical evidence, we assume that product markets are segmented,

1Differences in the sunk entry costs Fr and the productivity distributions Gr across re-
gions/countries thus reflect production amenities such as startup costs, technology, and local knowl-
edge that are only partly transferable across space, as well as differences in the institutional environ-
ments in which firms operate. Firms take those differences into account when making their entry
decisions. Note that differences in start-up costs and institutions across countries are large (see,
e.g., the World Bank’s “Doing business” report; World Bank, 2016). Our model allows us to recover
an implicit measure of these technological and institutional differences across regions/countries in
equilibrium.
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i.e., resale or third-party arbitrage is sufficiently costly, so that firms are free to price
discriminate between regions. This is even a feature of a priori integrated economic
areas such as the EU. There is substantial evidence that international product mar-
kets are segmented so that firms can do ‘pricing-to-market’ (see, e.g., Haskel and
Wolf, 2001; Simonovska, 2015). While regions are a priori more integrated than
countries, deviations from the law-of-one-price also apply there, as, e.g., seen from
interregional border effects (Wolf, 2000).

The operating profit of a firm i located in region r is then as follows:

πr(i) = ∑
s

πrs(i) = ∑
s

Lsqrs(i) [prs(i)− τrsmr(i)wr] , (5)

where πrs(i) is the operating profit in market s, and qrs(i) is given by (3). Each
surviving firm maximizes (5) with respect to its prices prs(i) separately. Because
there is a continuum of firms, no individual firm has any impact on pdr , so that the
first-order conditions for (operating) profit maximization are given by:

ln
[

pds
prs(i)

]
=
prs(i)− τrsmr(i)wr

prs(i)
, ∀i ∈ Ωrs. (6)

A price distribution satisfying (6) almost everywhere is called a price equilibrium.
Equations (3) and (6) imply that qrs(i) = (1/α)[1− τrsmr(i)wr/prs(i)]. Thus, the
minimum output that a firm in r may sell in market s is given by qrs(i) = 0 at
prs(i) = τrsmr(i)wr. This, by (6), implies that prs(i) = pds . Hence, a firm located in
r with draw mx

rs ≡ pds/(τrswr) is just indifferent between selling and not selling to
s, whereas all firms in r with draws below mx

rs are productive enough to sell to s.
In what follows, we refer to mx

ss ≡ md
s as the local cutoff in region s, whereas mx

rs

with r 6= s is the ‘export’ cutoff from region r to region s. Export and local cutoffs
are linked by the following relationship:

mx
rs =

τss
τrs

ws
wr
md
s . (7)

Expression (7) reveals how trade costs and wage differences affect firms’ abilities
to break into different markets. In particular, when wages are the same in the two
regions (wr = ws) and trade is costless (τss = 1), all export cutoffs must fall short
of the local cutoffs since τrs > 1. Breaking into market s is then always harder for
firms in r 6= s than its local competitors in s, which is the standard case considered
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in the literature (e.g., Melitz, 2003; Melitz and Ottaviano, 2008).2

Given the cutoffs (7) and the mass of entrantsNE
r , onlyNp

r = NE
r Gr (maxs {mx

rs})
firms survive, namely those which are productive enough to sell at least in one mar-
ket (which, as mentioned before, need not be their local market). The mass of
varieties consumed in region r is given by

N c
r = ∑

s

NE
s Gs(m

x
sr), (8)

which is the mass of all firms that are productive enough to sell to market r. Utility
changes in region r will be intimately linked to changes in N c

r because consumers
value variety in consumption.

1.3 Equilibrium with immobile labor

We now solve for the general equilibrium of our multi-regional trade model with
heterogeneous firms. To do so, we first need to derive the firm-level outcomes in
terms of prices, quantities, and profits. We relegate that part of the analysis and the
corresponding technical details and expressions to Appendix A.2. We next need to
consider three sets of equilibrium conditions. First, for each region, zero expected
profit holds. Using equation (5), the zero expected profit condition (henceforth, ZEP)
is given by

∑
s

Ls

∫ mx
rs

0
[prs(m)− τrsmwr] qrs(m)dGr(m) = Frwr. (9)

Second, since there is no interregional commuting, local labor markets clear in each
region. The labor market clearing condition (henceforth, LMC) requires that

NE
r

[
∑
s

Lsτrs

∫ mx
rs

0
mqrs(m)dGr(m) + Fr

]
= Lr. (10)

Condition (10) states that the labor hired by firms to produce for both the local
and the different distant markets, including the labor used to overcome trade costs
and the labor hired to pay for the sunk entry costs (irrespective of whether the
firm survives subsequently or not), sums to the regional labor endowment. The

2However, in the presence of wage differences and intra-regional trade costs τrr, the local cutoff
need not be larger than the export cutoff in equilibrium. The usual ranking md

s > mx
rs prevails only

when τssws < τrswr.
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latter will be endogenously determined by the location decisions of interregionally
mobile individuals.

Last, trade must balance for each region, which is equivalent to saying that each
consumer’s budget constraint is satisfied with equality in each region. The trade
balance condition (henceforth, TBC) for region r requires that the total value of
exports equals the total value of imports, and it is given by

NE
r ∑
s 6=r

Ls

∫ mx
rs

0
prs(m)qrs(m)dGr(m) = Lr ∑

s 6=r
NE
s

∫ mx
sr

0
psr(m)qsr(m)dGs(m). (11)

The 3×K general equilibrium conditions (9)–(11) depend on 3×K unknowns:
the wages wr, the masses of entrants NE

r , and the local cutoffs md
r . Once the local

cutoffs and the wages have been determined, the export cutoffs mx
rs can be computed

by using (7). Before proceeding, we simplify the general equilibrium conditions by
using the Pareto parametrization and the results from Appendices A.2 and A.3.
Using those results, the ZEP, LMC and TBC conditions can be rewritten as follows:

µmax
r = ∑

s

Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

, (12)

NE
r

[
κ1

α (mmax
r )k

∑
s

Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

+ Fr

]
= Lr, (13)

NE
r wr

(mmax
r )k

∑
s 6=r

Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

= Lr ∑
s 6=r

τsr
NE
s ws

(mmax
s )k

(
τrr
τsr

wr
ws
md
r

)k+1

, (14)

where µmax
r ≡ [αFr (mmax

r )k]/κ2 is a bundle of parameters that captures ‘technolog-
ical possibilities’. Note that µmax

r is region-specific and depends on both the sunk
entry costs Fr and the upper bounds of the underlying productivity distribution
mmax
r . Thus, this bundle of parameters captures the local production amenities that

are not transferable across space. It also subsumes aspects of the institutional envi-
ronment of the region/country.

Combining (12) and (13), we obtain

NE
r =

κ2

κ1 + κ2

Lr
Fr

, (15)

which implies that more firms choose to enter in larger markets and in markets with
lower entry requirements. Adding the term in r that is missing on both sides of (14),
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and using (12) and (15), we then obtain the following relationship:

1

(md
r)
k+1 = ∑

s

Lsτrr

(
τrr
τsr

wr
ws

)k 1
µmax
s

. (16)

The 2 ×K conditions (12) and (16), obtained by substituting out the equilibrium
masses of entrants NE

r , summarize how wages and cutoffs are related in general
equilibrium, given the regional population sizes, technological possibilities, and
trade costs.

Using these expressions, we can furthermore show that — in equilibrium — the
mass of varieties consumed in region r is inversely proportional to the domestic
cutoff, while the (expenditure share) weighted average of markups that consumers
face is proportional to the local cutoff (see Appendix A.4 for the derivations):

N c
r =

1
κ1 + κ2

α

τrrmd
r

, (17)

Λ
c
r ≡

∑sN
E
s

∫ mx
sr

0

psr(m)qsr(m)

Er
Λsr(m)dGs(m)

∑sN
E
s Gs(m

x
sr)

=
κ3τrrm

d
r

α
, (18)

where κ1, κ2, and κ3 are positive constants that depend only on the common shape
parameter k of the Pareto distribution.3

Under the Pareto parametrization, average productivity in region r is simply
proportional to the inverse of the local cutoff:4

Ar =
1

Gr(md
j )

∫ md
r

0

1
m

dGr(m) =
kr

kr − 1
1
md
r

. (19)

Finally, the indirect utility in region r can be expressed as

Ur =

[
1

(κ1 + κ2)(k+ 1)
− 1
]

α

τrrmd
r

=

[
1

(κ1 + κ2)(k+ 1)
− 1
]
κ3

Λ
c
r

, (20)

3It can be seen from (17) and (18) that there are pro-competitive effects in our model, since Λc
r =

[κ3/(κ1 + κ2)](1/Nc
r ) decreases with the mass of competing firms in region r.

4Alternatively, we can use the average (variable) labor productivity

Ãj =

[∫ md
j

0
qj(m)dGj(m)

]
·
[∫ md

j

0
mqj(m)dGj(m)

]−1

=

(
kj + 1
kj

)2 1
md

j

,

which generates quantitatively the same percentage productivity changes as Aj .
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which implies that tougher selection (lower md
r) and fiercer competition (lower Λcr)

both translate into higher utility in region r.5

1.4 Labor mobility and spatial equilibrium

Until now, we have taken the regional population sizes Lr as given. We now endo-
genize them by allowing individuals to move across regions to exploit differences
in real incomes. To this end, we introduce taste heterogeneity in residential loca-
tions into our model. This is done for two reasons. First, individuals in reality
choose their location not only based on wages, prices, and consumption diversity
that result from market interactions, but also based on non-market features such as
amenities (e.g., climate or landscape) and local social networks. The relatively low
interregional mobility in Europe suggests that regional attachment is an important
feature of individual location choices, and regional amenities and social networks
certainly play a key role there (e.g., Faini et al., 1997; Faini, 1999). Second, indi-
viduals do not necessarily react in the same way to regional gaps in wages and
cost-of-living. Such taste heterogeneity offsets the extreme — and counterfactual —
outcome that often arises in typical agglomeration models with mobile individuals,
namely that all mobile economic activity concentrates in a single region (Tabuchi
and Thisse, 2002; Murata, 2003).

We assume that the location choice of an individual ` is based on a linear random
utility V `

r = Ur +Ar + ξ`r, where Ur is given by (20) and Ar subsumes region-specific
amenities that are equally valued by all individuals. We usually do not observe Ar
(or observe it only very imperfectly). The random variable ξ`r captures idiosyncratic
taste differences in residential location, subsuming many unobserved features such a
social networks, amenities, and family ties. Following McFadden (1974), we assume
that the ξ`r are i.i.d. across individuals and regions according to a double exponential
distribution with zero mean and variance equal to π2β2/6, where β is a positive
constant. Since β has a positive relationship with variance, the larger the value of β,

5Alternatively, we have Ur = [1/(k+ 1)− (κ1 + κ2)]N
c
r , i.e., the indirect utility is proportional to

the mass of varieties consumed. The utility gains come from imported varieties (Broda and Weinstein,
2006), as the mass of domestic varieties NE

r Gr(md
r) decreases when trade integration reduces the

cutoff md
r . This finding is in line with those by Feenstra and Weinstein (2017), who show that new

import varieties have contributed to US welfare gains even when taking into account the displaced
domestic varieties.
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the more heterogeneous are the consumers’ attachments to each region. This makes,
everything else equal, the population less sensitive to differences in regional utility
differences that stem from differences in prices and wages.

Given the population distribution, an individual’s probability of choosing region
r can then be expressed as a logit form:

Pr = Pr
(
V `
r > max

s 6=r
V `
s

)
=

exp((Ur +Ar)/β)

∑K
s=1 exp((Us +As)/β)

. (21)

For the distribution of population across regions to be non-degenerated, we assume
that β > 0 in the subsequent analysis.6 A spatial equilibrium is defined as a distribu-
tion of population across regions such that

Pr =
Lr

∑K
s=1 Ls

, ∀r. (22)

In words, a spatial equilibrium is a fixed point where the choice probability of each
region is equal to that region’s share of the economy’s total population. This is a
direct consequence of the law of large numbers. In theory, there can be multiple
regional population distributions satisfying (22). However, this is not an issue given
the aim of our paper. Indeed, in Section 2.3, when we fit our model to data, we
plug the observed regional population shares into the right-hand side of (22) and
uniquely back out (Ur + Ar)/β such that this population distribution is a spatial
equilibrium.

2 Quantification

To take our model to the data, we first derive a system of gravity equations and
restate the general equilibrium conditions of the model. The gravity equation is
required to estimate the trade frictions for goods and service trade from the data,
whereas the general equilibrium conditions are required to take the model struc-
turally to the data and to simulate the counterfactual impacts of the changes in
trade barriers.

6If β → 0, which corresponds to the case without taste heterogeneity, people choose their location
based only on Ur + Ar, i.e., they choose the region with the highest Ur + Ar with probability one.
By contrast, if β → ∞, individuals choose regions with equal probability 1/K. In that case, regional
tastes are extremely heterogeneous, so that Ur +Ar does not affect location decisions at all.
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2.1 Gravity equation system

We now derive a system of gravity equations that will be useful for taking the model
to the data. The value of exports from region r to region s is given by

Xrs = NE
r Ls

∫ mx
rs

0
prs(m)qrs(m)dGr(m).

Using (7), (A-3), (15), and the Pareto distribution for Gr(m), we obtain the following
gravity equation:

Xrs = LrLsτ
−k
rs τ

k+1
ss (ws/wr)

k+1wr

(
md
s

)k+1
(µmax
r )−1 . (23)

As can be seen from (23), the value of shipments depend on bilateral trade costs
τrs, internal trade costs in the destination region τss, origin and destination regional
wages wr and ws, the destination region cutoff md

s , and the origin region’s techno-
logical possibilities µmax

r . It is also increasing with the destination region’s number
of consumers, Ls, and the origin region’s labor supply. A higher relative wage
ws/wr raises the value of exports as firms in r face relatively lower production costs,
whereas a higher absolute wage wr raises the value of exports by increasing export
prices prs. Furthermore, a larger md

s raises the value of exports since firms located
in the destination are on average less productive. Last, a lower µmax

r implies that
firms in region r have higher expected productivity, which raises the value of their
exports. From the ZCP and the ZEP conditions, we further obtain the following
general equilibrium conditions:

µmax
r = ∑

s

Lsτrs

(
τss
τrs

ws
wr
md
s

)k+1

, (24)

1

(md
r)
k+1 = ∑

s

Lsτrr

(
τrr
τsr

wr
ws

)k 1
µmax
s

. (25)

The 2×K general equilibrium conditions (24) and (25) summarize the interactions
between the endogenous variables, namely the K wages and the K cutoffs. These
conditions are reminiscent of those in Anderson and van Wincoop (2003), who ar-
gue that general equilibrium interdependencies need to be taken into account when
conducting a counterfactual analysis based on the gravity equation.

Interestingly, the gravity equation system (23)–(25) is, indeed, akin to that in
Anderson and van Wincoop (2003). To see this, let Yr = wrLr be the labor income
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of region r. Define the total labor income in all regions as Yw = ∑r wrLr and the
labor income share of region r as σr = Yr/Yw. Also define the multilateral resistance
terms as follows:

Φ−kr = σk+1
r µmax

r L−k−1
r (26)

Ψ−ks = σ−ks τ−k−1
ss (md

s)
−k−1Lks . (27)

Then, our gravity equation system (23)–(25) can be rewritten as follows:

Xrs =
YrYs
YW

(
τrs
ΦrΨs

)−k
(28)

Φ−kr = ∑
v

σv

(
τrv
Ψv

)−k
(29)

Ψ−ks = ∑
v

σv

(
τvs
Φv

)−k
, (30)

which is the same as the gravity equation system (9)–(11) in Anderson and van
Wincoop (2003), except that their exponent capturing the elasticity of substitution
is replaced by the shape parameter k of the Pareto distributions. Assuming that
τrs = τsr, i.e., trade costs are symmetric as in Anderson and van Wincoop (2003), we
know that (29) and (30) yield a solution Φr = Ψr that solves the equations

Φ−kr = ∑
v

σvτ
−k
rv Φ

k
v . (31)

We will use this property in the subsequent analysis as it greatly simplifies our
quantification procedure.

2.2 Data

In order to make our model operational we need data on trade costs as well as on
GDP and population. In order to recover trade costs we build on a gravity approach
consistent with (28) and use data on trade in goods (services) coming from the COM-
TRADE (ITS) database provided by the United Nations (Eurostat) for the period
2010-2016. We also consider the usual set of gravity equation covariates provided
by the Centre d’Etude Prospectives et d’Informations Internationales (CEPII): dis-
tance (drs), an ex-colony dummy (Colonyrs), a common language dummy (Langrs),
a common border dummy (Borderrs) as well as a dummy indicating whether coun-
tries/regions r and s belong to the European Economic Area or not (EEArs).
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In practical terms, we obtain the trade costs equivalent of the EEA and the SM
from the estimation of a trade gravity equation from which we recover the param-
eter corresponding to the dummy EEArs and measuring the amount of additional
trade EEA countries do with each other once discounted for other determinants of
bilateral trade flows (distance, language, adjacency, past colonial ties). Such a pa-
rameter is an indicator of the trade-boosting effects of the EEA agreement and the
Single Market and is the key to our counterfactual analysis.

As for population and GDP we borrow this data from the Eurostat Regio Database
(for EEA regions) and the World Economic Outlook Database provided by the IMF
(for non-EEA countries). Data on population and GDP refers to the year 2016. The
45 countries included in our analysis are all current members of the EEA plus BRIC
and other OECD countries: Australia, Brazil, Canada, Chile, China, India, Israel,
Japan, Korea, Mexico, New Zealand, Russia, Turkey and the US. In the first part of
our analysis we quantity our model and do counterfactual analysis at the country-
level for both EEA and non-EEA countries. In the second part of our analysis, we
break down EEA countries into the corresponding NUTS-2 regions. We use the GDP
of country/region r as a measure of Yr, population as a measure of Lr and GDP per
capita as a proxy for wr.

2.3 Quantification procedure

We now explain the numerical procedure that we implement to calibrate the model
to the initial equilibrium. The steps of our numerical procedure work as follows.

1. We specify trade costs as τrs ≡ dγrseθ1EEArseθ2Colonyrseθ3Langrseθ4Borgerrs . We are
particularly interested in the coefficient corresponding to membership of the
EEA: θ1

2. Given our specification of trade costs τrs, the gravity equation (28) can be
rewritten in stochastic form as follows:

Xrs =
YrYs
YW

(
τrs
ΦrΨs

)−k
εrs, (32)

where εrs is an error term with the usual properties. We estimate (32) at the
country-level for our group of EEA and non-EEA countries using the Poisson
Pseudo Maximum Likelihood (PPML) method suggested in Santos Silva and
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Tenreyro (2006). We do this in a way that is consistent with (28) by using
origin and destination fixed effects to control for multilateral resistance terms
Φr and Ψs as well as GDP Yr and Ys.7 In Behrens et al. (2014), we also quantify
the value of k. To this end, we compute the productivity advantage of US
exporters from a random sample of firms drawn from the fitted productivity
distributions of our model. We repeat this procedure for different values of k
until our sample matches the 33% productivity advantage of US exporters in
1992, which is reported by Bernard et al. (2003). See Behrens et al. (2014) for
details. Here, we use their value of k̂ = 8.5 in the analysis.

3. Using estimates from the stochastic gravity regression (32), we construct trade
costs. In the first part of our analysis we quantity our model and do counter-
factual analysis at the country-level for both EEA and non-EEA countries and
so compute trade costs across countries. In the second part of our analysis, we
break down EEA countries into the corresponding NUTS-2 regions and thus
compute trade costs across EEA regions and non-EEA countries.8

Trade costs enter the gravity equation (28) as τ−krs ≡ φrs ∈ (0, 1) where φrs is
an inverse measure of trade costs, i.e., the freeness of trade, and so we actually
compute a measure of freeness of trade corresponding to the initial trading
equilibrium. We do this separately for goods and services gravity regressions
and then average the two sets of φrs by using world trade shares of trade in
goods (75%) and services (25%).

4. We observe the initial values of regional/national populations L0
r and GDP

w0
rL

0
r from the data and so we can compute income shares σ0

r . Since our trade
costs are symmetric, we solve the system

Φ−kr = ∑
v

σ0
vτ
−k
rv Φ

k
v , (33)

7We do not make use of the full general equilibrium system. Doing so makes actually little
difference. See Behrens et al. (2014) for an estimation of the full system using US-Canada data.

8We assign trade costs between, for example, any UK NUTS-2 region and the US to be the same
and equal to the trade costs between the UK and the US computed from (32). As for trade costs
between the NUTS-2 regions of, for example, London and Rome we use country-level values for
variables other than distance while for the latter we actually use the distance between London and
Rome, along with our estimate of γ, to compute the distance-related component of trade costs.
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for the Φr terms. Call that solution Φ̂0
r, where the hat stands for ‘quantified’

and where 0 is the initial iteration.

5. Using (26) and (27), we solve

(Φ̂0
s)
−k

= (σ0
s)
−kτ−k−1

ss (md
s)
−k−1(L0

s)
k

(Φ̂0
r)
−k

= (σ0
r)
k+1µmax

r (L0
r)
−k−1

for the cutoff (m̂d
s)

0 and the unobserved upper bounds µ̂max
r .

6. Using (m̂d
s)

0, we use (20) to compute the indirect utility due to the consump-
tion of the differentiated varieties:

Û0
r =

α

τrr

[
1

(k+ 1)(κ1 + κ2)
− 1
]

1
(m̂d

r)
0 ∝

1
τrr

1
(m̂d

r)
0 . (34)

We compute this up to a scaling that does not matter for the equilibrium (the
level of utility is immaterial, and it cannot be meaningfully used).

7. Finally, we calibrate the model to replicate the initial distribution of population
as an equilibrium. To this end, we use the initial populations and solve the logit
equation system (21) as follows:

L0
r

∑s L
0
s

=
exp(Dr)

∑s exp(Ds)
, (35)

for the Dr terms, using a linear random utility (LRU) as explained in Sec-
tion 1.4. Using the quantified values of D̂0

r and Û0
r we have Âr = D̂0

r − Û0
r .

These are the (observed and unobserved) amenities that sustain the spatial
equilibrium that we observe from the data. These amenities will be held fixed
in the counterfactuals, just as the upper bounds µ̂max

r are held fixed. Note that
we use equal weighting of utility and amenities in what follows. This has no
strong implications for our results. We could use different weighting schemes,
notably ones that are estimated using available amenity data and geological
instruments to deal with potential problems of reverse causality (see Behrens
et al., 2017).

The foregoing seven steps allow us to bring the model to the data and to replicate
the observed regional population distribution as a spatial general equilibrium of the
model.
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2.4 Gravity estimation results

Table 1 below reports country-level gravity estimation results for goods (column 1)
and services (column 2). As one can notice all coefficients (but colony in the trade
in goods regression) are significant and have the usual sign and magnitude. In
particular, the EEA dummy is positive and significant for both goods and service
while being larger in the latter. Using estimates from Table 1 we construct trade costs
corresponding to the initial trading equilibrium. In the first part of our analysis, we
quantity our model and do counterfactual analysis at the country-level for both EEA
and non-EEA countries and so we use trade costs at the country-level. In the second
part of our analysis, we break down EEA countries into the corresponding NUTS-2
regions and so compute trade costs across EEA regions and non-EEA countries. In
particular, we assign trade costs between, for example, any UK NUTS-2 region and
the US to be the same and equal to the trade costs between the UK and the US
computed from estimations of (32). As for trade costs between the NUTS-2 regions
of, for example, London and Rome we use country-level values for variables other
than distance while for the latter we actually use the distance between London and
Rome, along with our estimate of the distance elasticity γ, to compute the distance-
related component of trade costs.

We do this separately for goods and services gravity regressions and then average
the two sets of φrs by using world trade shares of trade in goods (75%) and services
(25%). Then, we also construct the counterfactual freeness φ̃rs that would prevail
in the counterfactual scenario we consider. The main counterfactual we consider is
one in which trade (in goods and services) between EEA countries would not be
subject to the boosting effect of those trade facilitation policies put in place by the
EEA agreement and the SM. To implement this, we update the dummy variable
EEArs by imposing it is equal to 0 for all countries. With the counterfactual ẼEArs
in our hands we then compute the counterfactual freeness φ̃rs as well as the related
economic impacts.

3 Counterfactual analysis

We now run a counterfactual exercise to gauge the importance of the trade boosting
effect of the EEA and the SM. To this end, we shock the initial equilibrium and let
the system settle into a new equilibrium, taking into account all general equilibrium
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Table 1: Gravity estimation results for goods (column 1) and services (column 2)

Goods Services

Distance -0.694
a -0.742

a

(0.023) (0.037)
EEA dummy 0.462

a
0.906

a

(0.069) (0.061)
Colony dummy -0.046 0.218

a

(0.035) (0.051)
Language dummy 0.152

a
0.191

a

(0.038) (0.056)
Border dummy 0.580

a
0.214

a

(0.034) (0.043)

Year dummies Yes Yes
Origin and Destination dummies Yes Yes
Observations 13,869 7,765

Pseudo R2
0.936 0.924

Poisson Pseudo Maximum Likelihood estimations.
Robust standard errors in parentheses. abc indicate
the significance of the coefficient, a p<0.01, b p<0.05,
c p<0.1.

effects and the mobility of people. Doing so allows us to simulate the impacts
of such counterfactual on productivity, markups, product variety, welfare and the
distribution of population across European countries and regions.

3.1 Numerical procedure for the counterfactuals

Formally, running our counterfactuals entails the following steps:

1. We shock trade costs changing from τrs to τ̃rs. We first eliminate Ψv from (29)
by substituting (30) to obtain:

Φ−kr = ∑
v

σv τ̃
−k
rv

∑
s

σs

(
τ̃sv
Φs

)−k . (36)
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Plugging (26) into both sides of (36) yields a system of equations that depends
on the labor income shares σr only as follows:

(σtr)
k+1µ̂max

r (Ltr)
−k−1 = ∑

v

σtv τ̃
−k
rv

∑
s

(σts)
−kτ̃−ksv (µ̂max

s )−1(Lts)
k+1 , (37)

where superscript t denotes the current iteration of the system (t = 0 at the be-
ginning of the counterfactual). This system of equations holds exactly — since
it has been calibrated in that way — at the initial shares σ0

r and populations L0
r,

given initial trade costs τrs and the upper bounds µ̂max
r . However, it no longer

holds for the counterfactual trade costs τ̃rs. We hence solve that system for
the new income shares σt+1

r that make it hold with equality. Since the system
is not independent, we drop one of the equations and impose the constraint
that the income shares sum to one: ∑v σv = 1. The new labor income shares
σt+1
r are those that would prevail after the shock and conditional on the old

population distribution of the previous iteration t.

2. Using
Φ−ks = (σt+1

r )k+1µ̂max
r (Ltr)

−k−1

we solve for the new multilateral resistance terms, Φ̂t+1
r , given the initial pop-

ulation distribution at iteration t and the new income shares at iteration t+ 1.
Using those terms, we then solve

(Φ̂t+1
s )

−k
= (σt+1

s )−kτ̃−k−1
ss (md

s)
−k−1(Lts)

k

for the new cutoffs m̂d,t+1
s .

3. We construct the new utility

Û t+1
r ∝

1
τ̃rr

1

m̂d,t+1
r

associated with the new cutoffs. Given the trade shock, these utility levels will
have changed from the initial equilibrium. Hence, the spatial allocation is no
longer an equilibrium, i.e., some individuals have incentives to change location
in order to take advantage of changes in prices and wages.

4. We hence solve
Lr

∑s Ls
=

exp(Âr + Û t+1
r )

∑s exp(Âs + Û t+1
s )

, (38)

18



for the new population distribution Lt+1
r . Since the system (38) is not inde-

pendent, we drop one equation and recoup the final population by using the
adding-up constraint L = ∑s L̂

t+1
s at all periods t (the total population of the

system is held constant).

5. We go back to step 1 of the procedure. Since the populations have changed,
the income shares need to adjust to solve (37). We solve for the new shares
and iterate steps 1–4 of the above procedure until convergence is achieved.
Letting Lt denote the vector of populations across regions at iteration t of the
algorithm, we define convergence as ‖Lt+1 − Lt‖ ≤ ε, i.e., when the change in
population between two consecutive iterations becomes sufficiently small.

In Behrens et al. (2017) we prove existence and uniqueness of the initial equilib-
rium, and we also show that any shock to the system leads (conditional on the initial
equilibrium) to a unique counterfactual equilibrium. Hence, our framework is well-
suited to investigate the implications of a trade shock on productivity, markups,
product diversity, welfare and the regional distribution of population.

3.2 Computing changes in Welfare

One way of computing changes in welfare for the representative consumer is to
consider changes in utility Ur. However, this approach has a number of known
shortcoming and is particularly problematic in our setting given that the CARA
preferences structure we use is non-homothetic. We thus consider here another
approach based on the concept of equivalent variation. More specifically, we will
compute the change in income that, given initial prices, would allow the represen-
tative consumer to reach the same utility level corresponding to the counterfactual
equilibrium. Loosely speaking, this corresponds to the income reduction/increase
equivalent of the counterfactual scenario.

In order to compute the equivalent variation we build on the results laid down in
Arkolakis et al. (2018). Arkolakis et al. (2018) show that for a large class of models,
that includes ours, there is a common formula to compute the equivalent variation.9

9Strictly speaking, their formula applies to small changes in trade costs and assumes constant
population. However, Arkolakis et al. (2018) provide evidence that the formula does a very good
job in matching large changes in trade costs too. Furthermore, simulations of our model with and
without labour mobility deliver changes in utility Ur that are very close to each other and this implies
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Denoting with Wr welfare and with dWr the change in welfare (equivalent variation)
the formula is:

dWr = −(1− η) d ln(λr)/k (39)

where k is the shape parameter of the Pareto distribution of productivity (8.5 in
our case), d ln(λr) is the change in the (log of) the share of domestic expenditure on
domestic goods caused by the change in trade costs, and η is a parameter that is spe-
cific to the preferences structured used and k (0.9551 in our case). Therefore, the only
thing needed to compute counterfactual changes in welfare is to compute changes
in the (log of) the share of domestic expenditure on domestic goods. To achieve this
we compute the share of domestic expenditure on domestic goods (Xrr/Yr) before
and after changes in trade costs and compare them. Using (39), as well as the value
of k and η, we are in turn able to compute changes in welfare.

that the equivalent variation figures we obtain with labour mobility are very close to those that we
would obtain without labour mobility.
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Appendix

Appendix A: Computational details

A.1. Derivation of the demand functions.

In this appendix, we derive expression (2). Let λ denote the Lagrange multiplier.
The first-order condition for an interior solution to the maximization problem (1)
satisfies

αe−αqsr(i) = λpsr(i), ∀i ∈ Ωsr (A-1)

and the budget constraint ∑s

∫
Ωsr

psr(k)qsr(k)dk = Er. Taking the ratio of (A-1) for
i ∈ Ωsr and j ∈ Ωvr yields

qsr(i) = qvr(j) +
1
α

ln
[
pvr(j)

psr(i)

]
∀i ∈ Ωsr, ∀j ∈ Ωvr.

Multiplying this expression by pvr(j), integrating with respect to j ∈ Ωvr, and sum-
ming across all origin regions v we obtain

qsr(i)∑
v

∫
Ωvr

pvr(j)dj = ∑
v

∫
Ωvr

pvr(j)qvr(j)dj︸ ︷︷ ︸
≡ Er

+
1
α∑

v

∫
Ωvr

ln
[
pvr(j)

psr(i)

]
pvr(j)dj.

(A-2)
Using pr ≡ (1/N c

r )∑v

∫
Ωvr

pvr(j)dj, expression (A-2) can be rewritten as follows:

qsr(i) =
Er
N c
r p̄r
− 1
α

ln psr(i) +
1

αN c
r p̄r

∑
v

∫
Ωvr

ln [pvr(j)] pvr(j)dj

=
Er
N c
r p̄r
− 1
α

ln
[
psr(i)

N c
r p̄r

]
+

1
α ∑

v

∫
Ωvr

ln
[
pvr(j)

N c
r p̄r

]
pvr(j)

N c
r p̄r

dj,

which, given the definition of hr, yields (2).

A.2. Derivation of the firm-level variables and properties of W

Since firms in country r differ only by their marginal labor requirements, we can
express all firm-level variables in terms of m. Solving the first-order conditions (6)
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for profit maximization, the profit-maximizing prices and quantities, as well as op-
erating profits, are given by:

prs(m) =
τrsmwr
W

, qrs(m) =
1
α
(1−W ) , πrs =

Lsτrsmwr
α

(W−1 +W − 2), (A-3)

where W denotes the Lambert W function with argument em/mx
rs that we suppress

to alleviate notation (see Corless et al., 1996, for a survey). To derive expressions
(A-3) use pds = mx

rsτrswr so that the first-order condition (6) can be rewritten as

ln
[
mx
rsτrswr
prs(m)

]
= 1− τrsmwr

prs(m)
.

Taking the exponential of both sides and rearranging terms, we have

e
m

mx
rs

=
τrsmwr
prs(m)

e
τrsmwr
prs(m) .

Noting that the Lambert W function is defined as ϕ = W (ϕ)eW (ϕ) and setting
ϕ = em/mx

rs, we obtain W (em/mx
rs) = τrsmwr/prs(m), which implies prs(m) as

given in (A-3). The expression for quantities qrs(m) = (1/α) [1− τrsmwr/prs(m)]

and the expression for operating profits πrs(m) = Lsqrs(m) [prs(m)− τrsmwr] are
then straightforward to compute.

Turning to the properties of the Lambert W function, ϕ = W (ϕ)eW (ϕ) implies
that W (ϕ) ≥ 0 for all ϕ ≥ 0. Taking logarithms on both sides of the definition of W
and differentiating yields

W ′(ϕ) =
W (ϕ)

ϕ[W (ϕ) + 1]
> 0

for all ϕ > 0. Finally, we have 0 = W (0)eW (0), which implies W (0) = 0; and
e = W (e)eW (e), which implies W (e) = 1.

Since W (0) = 0, W (e) = 1 and W ′ > 0 for all non-negative arguments, we have
0 ≤ W ≤ 1 if 0 ≤ m ≤ mx

rs. The expressions in (A-3) show that a firm in r with
a draw mx

rs (equal to the cutoff labor requirement for selling to market s) charges
a price equal to marginal cost, faces zero demand, and earns zero operating prof-
its in market s. Furthermore, it follows that ∂prs(m)/∂m > 0, ∂qrs(m)/∂m < 0,
and ∂πrs(m)/∂m < 0. In words, firms with higher productivity (lower m) charge
lower prices, sell larger quantities, and earn higher operating profits. These proper-
ties are similar to those of the Melitz (2003) model with CES preferences. Yet, our
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specification with variable demand elasticity also features higher markups for more
productive firms (see, e.g., de Loecker, 2011; de Locker et al., 2016). Indeed, the
origin-destination markup for a firm located in country r and selling to country s is
given by

Λrs(m) ≡ prs(m)

τrsmwr
=

1
W

, (A-4)

thus implying that ∂Λrs(m)/∂m < 0. Melitz and Ottaviano (2008) have a similar ef-
fect in their model, yet they use quasi-linear preferences which makes the model not
really amenable to counterfactual analysis. We incorporate this feature of markups
into a full-fledged general equilibrium model with income effects for varieties that
can be taken neatly to the data.

A.3. Equilibrium conditions using the Lambert W function

In this appendix, we restate the equilibrium conditions (9)–(11) for the multicountry
case using the Lambert W function.

First, plugging (A-3) into (9), zero expected profits can be rewritten as

1
α ∑

s

Lsτrs

∫ mx
rs

0
m

[
W

(
e
m

mx
rs

)−1

+W

(
e
m

mx
rs

)
− 2

]
dGr(m) = Fr. (A-5)

Observe that this condition depends solely on the cutoffs mx
rs and that it is indepen-

dent of the mass of entrants. Using (A-3), the labor market clearing condition (10)
becomes

NE
r

{
1
α ∑

s

Lsτrs

∫ mx
rs

0
m

[
1−W

(
e
m

mx
rs

)]
dGr(m) + Fr

}
= Lr. (A-6)

Finally, using (A-3) the trade balance condition (11) is given by

NE
r wr ∑

s 6=r
Lsτrs

∫ mx
rs

0
m

[
W

(
e
m

mx
rs

)−1

− 1

]
dGr(m)

= Lr ∑
s 6=r

NE
s τsrws

∫ mx
sr

0
m

[
W

(
e
m

mx
sr

)−1

− 1

]
dGs(m). (A-7)

We next apply the region-specific Pareto distributions Gr(m) = (m/mmax
r )k to

the system (A-5)–(A-7). We then have a number of integrals that involve the Lambert
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W function. To compute closed-form expressions for those integrals, we use the
change in variables suggested by Corless et al. (1996, p.341). Let

z ≡ W
(

e
m

I

)
, so that e

m

I
= zez, where I ∈ {md

r ,mx
rs},

where we drop the subscript r to alleviate notation. The change in variables then
yields dm = (1+ z)ez−1Idz, with the new integration bounds given by 0 and 1. This
allows us to rewrite all integrals in simplified form.

A.3.1. First, consider the following expression, which appears when integrating
firms’ outputs: ∫ I

0
m
[
1−W

(
e
m

I

)]
dGr(m) = κ1 (m

max
r )−k Ik+1,

where κ1 ≡ ke−(k+1)
∫ 1

0 (1 − z2) (zez)k ezdz > 0 is a constant term which solely
depends on the shape parameter k.

A.3.2. Second, the following expression appears when integrating firms’ operating
profits: ∫ I

0
m

[
W
(

e
m

I

)−1
+W

(
e
m

I

)
− 2
]

dGr(m) = κ2 (m
max
r )−k Ik+1,

where κ2 ≡ ke−(k+1)
∫ 1

0 (1 + z)
(
z−1 + z − 2

)
(zez)k ezdz > 0 is a constant term

which solely depends on the shape parameter k.

A.3.3. Third, the following expression appears when deriving the (expenditure
share) weighted average of markups:∫ I

0
m

[
W
(

e
m

I

)−2
−W

(
e
m

I

)−1
]

dGr(m) = κ3 (m
max
r )−k Ik+1,

where κ3 ≡ ke−(k+1)
∫ 1

0 (z
−2 − z−1)(1 + z)(zez)kezdz > 0 is a constant term which

solely depends on the shape parameter k.

27



A.3.4. Finally, the following expression appears when integrating firms’ revenues:∫ I

0
m

[
W
(

e
m

I

)−1
− 1
]

dGr(m) = κ4 (m
max
r )−k Ik+1,

where κ4 ≡ ke−(k+1)
∫ 1

0 (z
−1 − z) (zez)k ezdz > 0 is a constant term which solely

depends on the shape parameter k. Using the expressions for κ1 and κ2, one can
verify that κ4 = κ1 + κ2.

Using the expressions (A-5)–(A-7) and the results in A.3.1–A.3.4 yields, after some
more tedious but standard algebra, the expressions (12)–(14) given in the main text.

A.4. Other equilibrium expressions

In this appendix, we derive additional expressions that are required to characterize
the equilibrium and to quantify the consequences of changes in trade costs.

A.4.1. The mass of varieties consumed. Using N c
r as defined in (8), the export

cutoff and the mass of entrants as given by (7) and (15), and making use of the
Pareto distribution, we obtain:

N c
r =

κ2

κ1 + κ2
(md

r)
k ∑
s

Ls
Fs(mmax

s )k

(
τrr
τsr

wr
ws

)k
=

α

κ1 + κ2

(md
r)
k

τrr
∑
s

Lsτrr

(
τrr
τsr

wr
ws

)k κ2

αFs(mmax
s )k

.

Using the definition of µmax
s , and noting that the summation in the foregoing ex-

pression appears in the equilibrium relationship (16), we can then express the mass
of varieties consumed in region r as given in (17).

A.4.2 The (expenditure share) weighted average markup. Plugging (A-3) and (A-
4) into the definition (18), the (expenditure share) weighted average markup in the
multi-region case can be rewritten as

Λ
c
r =

1
αEr ∑sN

E
s Gs(m

x
sr)

∑
s

NE
s τsrws

∫ mx
sr

0
m
(
W−2 −W−1

)
dGs(m),

where the argument em/mx
sr of the Lambert W function is suppressed to alleviate

notation. As shown in Appendix A.3.3, the integral term in the above expression
is given by κ3(m

max
s )−k(mx

sr)
k+1 = κ3Gs(m

x
sr)m

x
sr. Using this together with (7) and

Er = wr yields the expression in (18).
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A.4.3. Indirect utility. To derive the indirect utility, we first compute the (un-
weighted) average price across all varieties sold in each market. Multiplying both
sides of (6) by prs(i), integrating over Ωrs, and summing the resulting expressions
across r, we obtain:

ps ≡
1
N c
s

∑
r

∫
Ωrs
prs(j)dj =

1
N c
s

∑
r

τrswr

∫
Ωrs
mr(j)dj +

αEs
N c
s

,

where the first term is the average of marginal delivered costs. Under the Pareto dis-
tribution,

∫
Ωsr

ms(j)dj = NE
s

∫ mx
sr

0 mdGs(m) = [k/(k + 1)]mx
srN

E
s Gs(m

x
sr). Hence,

the (unweighted) average price for region r can be rewritten as follows

pr =
1
N c
r

∑
s

τsrws

(
k

k+ 1

)
mx
srN

E
s Gs(m

x
sr) +

αEr
N c
r

=

(
k

k+ 1

)
pdr +

αEr
N c
r

, (A-8)

where we have used (8) and pdr = τsrwsm
x
sr. Plugging (A-8) into (4) and using (7),

the indirect utility is then given by

Ur =
N c
r

k+ 1
− α

τrrmd
r

, (A-9)

which, together with (17) and (18), yields (20).
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